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Abstract

We consider the boundary value problems: (φp(x′(t)))′ + q(t)f (t, x(t), x(t − 1), x′(t)) = 0, φp(s) =
|s|p−2s, p > 1, t ∈ (0,1), subject to some boundary conditions. By using a generalization of the Leggett–
Williams fixed-point theorem due to Avery and Peterson, we provide sufficient conditions for the existence
of at least three positive solutions to the above problems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the existence of triple positive solutions for the delay differential
equation with one-dimensional p-Laplacian(

φp

(
x′(t)

))′ + q(t)f
(
t, x(t), x(t − 1), x′(t)

) = 0, t ∈ (0,1), (1.1)
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subject to one of the following two pairs of boundary conditions:{
x(t) = ξ(t), −1 � t � 0,

x(1) = 0,
(1.2){

x(t) = ξ(t), −1 � t � 0,

x′(1) = 0,
(1.3)

where φp(s) = |s|p−2s, p > 1. By positive solution to the above problems, we mean a function
x(t) that is positive on 0 < t < 1 and satisfies the differential equation (1.1) and the boundary
conditions (1.2) or (1.3), respectively.

In recent years, there has been much attention focused on the existence and multiplicity of pos-
itive solutions for nonlinear ordinary differential equations and functional differential equations,
see [5–17] and references therein. The Guo–Krasnosel’skii fixed point theorem [1,2], Leggett–
Williams fixed point theorem [3], and a generalization of Leggett–Williams fixed point theorem
due to Avery and Peterson [4] play an important role in the above studies.

In [12], Bai et al. studied the two-point boundary value problems by using a generalization of
Leggett–Williams fixed point theorem [4]⎧⎪⎨

⎪⎩
x′′(t) + q(t)f

(
t, x(t), x′(t)

) = 0, t ∈ (0,1),

x(0) = 0 = x(1),

x(0) = 0 = x′(1).

Very recently, with the same method, Shu and Xu in [13] investigated the problem⎧⎪⎨
⎪⎩

x′′(t) + q(t)f
(
t, x(t), x′(t − 1)

) = 0, t ∈ (0,1),

x(t) = ξ(t), −1 � t � 0,

x(1) = 0.

Jiang [14] used a fixed point index theorem in cones to study the existence of at least one
positive solution for the problem⎧⎪⎨

⎪⎩
x′′(t) + f

(
t, x(t − τ)

) = 0, t ∈ (0,1), τ > 0,

x(t) = 0, −τ � t � 0,

x(1) = 0.

In [15], Bai et al. considered the existence of multiple positive solutions for the one-
dimensional p-Laplacian boundary value problems{(

φp

(
x′(t)

))′ + q(t)f
(
t, x(t), x′(t)

) = 0, t ∈ (0,1),

αφp

(
x(0)

) − βφp

(
x′(0)

) = 0, γ φp

(
x(1)

) + δφp

(
x′(1)

) = 0,

and {(
φp

(
x′(t)

))′ + q(t)f
(
t, x(t), x′(t)

) = 0, t ∈ (0,1),

x(0) − g1
(
x′(0)

) = 0, x(1) + g2
(
x′(1)

) = 0.

The author [16] studied the boundary value problems⎧⎪⎨
⎪⎩

(
φp

(
x′(t)

))′ + q(t)f
(
t, x(t), x′(t)

) = 0, t ∈ (0,1),

x(0) = 0 = x(1),

′
x(0) = 0 = x (1).
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By using a Leary–Schauder alternative and the Guo–Krasnosel’skii fixed point theorem, Jiang
et al. [17] established the existence of single and multiple nonnegative solutions to the problem⎧⎪⎨

⎪⎩
(
φp

(
x′(t)

))′ + q(t)f
(
t, x(t − τ)

) = 0, t ∈ (0,1) \ {τ },
x(t) = ξ(t), −τ � t � 0,

x(1) = 0.

Motivated by the above works, we investigate the problems (1.1)–(1.2) and (1.1)–(1.3). Our
main results will depend on an application of a fixed-point theorem due to Avery and Peterson [4].

For the convenience of the reader, we present here the necessary definitions from the theory
of cones in Banach spaces.

Definition 1.1. Let E be a real Banach space. A nonempty convex closed set P ⊂ E is said to be
a cone provided that

(i) au ∈ P for all u ∈ P and all a � 0 and
(ii) u,−u ∈ P implies u = 0.

Note that every cone P ⊂ E induces an ordering in E given by x � y if y − x ∈ P .

Definition 1.2. The map α is said to be a nonnegative continuous concave functional on a cone
P of a real Banach space E provided that α :P → [0,∞) is continuous and

α
(
tx + (1 − t)y

)
� tα(x) + (1 − t)α(y)

for all x, y ∈ P and 0 � t � 1.
Similarly, we say the map β is a nonnegative continuous convex functional on a cone P of a

real Banach space E provided that β :P → [0,∞) is continuous and

β
(
tx + (1 − t)y

)
� tβ(x) + (1 − t)β(y)

for all x, y ∈ P and 0 � t � 1.

Definition 1.3. An operator is called completely continuous if it is continuous and maps bounded
sets into pre-compact sets.

Let γ and θ be nonnegative continuous convex functionals on P , α be a nonnegative contin-
uous concave functional on P , and ψ be a nonnegative continuous functional on P . Then for
positive real numbers a, b, c, and d , we define the following convex sets:

P(γ, d) = {
x ∈ P | γ (x) < d

}
,

P (γ,α, b, d) = {
x ∈ P | b � α(x), γ (x) � d

}
,

P (γ, θ,α, b, c, d) = {
x ∈ P | b � α(x), θ(x) � c, γ (x) � d

}
and a closed set

R(γ,ψ,a, d) = {
x ∈ P | a � ψ(x), γ (x) � d

}
.

The following fixed-point theorem due to Avery and Peterson is fundamental in the proofs of
our main results.
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Theorem 1.1. [4] Let P be a cone in a real Banach space E. Let γ and θ be nonnegative
continuous convex functionals on P , α be a nonnegative continuous concave functional on P ,
and ψ be a nonnegative continuous functional on P satisfying ψ(λx) � λψ(x) for 0 � λ � 1,
such that for some positive numbers M and d ,

α(x) � ψ(x) and ‖x‖ � Mγ(x), (1.4)

for all x ∈ P(γ, d). Suppose T :P(γ, d) → P(γ, d) is completely continuous and there exist
positive numbers a, b, and c with a < b such that

(S1) {x ∈ P(γ, θ,α, b, c, d) | α(x) > b} 	= ∅ and α(T x) > b for x ∈ P(γ, θ,α, b, c, d);
(S2) α(T x) > b for x ∈ P(γ,α, b, d) with θ(T x) > c;
(S3) 0 /∈ R(γ,ψ,a, d) and ψ(T x) < a for x ∈ R(γ,ψ,a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P(γ, d), such that

γ (xi) � d for i = 1,2,3;
b < α(x1);
a < ψ(x2) with α(x2) < b;
ψ(x3) < a.

In this article, it is assumed that:

(C1) f ∈ C([0,1] × [0,∞) × [0,∞) × R, [0,∞));
(C2) q(t) is nonnegative measurable function defined on (0,1) and there exist a natural num-

ber k � 3 and t0 ∈ (1/k, (k − 1)/k) such that q(t0) > 0. Furthermore, q(t) satisfies
0 <

∫ 1
0 q(t) dt < ∞;

(C3) ξ(t) ∈ C[−1,0], ξ(t) > 0 on [−1,0) and ξ(0) = 0.

Denote M = ∫ 1
0 q(t) dt , Q = max−1�t�0 ξ(t).

In Section 2, we assume that

(H1)

1/2∫
0

φ−1
p

( 1/2∫
s

q(r) dr

)
ds +

1∫
1/2

φ−1
p

( s∫
1/2

q(r) dr

)
ds < ∞

holds. Then, we can let

C1 = max

{ 1/2∫
0

φ−1
p

( 1/2∫
s

q(r) dr

)
ds,

1∫
1/2

φ−1
p

( s∫
1/2

q(r) dr

)
ds

}
,

and

C2 = min

{ 1/2∫
1/k

φ−1
p

( 1/2∫
s

q(r) dr

)
ds,

(k−1)/k∫
1/2

φ−1
p

( s∫
1/2

q(r) dr

)
ds

}
.
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In Section 3, we assume that

(H2)

1∫
0

φ−1
p

( 1∫
s

q(r) dr

)
ds < ∞

holds. Then we let

C3 =
1∫

0

φ−1
p

( 1∫
s

q(r) dr

)
ds, C4 =

1∫
1/k

φ−1
p

( (k−1)/k∫
s

q(r) dr

)
ds.

Here φ−1
p (s) = |s|1/(p−1) sgn(s) is the inverse function to φp(s).

2. Triple positive solutions of (1.1)–(1.2)

Throughout this section, suppose condition (H1) holds. Let X = (C1[0,1], ‖ · ‖) be our Ba-
nach space with the maximum norm

‖x‖ = max
{

max
0�t�1

∣∣x(t)
∣∣, max

0�t�1

∣∣x′(t)
∣∣}.

Let

P = {
x ∈ X | x(t) � 0, x(0) = x(1) = 0, x is concave on [0,1]} ⊂ X.

Let the nonnegative continuous concave functional α, the nonnegative continuous convex
functionals θ , γ , and the nonnegative continuous functional ψ be defined on the cone P by

γ (x) = max
0�t�1

∣∣x′(t)
∣∣, ψ(x) = θ(x) = max

0�t�1

∣∣x(t)
∣∣, α(x) = min

1
k
�t�1− 1

k

∣∣x(t)
∣∣.

Lemma 2.1. [12] If x ∈ P , then max0�t�1 |x(t)| � 1
2 max0�t�1 |x′(t)|.

Lemma 2.2. [6] If x ∈ P , then x(t) � t (1 − t)max0�t�1 |x(t)|.

Lemma 2.3. If x(t) is a positive solution to the problem(
φp

(
x′(t)

))′ + q(t)f
(
t, x(t), x(t − 1) + w(t − 1), x′(t)

) = 0, t ∈ (0,1), (2.1){
x(t) = 0, −1 � t � 0,

x(1) = 0,
(2.2)

where

w(t) =
{

ξ(t), −1 � t � 0,

0, 0 � t � 1,

then x̃(t) = x(t) + w(t), −1 � t � 1, is a positive solution to BVP (1.1)–(1.2).

Proof. It is easy to check that x̃(t) satisfies (1.1) and (1.2).
So we focus on BVP (2.1)–(2.2).
By Lemmas 2.1 and 2.2, their definitions, and the concavity of x, the functionals defined

above satisfy:
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k − 1

k2
θ(x) � α(x) � θ(x) = ψ(x), ‖x‖ = max

{
θ(x), γ (x)

} = γ (x), (2.3)

for all x ∈ P(γ, d) ⊂ P . Therefore, condition (1.4) is satisfied.
For x ∈ P , we define

u(t) : =
t∫

0

φ−1
p

( t∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

−
1∫

t

φ−1
p

( s∫
t

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds,

for 0 < t < 1. Clearly, u(t) is continuous and strictly increasing in (0,1) and u(0+) < 0 <

u(1−). Thus, u(t) has zeros in (0,1). Let σ be a zero of u(t) in (0,1). Then

σ∫
0

φ−1
p

( σ∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

=
1∫

σ

φ−1
p

( s∫
σ

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds. � (2.4)

Theorem 2.1. Suppose (H1) holds. In addition, assume that there exist numbers a, b, d with
0 < a < b � (k − 1)d/(2k2) such that the following conditions are satisfied:

(H3) f (t, u, v,w) � 1

M
φp(d) for (t, u, v,w) ∈ [0,1] × [0, d/2] × [0,Q] × [−d, d],

(H4) f (t, u, v,w) � φp

(
k2b

(k − 1)C2

)

for (t, u, v,w) ∈
[

1

k
,
k − 1

k

]
×

[
b,

k2

k − 1
b

]
× [0,Q] × [−d, d],

(H5) f (t, u, v,w) < φp

(
a

C1

)
for (t, u, v,w) ∈ [0,1] × [0, a] × [0,Q] × [−d, d].

Then the boundary-value problem (2.1)–(2.2) has at least three positive solutions x1, x2, and x3
satisfying

max
0�t�1

∣∣x′
i (t)

∣∣ � d, for i = 1,2,3,

b < min
1
k
�t�1− 1

k

∣∣x1(t)
∣∣,

a < max
0�t�1

∣∣x2(t)
∣∣, with min

1
k
�t�1− 1

k

∣∣x2(t)
∣∣ < b,

max
0�t�1

∣∣x3(t)
∣∣ < a. (2.5)
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Proof. Problem (2.1)–(2.2) has a solution x = x(t) if and only if x solves the operator equation

x(t) = (T x)(t)

:=

⎧⎪⎨
⎪⎩

∫ t

0 φ−1
p

(∫ σx

s
q(r)f (r, x(r), x(r − 1) + w(r − 1), x′(r)) dr

)
ds, 0 � t � σx ,∫ 1

t
φ−1

p

(∫ s

σx
q(r)f (r, x(r), x(r − 1) + w(r − 1), x′(r)) dr

)
ds, σx � t � 1,

0, −1 � t � 0,

where σx is defined in (2.4).
From the definition of T and above discussion, we deduce that for each x ∈ P , T x ∈ P .

Moreover, (T x)(σx) is the maximum value of T on [0,1].
We can prove that this operator, T :P → P , is completely continuous. The proof is similar

to that given for Lemma 2 in [11], so we omit it here. We now show that all the conditions of
Theorem 1.1 are satisfied.

If x ∈ P(γ, d), then γ (x) = max0�t�1 |x′(t)| � d . From Lemma 2.1 we have
max0�t�1 |x(t)| � d

2 and

max
0�t�1

∣∣x(t − 1) + w(t − 1)
∣∣ � max

0�t�1

∣∣x(t − 1)
∣∣ + max

0�t�1

∣∣w(t − 1)
∣∣

= max
−1�t�0

∣∣x(t)
∣∣ + max

−1�t�0

∣∣w(t)
∣∣

= max
−1�t�0

∣∣ξ(t)
∣∣

= Q.

Then assumption (H3) implies f (t, x(t), x(t − 1) + w(t − 1), x′(t)) � 1
M

φp(d). On the other
hand, for x ∈ P , T x ∈ P , T x is concave on [0,1], and maxt∈[0,1] |(T x)′(t)| = max{|(T x)′(0)|,
|(T x)′(1)|}, so

γ (T x) = max
t∈[0,1]

∣∣(T x)′(t)
∣∣

= max
t∈[0,1]

{∣∣(T x)′(0)
∣∣, ∣∣(T x)′(1)

∣∣}

= max

{
φ−1

p

( σx∫
0

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
,

φ−1
p

( 1∫
σx

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)}

� d · φ−1
p

(
1

M

)
max

{
φ−1

p

( σx∫
0

q(r) dr

)
, φ−1

p

( 1∫
σx

q(r) dr

)}

� d · φ−1
p

(
1

M

)
· φ−1

p (M) = d.

Hence, T :P(γ, d) → P(γ, d).
To check condition (S1) of Theorem 1.1, we choose

x0(t) = − 4k2

b

(
t − 1

)2

+ k2

b, 0 � t � 1.

k − 1 2 k − 1
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It is easy to see that x0 ∈ P(γ, θ,α, b, k2

k−1b, d) and α(x0) = min 1
k
�t�1− 1

k
|x0(t)| = x0(

1
k
) =

4b > b, and so {x ∈ P(γ, θ,α, b, k2

k−1b, d) | α(x) > b} 	= ∅. Hence, if x ∈ P(γ, θ,α, b, k2

k−1b, d),

then b � x(t) � k2

k−1b, |x′(t)| � d for 1/k � t � (k − 1)/k, and

max
1
k
�t�1− 1

k

∣∣x(t − 1) + w(t − 1)
∣∣ � max

1
k
�t�1− 1

k

∣∣x(t − 1)
∣∣ + max

1
k
�t�1− 1

k

∣∣w(t − 1)
∣∣

= max
−(1− 1

k
)�t�− 1

k

∣∣x(t)
∣∣ + max

−(1− 1
k
)�t�− 1

k

∣∣w(t)
∣∣

= max
−(1− 1

k
)�t�− 1

k

∣∣ξ(t)
∣∣

� Q.

From assumption (H4) and Lemma 2.2, we have

α(T x) = min
1
k
�t�1− 1

k

∣∣(T x)(t)
∣∣

� k − 1

k2
max

0�t�1

∣∣(T x)(t)
∣∣

= k − 1

k2

σx∫
0

φ−1
p

( σx∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

= k − 1

k2

1∫
σx

φ−1
p

( s∫
σx

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

� k − 1

k2
min

{ 1/2∫
0

φ−1
p

( 1/2∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds,

1∫
1/2

φ−1
p

( s∫
1/2

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

}

� k − 1

k2
min

{ 1/2∫
1/k

φ−1
p

( 1/2∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds,

(k−1)/k∫
1/2

φ−1
p

( s∫
1/2

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

}

� k − 1

k2

k2b

(k − 1)C2
min

{ 1/2∫
1/k

φ−1
p

( 1/2∫
s

q(r) dr

)
ds,

(k−1)/k∫
1/2

φ−1
p

( s∫
1/2

q(r) dr

)
ds

}

= b

C2
C2 = b.

This shows that condition (S1) of Theorem 1.1 is satisfied.
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Secondly, from (2.3) and b � k−1
2k2 d , we have

α(T x) � k − 1

k2
θ(T x) >

k − 1

k2

k2

k − 1
b = b,

for all x ∈ P(γ,α, b, d) with θ(T x) > k2

k−1b. Thus, condition (S2) of Theorem 1.1 is satisfied.
We finally show that (S3) of Theorem 1.1 also holds. Clearly, as ψ(0) = 0 < a, we have

0 /∈ R(γ,ψ,a, d). Suppose that x ∈ R(γ,ψ,a, d) with ψ(x) = a. Then, by (H5), we have

ψ(T x) = max
0�t�1

∣∣(T x)(t)
∣∣

=
σx∫

0

φ−1
p

( σx∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

=
1∫

σx

φ−1
p

( s∫
σx

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

� max

{ 1/2∫
0

φ−1
p

( 1/2∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds,

1∫
1/2

φ−1
p

( s∫
1/2

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

}
.

In fact, if σx = 1/2, the above inequality holds; if σx < 1/2, we have

ψ(T x) =
σx∫

0

φ−1
p

( σx∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

=
σx∫

0

φ−1
p

( 1/2∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

+
σx∫

1/2

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

�
σx∫

0

φ−1
p

( 1/2∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

�
1/2∫
0

φ−1
p

( 1/2∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds,

if σx > 1/2, we have
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ψ(T x) =
1∫

σx

φ−1
p

( s∫
σx

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

=
1∫

σx

φ−1
p

( 1/2∫
σx

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

+
s∫

1/2

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

�
1∫

σx

φ−1
p

( s∫
1/2

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

�
1∫

1/2

φ−1
p

( s∫
1/2

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds.

So, the above inequality holds. Thus,

ψ(T x) = max
0�t�1

∣∣(T x)(t)
∣∣

=
σx∫

0

φ−1
p

( σx∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

=
1∫

σx

φ−1
p

( s∫
σx

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

� max

{ 1/2∫
0

φ−1
p

( 1/2∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds,

1∫
1/2

φ−1
p

( s∫
1/2

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

}

<
a

C1
max

{ 1/2∫
0

φ−1
p

( 1/2∫
s

q(r) dr

)
ds,

1∫
1/2

φ−1
p

( s∫
1/2

q(r) dr

)
ds

}

= a

C1
· C1 = a.

So, condition (S3) of Theorem 1.1 is satisfied. Therefore, an application of Theorem 1.1 im-
plies the boundary-value problem (2.1)–(2.2) has at least three positive solutions x1, x2, and x3
satisfying (2.5). The proof is complete. �

So, in this section, we have the main result.
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Corollary 2.1. Suppose the assumptions of Theorem 2.1 hold. Then the boundary value problem
(1.1)–(1.2) has at least three positive solutions x̃i (t) = xi(t) + w(t), i = 1,2,3, where xi(t)

satisfies (2.5).

3. Triple positive solutions of (1.1)–(1.3)

Now we deal with problem (1.1)–(1.3). The method is similar to what we have done above.
Throughout this section, suppose condition (H2) holds. Define the cone P1 ⊂ X by

P1 = {
x ∈ X | x(t) � 0, x(0) = x′(1) = 0, x is concave and increasing on [0,1]}.

Let the nonnegative continuous concave functional α1, the nonnegative continuous convex
functional θ1, γ1, and the nonnegative continuous functional ψ1 be defined on the cone P1 by

γ1(x) = max
t∈[0,1]

∣∣x′(t)
∣∣ = x′(0), ψ1(x) = θ1(x) = max

t∈[0,1]
∣∣x(t)

∣∣ = x(1),

α1(x) = min
t∈[ 1

k
,1− 1

k
]
∣∣x(t)

∣∣ = x

(
1

k

)
, for x ∈ P1.

Lemma 3.1. [12] If x ∈ P1, then x(1) � x′(0).

Lemma 3.2. If x(t) is a positive solution to the problem(
φp

(
x′(t)

))′ + q(t)f
(
t, x(t), x(t − 1) + w(t − 1), x′(t)

) = 0, t ∈ (0,1), (3.1){
x(t) = 0, −1 � t � 0,

x′(1) = 0,
(3.2)

where

w(t) =
{

ξ(t), −1 � t � 0,

0, 0 � t � 1,

then x̃(t) = x(t) + w(t), −1 � t � 1, is a positive solution to BVP (1.1)–(1.3).

So we focus on BVP (3.1)–(3.2).
With Lemma 3.1 and the concavity of x, the functionals defined above satisfy

1

k
θ1(x) � α1(x) � θ1(x) = ψ1(x), ‖x‖ = max

{
θ1(x), γ1(x)

} = γ1(x), (3.3)

for all x ∈ P1(γ, d) ⊂ P1.

Theorem 3.1. Suppose (H2) holds. In addition, assume that there exist numbers a, b, d with
0 < a < b � (k − 1)d/k2 such that the following conditions are satisfied:

(H6) f (t, u, v,w) � 1

M
φp(d), for (t, u, v,w) ∈ [0,1] × [0, d] × [0,Q] × [−d, d],

(H7) f (t, u, v,w) � φp

(
kb

C4

)
,

for (t, u, v,w) ∈
[

1

k
,
k − 1

k

]
×

[
b,

k2

k − 1
b

]
× [0,Q] × [−d, d],
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(H8) f (t, u, v,w) < φp

(
a

C3

)
, for (t, u, v,w) ∈ [0,1] × [0, a] × [0,Q] × [−d, d].

Then the boundary-value problem (3.1)–(3.2) has at least three positive solutions x1, x2, and x3
satisfying

max
0�t�1

∣∣x′
i (t)

∣∣ � d, for i = 1,2,3,

b < min
1
2 �t�1

∣∣x1(t)
∣∣,

a < max
0�t�1

∣∣x2(t)
∣∣, with min

1
2 �t�1

∣∣x2(t)
∣∣ < b,

max
0�t�1

∣∣x3(t)
∣∣ < a. (3.4)

Proof. Problem (3.1)–(3.2) has a solution x = x(t) if and only if x solves the operator equation

x(t) = (T x)(t)

:=
{∫ t

0 φ−1
p

(∫ 1
s

q(r)f (r, x(r), x(r − 1) + w(r − 1), x′(r)) dr
)
ds, 0 � t � 1,

0, −1 � t � 0.

We can prove that this operator, T :P1 → P1, is completely continuous. We now show that all
the conditions of Theorem 1.1 are satisfied.

From the definition of T , we deduce that for each x ∈ P1, T x ∈ P1. Moreover, (T x)(1) is the
maximum value of T on [0,1].

If x ∈ P(γ1, d), then γ1(x) = max0�t�1 |x′(t)| � d . From Lemma 3.1, we have
max0�t�1 |x(t)| � d , and[

x(t − 1) + w(t − 1)
]∣∣

0�t�1 = [
x(t) + w(t)

]∣∣−1�t�0 = w(t)|−1�t�0

= ξ(t)|−1�t�0 � Q.

Then assumption (H6) implies f (t, x(t), x(t − 1) + w(t − 1), x′(t)) � 1
M

φp(d). On the other
hand, for x ∈ P1, T x ∈ P1, T x is concave on [0,1], and maxt∈[0,1] |(T x)′(t)| = |(T x)′(0)|, so

γ1(T x) = max
t∈[0,1]

∣∣(T x)′(t)
∣∣

= ∣∣(T x)′(0)
∣∣

= φ−1
p

( 1∫
0

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)

� d · φ−1
p

(
1

M

)
φ−1

p

( 1∫
0

q(r) dr

)

= d · φ−1
p

(
1

M

)
· φ−1

p (M) = d.

Hence, T :P(γ1, d) → P(γ1, d).
To check condition (S1) of Theorem 1.1, we choose

x0(t) = − k2

b(t − 1)2 + k2

b, 0 � t � 1.

k − 1 k − 1
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It is easy to see that x0 ∈ P(γ1, θ1, α1, b, k2

k−1b, d) and α1(x0) = min
t∈[ 1

k
,1− 1

k
] |x0(t)| =

x0(
1
k
) > b, and so {x ∈ P(γ1, θ1, α1, b, k2

k−1b, d) | α1(x) > b} 	= ∅. Hence, if x ∈ P(γ1, θ1, α1, b,

k2

k−1b, d), then b � x(t) � k2

k−1b, |x′(t)| � d for 1/k � t � 1 − 1/k. From assumption (H7), we
have

α1(T x) = min
1
k
�t�1− 1

k

∣∣(T x)(t)
∣∣ � 1

k
max

0�t�1

∣∣(T x)(t)
∣∣ = 1

k
(T x)(1)

= 1

k

1∫
0

φ−1
p

( 1∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

� 1

k

1∫
1/k

φ−1
p

( (k−1)/k∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

� b

C4

1∫
1/k

φ−1
p

( (k−1)/k∫
s

q(r) dr

)
ds

= b

C4
· C4 = b.

This shows that condition (S1) of Theorem 1.1 is satisfied.
Secondly, from (3.3), we have

α1(T x) � 1

k
θ1(T x) >

k

k − 1
b > b,

for all x ∈ P(γ1, α1, b, d) with θ1(T x) > k2

k−1b. Thus, condition (S2) of Theorem 1.1 is satisfied.
We finally show that (S3) of Theorem 1.1 also holds. Clearly, since ψ1(0) = 0 < a,

0 /∈ R(γ1,ψ1, a, d). Suppose that x ∈ R(γ1,ψ1, a, d) with ψ1(x) = a. Then, by assump-
tion (H8), we have

ψ1(T x) = max
0�t�1

∣∣(T x)(t)
∣∣

=
1∫

0

φ−1
p

( 1∫
s

q(r)f
(
r, x(r), x(r − 1) + w(r − 1), x′(r)

)
dr

)
ds

� a

C3

1∫
0

φ−1
p

( 1∫
s

q(r) dr

)
ds

<
a

C3
· C3 = a.

So, condition (S3) of Theorem 1.1 is satisfied. Therefore, the boundary-value problem (3.1)–(3.2)
has at least three positive solutions x1, x2, and x3 satisfying (3.4). The proof is complete. �

So, in this section, we have the main result.
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Corollary 3.1. Suppose the assumptions of Theorem 3.1 hold. Then the boundary value problem
(1.1)–(1.3) has at least three positive solutions x̃i (t) = xi(t) + w(t), i = 1,2,3, where xi(t)

satisfies (3.4).
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