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Abstract

We study Fourier frames of exponentials on fractal measures associated with a class of affine iterated
function systems. We prove that, under a mild technical condition, the Beurling dimension of a Fourier
frame coincides with the Hausdorff dimension of the fractal.
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1. Introduction

A family of vectors (ei)i∈I in a Hilbert space H is called a frame if there exist m,M > 0 such
that

m‖f ‖2 �
∑
i∈I

∣∣〈f, ei〉
∣∣2 � M‖f ‖2.

The constants m and M are called lower and upper bounds of the frame. If only the upper bound
holds, then (ei)i∈I is called a Bessel sequence, and the upper bound is called the Bessel bound.

Frames provide robust, basis-like (but generally nonunique) representations of vectors in a
Hilbert space. The potential redundancy of frames often allows them to be more easily con-
structible than bases, and to possess better properties than those that are achievable using bases.
For example, redundant frames offer more resilience to the effects of noise or to erasures of
frame elements than bases. Frames were introduced by Duffin and Schaeffer [2] in the context of
nonharmonic Fourier series, and today they have applications in a wide range of areas. Following
Duffin and Schaeffer a Fourier frame or frame of exponentials is a frame of the form {e2πiλ·x}λ∈Λ

for the Hilbert space L2[0,1]. Fourier frames are also closely connected with sampling sequences
or complete interpolating sequences [17].

The main result of Duffin and Schaeffer is a sufficient density condition for {e2πiλ·x}λ∈Λ to
be a frame. Landau [15], Jaffard [11] and Seip [19] “almost” characterize the frame properties of
{e2πiλ·x}Λ∈Λ in terms of lower Beurling density:

D−(Λ) := lim inf
h→∞ inf

x∈R

#(Λ ∩ [x − h,x + h])
2h

.

Theorem 1.1. For {e2πiλ·x}Λ∈Λ to be a frame for L2[0,1], it is necessary that Λ is relatively
separated and D−(Λ) � 1, and it is sufficient that Λ is relatively separated and D−(Λ) > 1.

The property of relative separation is equivalent to the condition that the upper density

D+(Λ) := lim sup
h→∞

sup
x∈R

#(Λ ∩ [x − h,x + h])
2h

is finite.
For the critical case when D−(Λ) = 1, the complete characterization was beautifully formu-

lated by Joaquim Ortega-Cerdà and Kristian Seip in [17] where the key step is to connect the
problem with de Branges’ theory of Hilbert spaces of entire functions, and this new characteri-
zation lead to applications in a classical inequality of H. Landau and an approximation problem
for subharmonic functions.

In recent years there has been a wide range of interests in expanding the classical Fourier
analysis to fractal or more general probability measures [3,8,10,13,12,14,16,20–22]. One of the
central themes of this area of research involves constructive and computational bases in L2(μ)-
Hilbert spaces, where μ is a measure which is determined by some self-similarity property.
Hence these include classical Fourier bases, as well as wavelet and frame constructions.
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Definition 1.2. Let μ be a finite Borel measure on R
d . We say that a set Λ in R

d is a frame
spectrum for μ, with frame bounds m,M > 0, if the set E(Λ) := {eλ: λ ∈ Λ} is a frame for L2(μ)

with frame bounds m and M . We say that a set Λ in R
d is a Bessel spectrum for μ with Bessel

bound M > 0, if the set E(Λ) is a Bessel sequence for L2(μ) with Bessel bound M . We call Λ

simply a spectrum for μ if E(Λ) is an orthonormal basis. If μ has a spectrum then we say that
μ is a spectral measure. We will also call E(Λ) a Fourier frame/Bessel sequence/orthonormal
basis.

In [13] Jorgensen and Pedersen proved the surprising result that for certain Cantor measures
it is possible to construct orthonormal Fourier bases. Their motivating example consisted of the
Cantor set defined by dividing the unit interval into four equal intervals, keeping only the first
and the third, and repeating the process ad inf. On the resulting Cantor set one considers the
appropriate Hausdorff measure of dimension ln 2/ ln 4, or equivalently the Hutchinson measure
as in Definition 1.5 below. They proved that the spectrum of this measure is

Λ :=
{

n∑
k=0

4klk: lk ∈ {0,1}
}

.

In the same paper, they proved that for the middle-third Cantor set it is impossible to construct
more than two mutually orthogonal exponentials, thus no hope for a spectrum. However, it is still
unknown whether a frame spectrum exists for the middle-third Cantor measure.

The Jorgensen–Pedersen example naturally generated questions about the existence (or char-
acterization) of frames of exponentials for Borel probability measures that are not spectral
measures. The main focus of this paper is the fractal measures induced by affine iterated func-
tion systems. We will be interested in the correspondences between the geometry of the fractal
measure and the properties of its Bessel/frame spectra.

Definition 1.3. Let R be a d × d expanding real matrix, i.e., all eigenvalues λ satisfy |λ| > 1. Let
B be a finite subset of R

d of cardinality #B =: N . For convenience, we can assume 0 ∈ B . We
consider the following affine iterated function system:

τb(x) = R−1(x + b)
(
x ∈ R

d , b ∈ B
)
. (1.1)

We denote by R∗ the transpose of R.

Since R is expanding, the maps τb are contractions (in an appropriate metric equivalent to the
Euclidean one), and therefore Hutchinson’s theorem can be applied:

Theorem 1.4. (See [9].) There exists a unique compact set X = XB ⊂ R
d such that

X =
⋃
b∈B

τb(X). (1.2)

Moreover

XB =
{ ∞∑

R−kbk: bk ∈ B for all k ∈ N

}
. (1.3)
k=1
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There exists a unique Borel probability measure μ = μB on R
d such that

∫
f dμ = 1

N

∑
b∈B

∫
f ◦ τb dμ, (1.4)

for all compactly supported continuous functions f on R
d .

Moreover, the measure μB is supported on the set XB .

It is the measure μB that we will focus on here, and we will give necessary and/or sufficient
conditions for a set Λ to be a Bessel/frame spectrum for L2(μB).

Definition 1.5. The set XB in (1.2), (1.3) is called the attractor of the iterated function system
(IFS) (τb)b∈B . The measure μB in (1.4) is called the invariant measure of the IFS (τb)b∈B . We
will also say that μB is an affine IFS measure.

If μB(τb(XB) ∩ τb′(XB)) = 0 for all b = b′, then we say that the IFS (τb)b∈B (or the measure
μB ) has no overlap.

To establish a connection between the Hausdorff dimension of the fractal and the properties
of its frame or Bessel spectra, we will use the notion of Beurling dimension, or more precisely
the upper Beurling dimension (Definition 3.1). This notion was introduced in [1] for the study of
irregular Gabor frames.

The paper is organized as follows: the main result of the paper is Theorem 3.5. It shows that
for affine IFS measures with no overlap, any frame spectrum satisfying some mild assumptions
will have the Beurling dimension equal to the Hausdorff dimension of the fractal. The formula for
the Hausdorff dimension of the fractal (see [7]) is logρ N where N is the number of contractions
in the affine iterated function systems and ρ is the contraction constant (see Remark 3.4 for more
details).

In Section 2 we present some preliminaries. Proposition 2.1 shows that oversampling by a
factor of R preserves the frame property and increases the frame bounds by a factor of N . Propo-
sition 2.3 shows that the Bessel spectra are stable under uniformly bounded perturbations, and
that frame spectra are stable under small uniformly bounded deformations.

2. Preliminaries

We begin with an oversampling result. It can be formulated briefly as: oversampling by R

implies multiplying the bounds by N .

Proposition 2.1. Suppose the IFS (τb)b∈B has no overlap and let μ = μB be its invariant mea-
sure. Suppose Λ is a frame (Bessel) spectrum for μ. Then

(i) R∗−1Λ is a frame (Bessel) spectrum for μ, and the frame bounds are multiplied by N .
(ii) For every n � 0 the following inequality holds

mNn �
∑∣∣μ̂B

(
x − R∗−n

λ
)∣∣2 � MNn

(
x ∈ R

d
)
. (2.1)
λ∈Λ
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The hat denotes the Fourier transform of the measure

μ̂(t) =
∫

e2πit ·x dμ(x)
(
t ∈ R

d
)
.

Proof. First we need a lemma.

Lemma 2.2. If the measure μB has no overlap, then for all μB -integrable functions g, and any
b0 ∈ B: ∫

g ◦ τb0 dμB = N

∫
τb0 (XB)

g dμB.

Proof. From the invariance equation

N

∫
χτb0 (XB)g dμB =

∑
b∈B

∫
χτb0 (XB) ◦ τb g ◦ τb dμB.

Since there is no overlap χτb0 (XB) ◦ τb is 1 if b = b0, and is 0 if b = b0, μB -almost everywhere
(since μB is supported on XB ).

This leads to the conclusion. �
We return to the proof of Proposition 2.1. (i) We assumed 0 ∈ B . Take g in L2(μ). Then

〈g, eR∗−1λ〉 =
∫

g(x)eR∗−1λ(x) dμ(x) =
∫

g(x)eλ

(
R−1x

)
dμ(x) =

∫
g ◦ τ−1

0 ◦ τ0 eλ ◦ τ0 dμ

and using Lemma 2.2,

= N

∫
τ0(XB)

g ◦ τ−1
0 eλ dμ = N

〈
χτ0(XB)g ◦ τ−1

0 , eλ

〉
.

Then

Ag :=
∑
λ∈Λ

∣∣〈g, eR∗−1λ〉
∣∣2 = N2

∑
λ∈Λ

∣∣〈χτ0(XB)g ◦ τ−1
0 , eλ

〉∣∣2
.

Using the frame bounds for Λ we obtain that

N2m
∥∥χτ0(XB)g ◦ τ−1

0

∥∥2 � Ag � N2M
∥∥χτ0(XB)g ◦ τ−1

0

∥∥2
.

Using Lemma 2.2 again, we have that

N
∥∥χτ0(XB)g ◦ τ−1

0

∥∥2 = N

∫
τ0(XB)

|g|2 ◦ τ−1
0 dμ =

∫
|g|2 dμ = ‖g‖2.

This yields the conclusion.
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By (i) it is enough to prove (2.1) for n = 0. But this follows by an application of the frame
inequalities to the function ex , and using the fact that 〈ex, eλ〉 = μ̂B(x − λ). �

The next proposition shows that, similar to the celebrated Paley–Wiener theorem [18, The-
orem XXXVII] the Bessel property is invariant under uniformly bounded perturbations of the
Bessel spectrum and the frame property is stable under small perturbation of the frame spectrum.
The proof is a small modification of the proofs of Lemmas II and III in [2].

Proposition 2.3. Let μ be a compactly supported Borel probability measure on R
d . Let Λ =

{λn: n ∈ N} and Γ = {μn: n ∈ N} be two subsets of R
d with the property that there exists an

L > 0 such that

|λn − μn| � L (n ∈ N).

(i) If Λ is a Bessel spectrum for μ then Γ is one too. Moreover, the Bessel bound for Γ depends
only on the Bessel bound for Λ, on L and on the size of the support of μ.

(ii) If Λ is a frame spectrum for μ, then there exists a δ > 0 such that if L � δ then Γ is a frame
spectrum too. Moreover, δ depends only on the frame bounds of Λ and on the size of the
support of μ.

Proof. (i) It is enough to prove the assertion for the case when for all n ∈ N, μn differs from λn

only on the first component, because then the statement follows by induction on the number of
components.

For x ∈ R
d we denote by (x1, . . . , xd) its components.

Let f ∈ L∞(μ) and define by

f̃ (t) := 〈f, et 〉 =
∫

f (x)e−2πit ·x dμ(x)
(
t ∈ R

d
)
.

Clearly f̃ is analytic in each variable t1, . . . , td . Also

∂kf̃

∂tk1

(t) =
∫

f (x)(−2πix1)
ke−2πit ·x dμ(x) = 〈

(−2πix1)
kf, et

〉 (
t ∈ R

d
)
. (2.2)

We have for all n ∈ N, using the Taylor expansion at (λn)1 in the first variable:

∣∣f̃ (μn) − f̃ (λn)
∣∣2 =

∣∣∣∣∣
∞∑

k=1

∂kf̃

∂tk1
(λn)

k!
(
(μn)1 − (λn)1

)k

∣∣∣∣∣
2

and using the Cauchy–Schwarz inequality
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�
∞∑

k=1

| ∂kf̃

∂tk1
(λn)|2
k! ·

∞∑
k=1

|(μn)1 − (λn)1|2k

k! �
∞∑

k=1

| ∂kf̃

∂tk1
(λn)|2
k! ·

∞∑
k=1

L2k

k!

=
∞∑

k=1

| ∂kf̃

∂tk1
(λn)|2
k! · (eL2 − 1

)
.

Also, since Λ is a Bessel spectrum with Bessel bound B ,

∑
n∈N

∣∣∣∣∂kf̃

∂tk1

(λn)

∣∣∣∣2

=
∑
n∈N

∣∣〈(−2πix1)
kf, eλn

〉∣∣2 � B
∥∥(−2πix1)

kf
∥∥2 � B(2πM)2k‖f ‖2

where M is picked in such a way that the support of μ is contained in the ball B(0,M).
Using these inequalities and interchanging the order of summation, we obtain

∑
n∈N

∣∣f̃ (μn) − f̃ (λn)
∣∣2 � B

(
eL2 − 1

)‖f ‖2
∞∑

k=1

(2πM)2k

k!

= B
(
eL2 − 1

)(
eM2 − 1

)‖f ‖2. (2.3)

Using Minkowski’s inequality we obtain then

(∑
n

∣∣f̃ (μn)
∣∣2

)1/2

�
(∑

n

∣∣f̃ (λn)
∣∣2

)1/2

+
(∑

n

∣∣f̃ (μn) − f̃ (λn)
∣∣2

)1/2

�
(
B1/2 + (

B
(
eL2 − 1

)(
eM2 − 1

))1/2)‖f ‖

and this implies that Γ is a Bessel spectrum.
(ii) We saw in (i) that the Bessel property is preserved. Let A,B be the lower and upper frame

bounds for Λ. Pick δ > 0 small enough so that

A1/2 − (
B

(
eL2 − 1

)(
eM2 − 1

))1/2
> 0

for 0 < L � δ. Then, using (2.3) and Minkowski’s inequality we have

(∑
n

∣∣f̃ (μn)
∣∣2

)1/2

�
(∑

n

∣∣f̃ (λn)
∣∣2

)1/2

−
(∑

n

∣∣f̃ (μn) − f̃ (λn)
∣∣2

)1/2

�
(
A1/2 − (

B
(
eL2 − 1

)(
eM2 − 1

))1/2)‖f ‖.

So Γ is a frame. Note that δ depends only on A,B and M , not on μ or Λ. �
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3. Beurling dimension

Definition 3.1. (See [1].) Let Λ be a discrete subset of R
d . For r > 0, the upper Beurling density

corresponding to r (or r-Beurling density) is defined by

D+
r (Λ) := lim sup

h→∞
sup
x∈Rd

#(Λ ∩ (x + h[−1,1]d))

hr
.

The upper Beurling dimension (or simply the Beurling dimension) is defined by

dim+(Λ) := sup
{
r > 0: D+

r (Λ) > 0
}
.

Alternatively,

dim+(Λ) = inf
{
r > 0: D+

r (Λ) < ∞}
.

Given a set of exponential functions E(Λ) := {eλ: λ ∈ Λ} we also say that D+
r (Λ) is the

r-Beurling density of E(Λ).

Definition 3.2. We say that a d × d real matrix R is a similarity with scaling factor ρ > 0 if there
exists an orthogonal matrix O such that R = ρO .

Remark 3.3. Note that if R is a similarity with scaling factor ρ, then so is R∗, and ‖R∗x‖ = ρ‖x‖
for all x ∈ R

d , and R∗B(0, r) = ρB(0, r) for all r > 0, where B(0, r) is the closed ball of center
0 and radius r .

Remark 3.4. Suppose R is a similarity with scaling costant ρ, and let XB be the attractor of
the affine iterated function system (τb)b∈B . Assume in addition that the open set condition is
satisfied, i.e., there exists a non-empty open set V such that

V ⊃
⋃
b∈B

τb(V ).

Then Theorem 9.3 in [7] shows that the Hausdorff dimension of XB is s := logρ N . Moreover,
for this value, the Hausdorff measure of XB satisfies 0 < Hs(XB) < ∞.

Thus the next theorem will prove that, under these conditions, the Beurling density of a frame
spectrum for the invariant measure μB will be equal to the Hausdorff measure of the attractor XB .

The Hausdorff measure has the property that Hs(R · E) = N Hs(E) for all Borel subsets E,
since R is a similarity. Also Hs(E + t) = Hs(E) for all t ∈ R

d . Therefore, it is easy to check that
the restriction of the Hausdorff measure Hs to XB satisfies the invariance equation (1.4), under
these conditions (which guarantee also that there is no overlap). Therefore, since the invariant
measure is unique, it follows that μB is the restriction of the Hausdorff measure Hs to XB ,
renormalized so that it is probability measure.

Theorem 3.5. Let μ = μB be the invariant measure of the affine IFS (τb)b∈B , and assume R is
a similarity with scaling constant ρ > 1.
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(a) If Λ is a Bessel spectrum for μ then its upper Beurling dimension satisfies

dim+(Λ) � logρ N. (3.1)

Moreover

D+
logρ N (Λ) < ∞. (3.2)

(b) Assume in addition that the following condition is satisfied: there exists a natural number
p � 1, such that

sup
λ∈Λ

dist
(
R∗−p

λ,Λ
)
< ∞. (3.3)

Then, if Λ is a frame spectrum for μ, the upper Beurling dimension is

dim+(Λ) = logρ N = Hausdorff dimension(XB). (3.4)

Proof. We first prove (3.2).
Let U := B(0, r0), the closed ball centered at 0 of radius r0, where r0 is picked in such a way

that the Lebesgue measure of U is 2d . By [1, Proposition 2.2], one can compute the Beurling
densities using the set U : for r > 0,

D+
r (Λ) = lim sup

h→∞
sup
x∈Rd

#(Λ ∩ (x + hU))

hr
.

Since μ̂B is continuous and μ̂B(0) = 1, we can pick 0 < ε < 1 and δ > 0 such that

∣∣μ̂B(x)
∣∣2 � ε for all x ∈ δU.

Take h > δ arbitrary. Take the first n ∈ N such that ρ−nh � δ. Then we also have ρ−nh � δ/ρ,
and ρ−nhU ⊂ δU .

Now take an arbitrary x ∈ R
d . We have, using the fact that R∗ is a similarity so it scales

distances:

ε · #
(
Λ ∩ (x + hU)

) = ε · #
((

R∗−n
(Λ − x)

) ∩ (
R∗−n

(hU)
))

= ε · #
((

R∗−n
(Λ − x)

) ∩ (
ρ−nhU

))
�

∑
λ∈Λ,R∗−n(λ−x)∈ρ−nhU

∣∣μ̂B

(
R∗−n

(λ − x)
)∣∣2

�
∑
λ∈Λ

∣∣μ̂B

(
R∗−n

(λ − x)
)∣∣2 � BNn,

where we have used Proposition 2.1(ii) in the last inequality.
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On the other hand, since ρ−nh � δ/ρ, we have that h � ρnδ/ρ so

ε · #(Λ ∩ (x + hU))

hlogρ N
� BNn

( δ
ρ
)logρ NNn

=: C.

But this shows that D+
logρ N (Λ) � C/ε so (3.2) is proved, and dim+(Λ) � logρ N .

We prove (b) by contradiction. Assume dim+(Λ) < logρ N . Pick β < N such that dim+(Λ) <

logρ β . Then by the definition of the Beurling dimension D+
logρ β(Λ) = 0. Therefore there exists

h0 > 0 such that

#
(
Λ ∩ (x + hU)

)
� hlogρ β for h � h0, x ∈ R

d . (3.5)

The assumption (3.3) implies that there exist C > 0 and two functions x : Λ → B(0,C),
γ : Λ → Λ such that

R∗−p
λ = x(λ) + γ (λ) for all λ ∈ Λ. (3.6)

Iterating (3.6) we get for all n:

R∗−np
λ = R∗−(n−1)p

x(λ) + · · · + x
(
γ n−1(λ)

) + γ n(λ) =: xn(λ) + γ n(λ),

where by γ n we mean γ composed with itself n times.
Since R∗ is a similarity, we have

∥∥xn(λ)
∥∥ � C

(
ρ−(n−1)p + · · · + 1

)
� D

for some constant D.
Thus

R∗−np
λ = xn(λ) + γ n(λ), with

∥∥xn(λ)
∥∥ � D and γ n(λ) ∈ Λ for all λ ∈ Λ. (3.7)

We claim that there is a constant E such that for n big enough

#
{
λ ∈ Λ: γ n(λ) = λ′} � Eβnp for all λ′ ∈ Λ. (3.8)

Fix λ′ ∈ Λ. For each n, let sn be the number of λ such that γ n(λ) = λ′. Let λ1, . . . , λsn be the
list of such λ. Then, by (3.7), R∗−npλ = xn(λi) + λ′ for all i. But then

‖λi − λ1‖ � ρnp
∥∥xn(λi) − xn(λ1)

∥∥ � 2Dρnp.

Therefore λi ∈ λ1 + (2D/r0)ρ
npU . If we take n large enough, we can use (3.5) and obtain that

sn � ((2D/r0)ρ
np)logρ β =: Eβnp . This implies (3.8).
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Next, we will need the following key lemma:

Lemma 3.6. For every r > 0 ∑
λ∈Λ

sup
‖x‖�r

∣∣μ̂(x + λ)
∣∣2

< ∞. (3.9)

Proof. For each λ ∈ Λ pick an xλ ∈ R
d , with ‖xλ‖ � r . Then, by Proposition 2.3(i) we have that

{λ + xλ: λ ∈ Λ} is a Bessel frame with Bessel bound M which does not depend on Λ or {xλ}
but only on the Bessel bound of Λ, on r and on the size of the support of the measure, i.e., XB .
Writing the Bessel inequality for the constant function 1, we get∑

λ

∣∣μ̂(λ + xλ)
∣∣2 � M.

Since M does not depend on {xλ}, we can let xλ vary, one by one, and replace |μ̂(λ + xλ)|2 by
the corresponding supremum, thus obtaining Lemma 3.6. �

Returning to the proof of the theorem, we apply Proposition 2.1(ii) to x = 0 and we have, for
n big enough

mNnp �
∑
λ∈Λ

∣∣μ̂(−R∗−np
λ
)∣∣2 =

∑
λ∈Λ

∣∣μ̂(
R∗−np

λ
)∣∣2 =

∑
λ∈Λ

∣∣μ̂(
xn(λ) + γ n(λ)

)∣∣2

and using (3.7)

=
∑
λ′∈Λ

∑
λ∈Λ: γ n(λ)=λ′

∣∣μ̂(
xn(λ) + λ′)∣∣2 �

∑
λ′

∑
γ n(λ)=λ′

sup
‖x‖�D

∣∣μ̂(
x + λ′)∣∣2

and with (3.8)

�
∑
λ′

Eβnp sup
‖x‖�D

∣∣μ̂(
x + λ′)∣∣2

.

But Lemma 3.6 shows that ∑
λ′

sup
‖x‖�D

∣∣μ̂(
x + λ′)∣∣2 � F

for some finite constant F . And this implies mNnp � EFβnp which contradicts the fact that
β < N . �
Remark 3.7. We believe that condition (3.3) can be removed from the hypothesis of Theo-
rem 3.5(b), but we were not able to do it. However, all examples of frame spectra that we know,
do satisfy this condition (see, e.g., [3–5]). Also, for the classical case of the unit interval, if the
lower Beurling density of Λ is positive (as in Theorem 1.1) then every interval of big enough
length will contain some element of Λ, and therefore condition (3.3) will be clearly satisfied.
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Remark 3.8. While the Beurling dimension seems to be a good invariant for frame spectra, the
Beurling density can vary a lot. It was proved in [6] that for the Jorgensen–Pedersen Cantor set,
where R = 4, B = {0,2}, the sets

Λ
(
5k

) := 5k

{
n∑

i=0

4i li : li ∈ {0,1}, n ∈ Z+
}

(k ∈ Z+)

are all spectra, so the corresponding exponentials form orthonormal bases, not just frames!
The Beurling dimension for all the sets Λ(5k) in this example is ln 2/ ln 4 = 1/2, and the upper

1/2-Beurling density for Λ(50) can be checked to be positive. It is also finite, by Theorem 3.5(a).
But since Λ(5k) = 5kΛ(50) it follows that the upper 1/2-Beurling densities of the sets Λ(5k)

decrease to 0. Thus one can have spectra of arbitrarily small Beurling density.

Example 3.9. As we have explained in the introduction, for the classical case of the unit interval,
the condition that the upper Beurling density is finite (for dimension equal to one), is also a
sufficient condition for the set to be a Bessel spectrum for the Lebesgue measure on the unit
interval. The next example will show that the situation is very different in the case of fractal
measures.

Consider the IFS for the middle-third Cantor set, i.e., R = 3, B = {0,2}, and let μ3 be its
invariant measure.

Proposition 3.10. For any integer a ∈ Z \ {0}, and any infinite set of non-negative integers F ,
the set {3na: n ∈ F } cannot be a Bessel spectrum for the middle-third Cantor measure μ3.

Moreover, any such set has Beurling dimension 0.

Proof. First we prove that μ̂3(a) = 0. For this, note that the Fourier transform of the invariance
equation (1.4) implies

μ̂3(x) = mB

(
R∗−1

x
)
μ̂3

(
R∗−1

x
)

(x ∈ R) (3.10)

where

mB(x) = 1

2

(
1 + e2πi2x

)
.

Iterating this relation and taking the limit at infinity we get

μ̂3(x) =
∞∏

n=1

mB

(
R∗−n

x
)

(x ∈ R)

and the infinite product is uniformly convergent on compact sets. See also [5,4] for more details.
Then the zeros of μ̂3 are of the form 3n (2k+1)π

4 , k ∈ Z, n � 1. Thus μ̂3(a) = 0.
Also, since mB(3ka) = 1 if a ∈ Z and k � 0, the refinement equation (3.10) implies that

μ̂3(3na) = μ̂3(a) = 0 for all n � 1.
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But then, {3na: n ∈ F } cannot be a Bessel spectrum if F is infinite, because one has∑
n∈F

∣∣〈1, e3na〉
∣∣2 =

∑
n∈F

∣∣μ̂3
(
3na

)∣∣2 = #F · ∣∣μ̂3(a)
∣∣2 = ∞.

To show that the Beurling dimension is zero, we see that the Beurling dimension of {3na:
n ∈ F } is the same as the one for {3n: n ∈ F } and is less than that of Λ := {3n: n � 0}. Then
#Λ ∩ (x + h(−1,1)) is less than the biggest p such that 3n, . . . ,3n+p ∈ (x − h,x + h), for some
n � 0. Then |3n+p − 3n| � 2h so 3p � (2h + 1), which means that p � log3(2h + 1). But then,
for α > 0 the α-Beurling density is less than lim infh log3(2h + 1)/hα = 0. Since α > 0 was
arbitrary, this shows that the Beurling dimension is zero. �
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