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The anomaly-induced effective action is a useful tool for deriving the contributions coming from quantum
effects of massless conformal fields. It is well known that such corrections in the higher derivative
vacuum sector of the gravitational action provide the same exponential inflation (Starobinsky model)
as the cosmological constant term. At the same time, the presence of a classical electromagnetic field
breaks down the exponential solution. In this Letter we explore the role of the anomaly-induced term in
the radiation sector and, furthermore, derive the “equation of state” and the scaling laws for all terms in
the Einstein equations. As one could expect, the scaling law for the vacuum anomaly-induced effective
action is the same as for the cosmological constant.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

It is well known that the conformal anomaly is useful for vari-
ous applications Quantum Field Theory. In particular, the anomaly-
induced effective action has been explored in the cosmological
setting about three decades ago [1]. Soon it was discovered that,
in the absence of matter fields or radiation, the quantum anomaly-
induced contributions lead to the Starobinsky model of inflation
[2] (see also [3–8] for an alternative work and further develop-
ments). The traditional version of this inflationary model is based
on the unstable exponential solution [2], that implies some spe-
cial choice of the number of the quantum fields with different
spins [7]. For instance, the present-day universe with (presumably)
only photon being an active quantum field, or the early universe
where the active quantum content is described by the Minimal
Standard Model of particle physics, satisfy the condition of unsta-
ble inflation.

An alternative possibility is to consider the supersymmetric
matter content of active fields, that leads to the stable inflation-
ary solution at the initial stage of inflation. The transition from
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stable to unstable inflationary regimes can be associated to the
decoupling of the massive s-particles [9,10] in the universe where
the inflation is slowing down because of the quantum effects of
massive fields [10]. The same effect holds in the presence of the
cosmological constant, which actually plays only a small role in
this story [11–13]. In both cases of stable and unstable inflation-
ary solutions one usually assume that the universe is empty, that
means there are no matter fields and/or radiation.

All the mentioned massive or massless fields of different spins
are virtual ones, they manifest themselves only through their con-
tributions to the vacuum action. If the real radiation is present,
there is no exponential solution for the conformal factor a(t) and
the last tends to the corresponding FRW solution if the particle
content corresponds to the unstable case and if the initial data are
chosen in an appropriate way [1]. After a while, the dynamical sys-
tem describing the universe enters the regime where the effect of
higher derivative terms becomes negligible [6,7,11], and the behav-
ior of the conformal factor is essentially the same as in the purely
classical universe dominated by classical radiation content.

The above conclusion is based on the analysis of the the-
ory with the action which includes Einstein–Hilbert term, classi-
cal radiation and higher-derivative anomaly-induced gravitational
contributions. However, there may be one missed component in
this consideration. In the case when the background radiation is
present, one may need to take into account also the anomaly-
induced contribution to the electromagnetic part. Indeed, the clas-
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sical radiation does decouple from the equation for the conformal
factor, and the radiation density manifests itself only via the first
integral of this equation, that is the first Friedmann equation. So,
it looks interesting to check what is the effect of the anomaly-
induced term, e.g., whether it is capable to produce some signifi-
cant change in the acceleration of the universe. The same problem
can be explored, also, for the radiation-dominated epoch after the
inflation ends.

One can consider a bit more general formulation of the prob-
lem. We can derive the “equation of state” for all components
of the gravitational action, namely the Einstein–Hilbert term, cos-
mological constant term, free radiation, quantum anomaly-induced
contribution to the radiation part and quantum anomaly-induced
contribution to the vacuum part. Then we can check how the
corresponding “energy densities” depend on the scale factor. For
instance, the comparison of these dependencies for the anomaly-
induced vacuum terms and the cosmological constant can better
explain why the two kind of vacuum actions produce similar expo-
nential behavior. This issue may be also interesting in view of the
recent attempts to deal with the cosmological constant problem by
taking the anomaly-induced contributions into account [14,15].

The Letter is organized as follows. In Section 2 we write down
the anomaly-induced terms in both gravitational and electromag-
netic sectors and consider the relations between timelike and
spacelike components of the diagonalized equations for the met-
ric (which are Energy–Momentum Tensors in the electromagnetic
field case). These relations can be seen as equation of state for
all the terms in the modified Einstein equations in the cosmo-
logical setting. In Section 3 we explore what is the effect of the
anomaly-induced electromagnetic term for the rate of expansion
of the universe in the two different situations, namely when the
higher derivative metric dependent terms are present or not. Fi-
nally, in Section 4 we draw our conclusions and discuss some
possible applications of the results.

2. Classical and anomalous terms in the effective action

The conformal anomaly is the typical theoretical phenomenon
for massless conformal invariant quantum fields on some nontriv-
ial external background. In case of massless conformal fields the
action of vacuum (gravitational one) has to include, at least, the
conformal invariant higher derivative part (see, e.g., [16] for the in-
troduction and [17] for a recent review of Quantum Field Theory
in curved space)

SHD =
∫

d4x
√−g

(
a1C2 + a2 E + a3�R

)
. (1)

Here C2 = R2
μναβ − 2R2

αβ + (1/3)R2 is the square of the Weyl

tensor and E = R2
μναβ − 4R2

αβ + R2 is the integrand of the Gauss–
Bonnet topological term. The terms in the Lagrangian of (1) satisfy
the conformal Noether identity and, furthermore, do not affect the
dynamical equation for the conformal factor of the metric. At the
quantum level, however, the conformal symmetry is violated and
this also affects the cosmological solution.

In the cosmological setting, massless conformal invariant quan-
tum fields corresponds to the early epoch when the energy of
the photons is much greater than masses of at least some of the
charged spinor fields. This condition can be easily satisfied in the
inflationary period, especially in the framework of the Starobinsky
model, which has, usually, very high values of the typical energies
at the end of inflationary period. Furthermore, this condition can
be fulfilled in the radiation-dominated period after inflation, where
many massive fields approximately can be approximately treated
as massless.
2.1. Anomaly-induced terms

Consider the approximation of massless fields. In case of both
gravitational and electromagnetic background fields, the conformal
anomaly has the form

〈
T μ
μ

〉 = −(
wC2 + bE + c�R + β F 2), (2)

where F 2 = F 2
μν is square of the strength tensor of the electro-

magnetic fields, w,b, c are the β-functions for the parameters of
the vacuum action and β is proportional to the electromagnetic
charge β-function. At one loop order, using the Minimal Subtrac-
tion scheme of renormalization, we get

β = − 2e2

3(4π)2

∑
f

N f − e2

6(4π)2

∑
s

Ns (3)

as a sum over charged fermions and scalars with the multiplicities
N f and Ns correspondingly.2 The one-loop values of w , b, and c,
can be found, e.g. in [18,16,17].

It is well known that taking into account the conformal
anomaly in the cosmological case leads to the Starobinsky expo-
nential solution [2] for the conformal factor, if there are no matter
fields. At the same time, if the radiation is present, there is no such
solution. One can naturally ask whether the anomalous electro-
magnetic term in (2) can change this situation. And more general,
whether this term can affect the expansion of the universe at the
early stage of its history.

In order to use field quantities in the cosmological setting, one
has to perform some space averaging. Obviously, 〈F 2〉 ∼ 〈E2〉 −
〈H2〉 equals zero for a free radiation. But this does not apply,
e.g., to the radiation-dominated early universe, because in this case
there is also a hot plasma of other particles and the content of the
universe does not reduce to a free electromagnetic radiation. As a
qualitative simplest estimate we shall suppose that F 2 �= 0 and set
its scale-factor dependence in accordance to its conformal prop-
erty. One can assume, for instance, that at some fixed scale the
magnitude of this term is proportional to the ρ0

r , that is the clas-
sical radiation energy density. This radiation density is supposed
to describe not only electromagnetic fields, but also a hot plasma
which fills the Universe. It is important to note that such non-
trivial material content of the universe is indeed possible at the
last stage of the stable inflation, where we observe oscillations of
the conformal factor [10] and, consequently, production of photons
and charged particles.

The anomaly-induced effective action can be easily derived as a
functional of the new variables ḡμν and σ , where gμν = ḡμν · e2σ

and the metric ḡμν has fixed determinant. Disregarding the con-
formal invariant term in the effective action we arrive at the fol-
lowing expression [22]:

Γ̄ =
∫

d4x
√−ḡ

{
wσ C̄2 + bσ

(
Ē − 2

3
�̄R̄

)
+ 2bσ	̄4σ

+ βσ F̄ 2
}

− 3c + 2b

36

∫
d4x

√−g R2, (4)

where F̄ 2 = ḡμα ḡνβ Fαβ Fαβ = e−4σ F 2 and 	4 is a fourth deriva-
tive conformally covariant operator acting on dimensionless scalar

	4 = �2 + 2Rμν∇μ∇ν − 2

3
R� + 1

3
R;μ∇μ. (5)

2 The detailed discussion of the anomaly-induced action of electromagnetic field
and its relation to the more general result coming from the physical renormalization
scheme can be found in [19], see also [20,21].
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The expression (4) is the quantum correction to the classical ac-
tion of vacuum. Let us note that the covariant (nonlocal and local)
forms of the anomaly-induced action are well known [22,19,20],
but Eq. (4) is sufficient for our present purposes. The total action
has the form

St = SEH + Γ̄ + conf. invariant terms, (6)

where the conformal invariant terms include the classical actions
of radiation and of hot charged particles and SEH is the Einstein–
Hilbert term

SEH = − 1

16πG

∫
d4x

√−g(R + 2Λ). (7)

In the case of the cosmological, FRW metric, the classical mass-
less fields decouple from gravity. Taking into account the confor-
mal properties, it proves useful to rewrite the expression (6) in a
more detailed form

St = SEH + SHD + S0
r + Γ̄HD + Γ̄β . (8)

Here SHD and S0
r are classical higher derivative metric and radi-

ation (including massless charged fields) conformal invariant ac-
tions. Γ̄HD and Γ̄β are parts of anomalous action (4). In what
follows we will use the same indications for all quantities, in-
cluding the trace of the stress tensor, Ti = (TEH, THD, T̄HD, T 0

r , Tβ),
energy density ρi and pressure pi , with Ti = ρi − 3pi in the cor-
responding reference frame. On the top of that, we will sometimes
use notation for the total expression in the radiation sector, like
ρr = ρo

r + ρβ .

2.2. Energy density and pressure

Consider the stress–energy tensor, whose components are given
by the variational derivative of the total effective action (8),

T αβ = − 2√−g

δSt

δgαβ

. (9)

In order to calculate separately the contributions of the Einstein–
Hilbert term from the terms with high derivatives (HD) which
come from the quantum contributions and the electromagnetic
one, we present the trace of the stress–energy tensor in the form

T = 1

a3

δSt

δa
= TEH + T 0

r + THD + T̄HD + Tβ = ρt − 3pt, (10)

where

ρt = ρEH + ρ0
r + ρHD + ρ̄HD + ρβ = −T 0

0 (11)

and (in Cartesian coordinates)

pt = pEH + p0
r + pHD + p̄HD + pβ = T 1

1 = T 2
2 = T 3

3 (12)

are density-like and pressure-like components, correspondingly.
The indices and bars of all quantities are in accordance with the
ones of the actions in the r.h.s. of (8). We find useful to intro-
duce such notations even for the Einstein–Hilbert term, despite the
physical sense of the quantities is different in this case (as it is, of
course, for the higher derivative vacuum terms, too).

Our purpose is to see how all ρ ’s and p’s depend on the scale
factor a(t) and also how they behave during and after the infla-
tionary period. One can find the densities for the components by
assuming that the conservation law is satisfied separately for each
of the stress–energy tensors Ti = (TEH, T 0

r , THD, T̄HD, Tβ) in (10). In
terms of the cosmic scale factor the conservation law can be ex-
pressed as
d
(
ρia

3) = −pid
(
a3), where pi = ρi − Ti

3
. (13)

Following this standard procedure, we can immediately see that
since the trace of the classical radiation stress tensor is zero, the
equation of state is as it is supposed to be,

T 0
r = 3p0

r − ρ0
r = 0, hence p0

r = ρ0
r

3
. (14)

Correspondingly, this term does not contribute to the equation of
motion for a(t), that is to

δSr

δa(t)
= 0.

Of course, this term does influence the expansion through the
first integral of the equation of motion, that is through Friedmann
equation H2 = (8πG/3)ρ .

Let us consider another terms. The first observation is that,
since the trace is zero for the SHD term, the corresponding equa-
tion of state is exactly the same as for the free radiation, pHD =
ρHD/3. For other three terms we obtain, in terms of conformal time
η (as usual, dt = a(η)dη),

TEH = 3

4πG

[
a′′

a3
− 2Λ

3

]
, (15)

T̄HD = 6c

[
−a′′′′

a5
+ 4

a′′′a′

a6
+ 3

(
a′′

a3

)2

− 6
a′′a′2

a7

]

− 24b

[(
a′

a2

)4

− a′′a′2

a7

]
, (16)

and

Tβ = β F̄ 2

a4
. (17)

Using Eqs. (13), the solution for all the densities ρi come from
the differential equations of the form

dρi

da3
+ 4

3

ρi

a3
= Ti

3a3
. (18)

A general solution for this nonhomogeneous equation (18) is

ρi(a) = C(a)a−4, (19)

where the coefficient C(a) is obtained by the integration of

dC

dη
= Tia

3a′. (20)

Integrating (20) for each of remaining stress–energy tensor
components above and substituting them into Eq. (19), we arrive
at the following results:

ρEH = 3

8πG

(
a′2

a4
− Λ

3

)
,

pEH = − 1

8πG

(
2

a′′

a3
− a′2

a4
− Λ

)
, (21)

ρ̄HD = −6c

[
a′′′a′

a6
− 1

2

(
a′′

a3

)2

− 2
a′′a′2

a7

]
+ 6b

(
a′

a2

)4

,

p̄HD = −2c

[
5

a′′′a′

a6
− a′′′′

a5
+ 5

2

(
a′′

a3

)2

− 8
a′′a′2

a7

]

+ 8b

[
3

(
a′

a2

)4

− a′′a′2

a7

]
, (22)

ρβ = β F̄ 2

4
ln a, pβ = β F̄ 2

4
(ln a − 1). (23)
a 3a
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Fig. 1. We have assumed here the MSSM particle content with N1,1/2,0 = (12,48,104) and took the numerical value β F̄ 2 = −0.1. The plots for ρ̄HD and ρEH rapidly tend to
constants, because the inflation is stable and in the exponential regime the curvature components behave like constants. In this regime, it shows exactly the same scaling
law as the density of the cosmological constant.
Indeed, Eqs. (22) derived here are well known, they are exactly
the same as the ones obtained in [1], and also recalculated in [8].
It is easy to see that these formulas are quite different from the
ones for the cosmological constant in (21). One can expect that
for the general form of a(η) these two different equations of state
will definitely produce different contributions. However, in short
we will see the effect of the two terms is equal for the exponential
inflation case.

3. Cosmological solutions with anomalous terms

Here we consider the effect of radiation anomalous term on the
behavior of the conformal factor of the metric, in the framework
of an FLRW cosmology, with and without higher derivative anoma-
lous terms.

3.1. Stable anomaly-induced inflation with radiation term

As a first step, consider the equation of motion including the
higher derivative terms. The most useful choice of variable is the
conformal factor as a function of cosmic time, σ(t). The last quan-
tity is defined as σ = ln a. The equation of motion can be ob-
tained from the 00-component [1,2] or directly from the trace
T = ρt − 3pt = 0 [7]. In terms of τ = t/tPl = MPlt , where tPl is
the Planck time unit tPl 
 5.3 × 10−44 s, the equation has the form

....
σ + 7σ̇

...
σ + 4

(
3 − b

c

)
σ̇ 2σ̈ + 4σ̈ 2 − 4b

c
σ̇ 4

− 1

c

(
σ̈ + 2σ̇ 2 − 2

3

ρΛ

M4
Pl

)
− 1

6c

(
β F̄ 2

M4
Pl

)
e−4σ = 0. (24)

In this equation the contribution of the cosmological constant term
is written in terms of vacuum energy density ρΛ = Λ/(8πG) =
ΛM2
Pl , where MPl = 1/

√
8πG = 2.44 × 1018 GeV is the reduced

Planck mass.
The direct inspection shows that, in the presence of the β F̄ 2-

term, there is no exponential solution. This demonstrates that the
importance of vacuum for such solution hold also when we take
the anomaly in the radiation sector into account.

The next question is what is the role of the β F̄ 2-term for the
case of a stable inflation. In principle, one can expect two dif-
ferent situations: (i) the anomalous term slows down the expo-
nential inflation, as it happens with the terms generated by the
quantum effects of massive light fields [10,11]; (ii) the anoma-
lous β F̄ 2-term decreases very fast and soon becomes negligible.
The numerical analysis show that this last behavior actually takes
place. For the illustration we present the corresponding plots for
the case of Minimal Supersymmetric Standard Model (MSSM) in
Fig. 1. As we have already mentioned in Section 1, the super-
symmetric particle content is the most interesting here, because
it provides stable inflation, making the possible effect of the radi-
ation term (or the absence of such effect) the most explicit and
clear.

In order to find the cosmological evolution of all the densities,
we solve Eq. (24) numerically and then replace the solution into
the expressions which directly follow, in particular, from (21), (22)
and (23). We present these results, in Fig. 1, as functions of τ =
t/tPl , where

ρEH(τ )

M4
Pl

= 3σ̇ 2 − ρΛ

M4
Pl

, (25)

ρ0
r (τ ) = e−4σ ρ0

r (τ = 0), (26)

ρ̄HD(τ )

M4
= −6c

(
σ̇

...
σ + 3σ̇ 2σ̈ − 1

2
σ̈ 2 − b

c
σ̇ 4

)
, (27)
Pl
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ρβ(τ )

M4
Pl

= β F̄ 2

M4
Pl

σ e−4σ , (28)

for the MSSM particle content with N1,1/2,0 = (12,48,104).

3.2. Radiation-dominated evolution after inflation

In this section we shall investigate the effect of quantum cor-
rections at the period after the anomaly-induced inflation ends and
the higher derivative terms in (4) become negligible. Then the rel-
evant part of the total action has the form

St = − 1

16πG

∫
d4x

√−g R + Sclass.matter +
∫

d4x
√−ḡβσ F̄ 2,

(29)

where Sclass.matter is the classical action of the matter fields. We are
interested in the period when matter and radiation are very hot
and can be treated as conformal. Then, the classical massless fields
in Sclass.matter decouple from the conformal factor of the metric and
the effective equation of motion, in terms of conformal time, has
the form

3

4πG
a′′ + β F̄ 2

a
= 0. (30)

Let us, as before, denote the derivative with respect to the cos-
mic time t by a point. Then Eq. (30) becomes

ä + ȧ2

a
− μ2

2a3
= 0. (31)

In the last equation we have introduced a useful notation3

μ2 = −8πGβ F̄ 2

3
. (32)

As a first step in solving Eq. (31) we find the relation between a(t)
and H = ȧ/a

H2 = C + μ2 ln a

a4
, (33)

where C is an integration constant. In order to clarify the sense
of this constant, let us consider the standard classical model with
μ = 0. In this case, from Eq. (33) follows a(t) = C(t − t0)

1/2, where
t0 is some fixed instant of time. Different choices of t0 can be com-
pensated by the renormalization of C , so we set t0 = 0. On the
other hand, by solving the Friedmann equation we obtain

a(t) =
[

32πGρ0
r (t = 0)

3

]1/4

· a0 · √t, (34)

where ρ0
r (t = 0) and a0 are the energy density of the electromag-

netic field and the scale factor of the metric at the instant t = 0.
The comparison of the two expressions for a(t) lead to the rela-

tion C = 8πGρ0
r (t=0)

3 . It is natural to fix that the a0 corresponds
to the fiducial metric ḡμν . In what follows we put a0 = 1. Then
the elements of the solution (33) satisfy the relation μ2 � C if
the anomalous contribution and energy density satisfy the relation
|β F̄ 2| � 4ρ

(0)
r . As we have indicated above, this relation is quite

natural, because for the free radiation F̄ 2 = 0 and the presence
of the anomalous term is due to the interaction with other fields
which have energy density much smaller than the one of radiation.

3 Let us note that F̄ 2 = 2(〈H2〉 − 〈E2〉) is typically positive and that, according to
our definition (3), β < 0.
Finally, the general analytic solution of (31) can be presented in
the form

t = 2e−2C/μ2

μ

√
σ+C/μ2∫

√
C/μ

e2z2
dz

= e−2C/μ2

μ

√
π

2

[
Erfi

(√
2σ + 2C/μ2

) − Erfi(
√

2C/μ)
]
. (35)

The disadvantage of this formula is that it becomes singular in
the classical limit μ → 0. In order to solve this difficulty, one can
derive an approximate solution by treating the term with μ as a
small perturbation,

√
Ct ∼= a2

2

(
1 − μ2

2C
· ln a

)
. (36)

As one can see from the last relation, the expansion of the universe
performs slightly faster as a result of the quantum effects related
to the electromagnetic anomalous term β F 2.

When the universe expands, the radiation temperature is de-
creasing. It is instructive to find the temperature relations when
the quantum term in the solution (36) is relevant. The lower bound
for the relevant temperature is defined by the energy correspond-
ing to the moment when the lightest charged fermion decouples
and the upper bound is the energy scale when the inflation ends
and the higher derivative terms in Eq. (4) become negligible. In the
framework of the modified Starobinsky model [9–11], the scale of
the graceful exit from the anomaly-induced inflation depends on
the scale of the supersymmetry breaking, and may vary from H =
300 GeV to H = 1014 GeV for different gauge theories. Let us no-
tice that, contrary to the case of a purely gravitational background,
the mixed electromagnetic-gravitational background corresponds
to the loop diagrams with external lines of both electromagnetic
potential and metric perturbations. Indeed, the decoupling scale is
defined by the energy of the photons which is much greater than
the energy of the gravitons.

In order to find the temperature of the radiation corresponding
to (36), we can use the Friedmann equations

ȧ2

a2
= H2 = 8πG

3
ρr,

2ä

a
+ ȧ2

a2
= −8πGpr, (37)

where pr is the radiation pressure and the thermodynamical rela-
tion is close to ρr ≈ ρ0

r = π2

15 T 4. Then we arrive at the formula

T 4 = 45

π2
H2 · M2

Pl. (38)

The next requires the equation of state for the anomalous term,
which was obtained in the previous section. Using this result di-
rectly leads us to

ρr = 3

8πG
· C + μ2 ln a

a4
(39)

and

pr = C + μ2(ln a − 1)

8πGa4
= 1

3
ρr + 1

3

|β| F̄ 2

a4
. (40)

As one can see here, the quantum effect on the background
electromagnetic fields decreases the radiation pressure. The de-
pendence between the temperature and the scale factor is given
by
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T = 1

a

[
45(C + μ2 ln a)

8π3G

]1/4

= 1

a

[
15

π2

(
ρ0

r − |β| F̄ 2 ln a
)]1/4

.

(41)

Naturally, the quantum effects produce some deviation from the
usual classical formulas, namely, the ρr is a bit larger than ρ0

r for
a given temperature.

4. Conclusions and discussions

We have considered a cosmological applications of the vacuum
quantum effects in the radiation-dominated universe and found
that the β F 2 term in the conformal anomaly leads to a slight
modification of the evolution law and the thermal history of the
universe. In the transitional period between inflation and radia-
tion dominated universe the β F 2 gives a nonzero contribution to
the acceleration of the universe, that is different from the classical
radiation. It would be interesting to explore further physical con-
sequences of this effect.

The relation for the anomaly-induced effective action in the ra-
diation sector can be useful for investigating the general features
of the gravity with anomaly-induced quantum corrections. In par-
ticular, it would be very interesting to explore the stability of the
corresponding semi-classical solution, for a realistic particle con-
tent, that means nonstable Starobinsky inflation. This problem is
well known as a problem of stability of Minkowski and de Sit-
ter spaces (see, e.g., [23–25] and further reference therein). Our
previous analysis also shows that the stability conditions for the
conformal factor of the metric may be different for the flat space
from one side and for the dS space from another one [11]. It would
be very interesting to check out what are the conditions of stabil-
ity of the classical solution in a general case, for different stages
of the universe expansion. The effect of radiation in the anomaly-
induced action (refgeneral solution) is potentially relevant on this
respect. We hope to report on this issue in a close future.
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