L

View metadata, citation and similar papers at core.ac.uk brought to you byf\‘: CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com
—ey
Electronic Notes in

. . SCIE“ Ce D I rect Theoretical Computer

Science

ELSEVIER Electronic Notes in Theoretical Computer Science 160 (2006) 335-348
www.elsevier.com/locate/entcs

Architecture Normalization for
Component-based Systems

Lian Wen!

Software Quality Institute
Griffith University
Nathan, Brisbane, Qld., 4111, AUSTRALIA

Geoff R. Dromey?

Software Quality Institute
Griffith University
Nathan, Brisbane, Qld., 4111, AUSTRALIA

Abstract

Being able to systematically change the original architecture of a component-based system to a desired
target architecture without changing the set of functional requirements of the system is a useful capability.
It opens up the possibility of making the architecture of any system conform to a particular form or shape
of our choosing. The Behavior Tree notation makes it possible to realize this capability by inserting action-
inert bridge component-state. For example, we can convert typical network component architectures into
normalized tree-like architectures which have significant advantages. We can also use this “architecture
change” capability to keep the architecture of a system stable when changes are made in the functional
requirements. The results in this paper build on earlier work for formalizing the process of building a system
out of its requirements and formalizing the impact of requirements change on the design of a system.

Keywords: Components, software architecture, formal methods, behavior trees, genetic software
engineering.

1 Introduction

Software architecture is one of the critical issues in software engineering. In this
paper, we will use the concept of component interaction network (CIN) [1,2] as our
chosen architectural construct. A CIN is a graph that shows a software system’s
components and the dependencies or interactions among them.

Generally, a lower coupled system is more portable and easier to maintain. In
this paper, we propose a tree-like hierarchical structure as an optimized component

I Email: 1.wen@gu.edu.au
2 Email: g.dromey@griffith.edu.au

1571-0661 © 2006 Elsevier B.V. Open access under CC BY-NC-ND license
doi:10.1016/j.entcs.2006.05.032

https://core.ac.uk/display/82206624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:l.wen@gu.edu.au
mailto:g.dromey@griffith.edu.au
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

336 L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348

architecture because of the scalability and simplicity of trees. A tree is a con-
nected graph with the least amount of coupling. Many architectual styles such
as “Pipe & Filter”, “Shared Repository”, “Layered Abstract Machine”, “Bus”,
“Client-Server” [6,7], and “C2”[12] can be abstracted as trees in special conditions.
We call a software system with a tree-structured CIN a normalized system; the
procedure for transforming a non-normalized system into a normalized system is
called architecture normalization.

It is usually argued that software architecture is determined or at least strongly
influenced by the functional requirements of the system. A complex system may
inevitably produce a complex architecture. However, our research shows that the
topological structure of a CIN can be made independent of the functional require-
ments that the system satisfies.

To prove this point, we use the Genetic Software Engineering (GSE) design
process [1]. GSE provides a formal approach for designing component-based soft-
ware systems. The underlying procedure of GSE includes three steps. Firstly,
each individual functional requirement is translated (manually) into a correspond-
ing tree-structured graph called a requirement behavior tree (RBT); then these trees
are integrated into one large tree called a design behavior tree (DBT); finally from
the DBT, other design diagrams includes the component architecture (CIN) are
retrieved. In GSE, because the procedure for the last two steps is clearly defined,
once the set of RBTs are fixed, the corresponding CIN is also fixed. Therefore, the
focus of this problem is how we can have different sets of RBTs for the same set
of functional requirements. To achieve this, the first method is to adjust the order
of nodes in RBTs if the order has not be specified by the functional requirements;
the second method is to insert bridge component-states, which are similar to hid-
den events in CSP [8]. The second method is more systematic that can transfer
the CIN into any pre-defined form without affecting the functional requirements.
In other words, the component architecture can be independent to the functional
requirements.

Based on our previous work, GSE not only provides a systematic approach to
construct component-based software design, it also provides a formal method to
do change impact analysis [2]. When a software system has been adjusted due to
the changes in the functional requirements, a traceability model has been proposed
to show the change impacts on the component architecture as well as on other
design documents. Sometimes, changes in a system’s functional requirements will
affect the architecture. Repeated changes of a system may eventually ruin the
system’s architecture. However, based on the result of this paper, it is possible
for the designers to preserve the architecture or minimize the change impact when
the functional requirements have been changed. If the component architecture of
a large system can be kept stable during the system’s lifetime, it will undoubtedly
reduce the maintenance costs of that system.

The paper is organized as following: Section 2 briefly introduces the concept of
GSE. Section 3 introduces the architecture transformation theory. In Section 4, we
propose the concept of software normalization, and a microwave oven case study

L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348 337

has been presented to illustrate the architecture transformation theory and the
simplicity of a normalized system. Finally, the last section gives a brief conclusion.

2 Genetic Software Engineering

2.1 Behavior Trees

The Behavior Tree notation, which has been given a formal semantics [1], captures
in a simple tree-like form of composed component-states. It provides a direct and
clearly traceable relationship between what is expressed in the natural language
representation and its formal specification. For example, the sentence “whenever
the door is open the light turns on” is translated to the behavior tree below:

DOCR
[Open]

!

LIGHT
[On]

The principal conventions of the notation for component-states are the graphical
forms for associating with a component, a [State], an ??Event?? or a ?Decision?.
Exactly what can be an event, a decision, a state, are built on the formal founda-
tions of expressions?®. To assist with traceability to original requirements a simple
convention is followed. Tags (e.g. R1 and R2, etc, see below) are used to refer to the
original requirement in the document that is being translated. System states are
used to model high-level (abstract) behavior. They are represented by rectangles
with a double line border. For details of the latest GSE notation please browse the
SQI paper site [3].

2.2 GSFE Design Process

There are three major steps to construct a component-based architecture using
the GSE design process. The first step is to translate each individual functional
requirement into one or more corresponding requirements behavior trees (RBTs).
The second step is to integrate all the RBTs into a single design behavior tree
(DBT) and the third step is to project the component interaction network (CIN)
and many other design documents. Further details of the GSE procedures are given
elsewhere [1,3]. To maximize communication our intent is to introduce the main
ideas of the design method in a relatively informal way. The whole design process
is best understood in the first instance by observing its application to a simple
example. Later, the same example will be normalized to explain how the proposed
method manipulates the DBT so that the corresponding component architecture
can be transformed to a tree structure. We use a design example for a Microwave
Oven which has already been published in the literature [1,2] and [4]. The seven

3 For general discussions, we may abstract everything as a state irrespective of whether it is an“even” or
PP S
a“decision”.

338 L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348

stated functional requirements for the Microwave Oven problem are given in Table
1.

Table 1 Functional Requirements for Microwave Oven

e R1. There is a single control button available for the user of the oven. If the
oven is idle with the door is closed and you push the button, the oven will start
cooking (that is, energize the power-tube for one minute).

e R2. If the button is pushed while the oven is cooking it will cause the oven to
cook for an extra minute.

e R3. Pushing the button when the door is open has no effect (because it is
disabled).

e R4. Whenever the oven is cooking or the door is open the light in the oven will
be on.

* R5. Opening the door stops the cooking.

e R6. Closing the door turns off the light. This is the normal idle state, prior to
cooking when the user has placed food in the oven.

e R7. If the oven times-out the light and the power-tube are turned off and then
a beeper emits a sound to indicate that the cooking is finished.

The translation for the requirement 7 (R7) is shown in Fig. 1. From Fig. 1,
we can see that, initially, the OVEN is in the “Cooking” state. When the OVEN
times-out, the LIGHT is off, POWER-TUBE is off, BEEPER sounds etc. The “+”
sign in the root state “OVEN [Cooking]” indicates these states are only implied
in the original requirement. The behavior trees translated for the complete set of
requirements can be found in [1].

When requirements translation has been completed, each individual functional
requirement is translated to one or more corresponding requirement behavior tree(s)
(RBTs). We can then systematically and incrementally construct a design behavior
tree (DBT) that will satisfy all its requirements. The process of integrating two
behavior trees is guided by the precondition and interaction axioms [1]. If an RBT’s
root node exists in another RBT, the RBT can be integrated into the second tree
at that point. For example, for the behavior trees of R3 and R6 shown in Fig. 2, it
is found that the root node DOOR|[Closed] of R3, exists in tree R6, so the RBT of
R3 can be integrated with tree for R6 to create a new tree as shown in Fig. 3.

Using this same behavior-tree grafting process, a complete design is constructed
(it evolves) incrementally by integrating RBTs and/or DBTs pairwise until we are
left with a single final DBT shown in Fig. 4 (R8 is a missing requirement from the
original functional requirements, but can be easily identified through the common
domain knowledge of a microwave oven). This is the ideal for design construction
that is realizable when all requirements are consistent, complete, composable and
do not contain redundancies.

Once the design behavior tree (DBT) has been constructed the next task is to
retrieve the component interaction network (CIN) and other design diagrams.

L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348 339

UGHT

BEEPER

POWER-TUBE
[om

OVEN
[Gocking-Firished]

Fig. 1. Behavior tree for requirement R7

RG [OD\,/;:‘J]
v
CE=Y |
[Disabled] w
RE| Clooms
E LI[E;;IIT
Re| T

Fig. 2. Behavior trees for requirement R3 and R6

QVEN
R6 [Open]
\I/ Point of
6 USER Integration
7?Door-Closed??

: /
RG DOCR

[Closed]
LIGHT BUTTON
R6 o R3[(Emabieq)
OVEN
R6 Tide]

Fig. 3. Result of Integrating R6 and R3 (the second part)

In the DBT representation, a given component may appear in different parts
of the tree in different states (e.g., the OVEN component may appear in the Open
state in one part of the tree and in the Cooking state in another part of the tree).
Interpreting what we said earlier in a different way, we need to convert a design
behavior-tree to a component-based design in which each distinct component is
represented only once. Informally, the process starts at the root of the design be-
havior tree and moves systematically down the tree towards the leaf nodes including
each component and each component interaction (e.g. arrow) that is not already

340 L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348

LIGHT BUTTON
|R6I [of | |R3| [Enabled] |

POWER-TUBE
[Energized)

OVEN R8 OVEN #
EENE H

[-
|
|R2‘ g | |R5{ 'ljoc:;’: ||R7| L:gl;lr | |R?\ pow?g'.qwse
[comin] [m]=ar=] o] sz]
]
|Fiz {Gocina] || ||R5 © Dmfg"ggum"

Fig. 4. Integration of all functional requirements

POWER-TUBE

BEEPER

Fig. 5. Component Interaction Network - (CIN)

L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348 341

present. When this is done systematically the tree is transformed into a component-
based design in which each distinct component is represented only once. We call this
a Component Interaction Network (CIN), which shows the interaction relationships
between components and presents the component architecture.

The CIN derived from the Microwave Oven design behavior tree is shown in
Fig. 5. The algorithms to project other types of design diagrams are not related to
the topics of this paper, so they will not be pursued here.

3 Architecture Transformation Theory

3.1 Definitions

In the original definition of a CIN, a link is directional. If there are two links L, and
Ly, that connect a pair of components C; to Cj; in different directions, L, and Lj are
treated as two separated links. In the section, in order to simplify the discussion,
we merge L, and L; into one single link, without explication, any link is supposed
to be bi-directional, and a one-way link is only a special case of a two-way link (this
difference is unobservable if we abstract a CIN as a bidirectional graph).

Definition 3.1 A network is a graph that includes links and components, each
component only appears once in the network and between two different components,
there exists at most one link. A link is identified by the two components such as
(Cs,Cj), where C; and C; are two components in the network.

Definition 3.2 In a network NV, if there exists a link between two components, we
say that these two components are directly connected. Suppose C1,Cs,...,Cp,
are m different components in N, if for all 1 <¢ < (m—1), C; and C;4; are directly
connected, we say Cy, (s, ..., Cy, form a path and the length of this path is m — 1.

Definition 3.3 A network is called a connected network, if for all pairs of com-
ponents C;, Cj, which belong to this network, there exists a path starting from C;
and ending at C; in this network.

Definition 3.4 From a DBT T, we can project a CIN N through the algorithm
defined in GSE; the CIN is called this DBT’s associated CIN and it is denoted
as N = M(T).

Proposition 3.5 A CIN is a connected network.

Proof. Let T be a DBT and N be the associated CIN, we have N = M (T'), and C;,
C; are two components belonging to N. Suppose C; is the component associated
with the root node in T'. According to the algorithm to project N from T, it is easy
to prove that there is a path between C; and C) in N. Similarly, there is a path
between C; and C).. Merging the two paths together, we have a path linking C; to
Cj, so N is a connected network.

The fact that a CIN must be a connected network is important for proving the
paper’s main theorem, which shows that the structure of a CIN can be manipulated

342 L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348

Cy
[Fooy)

Fig. 6. A simple DBT of 4 components and 4 states

C

Ca

Fig. 7. The CIN N of T shown in Fig. 6

C

C,

Fig. 8. The desired CIN N

into any preferred form by inserting nodes in the associated DBT. Before we prove
this theorem, in the next subsection, we will use a simple example to illustrate the
basic ideas.

8.2 A Simple Example

Fig. 6 shows a simple DBT T, and the associated CIN N of T is shown in Fig. 7.
We have removed the arrows in N to simplify the discussion.

Now suppose that the CIN N shown in Fig. 8 is more desirable. The problem is
how we could insert bridge component-states in T' to make the new tree’s associated
CIN become N.

The link set of N is Ly = {(C1,Cy), (C1,C3), (Cs,C4)}, and the link set of N is
L ={(C1,Cy),(C1,C3), (C3,Ca) } .Because the links of (C1,Cy) and (C3,C5) exist
in L but not in Ly, we can add two nodes in T' to create a new tree 7’ shown in
Fig. 9.

L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348 343

=
[Fom)

[cy C

[Fooz) [Fooy) [Bra¢]
[oH C;

[Fooy] [Bra.]

Fig. 9. Two bridge component-states are added into tree T to create tree T"

G
[Foo]

N,

[o5 Cs Cs

[Brgs] [Foos] [Broq]
Cy [N c,

[Foop] [Brgq] [Brgz]

\Lc

"
[Foos]

Fig. 10. Two more bridge component-states are inserted to get rid of the unwanted direct connections

Let N’ be the associated CIN of 77, then it is obvious that the link set for N’ is:
Ly = {(Cl, CQ), (Cl, Cg), (Cg, 04), (Cl, 04), (03, CQ)} Comparing LN with Ly it
is found that the links (C1,C2), (C3,C}4) exist in Lys but not in L. To get rid of
the extra links, we need to insert bridge component-states between the unwanted
direct connections. In Fig. 9, there is a direct connection from C[Fool] to C3[Foo2].
Because C; and Cy are not supposed to be directly connected, we need to insert
bridge state(s) between the two nodes. Checking N, we find the path to link Cy
and Cs is C1, (5, Cs, so we should insert a bridge component-state of C3 between
C1[Fool] and Cs[Foo2]; by similar analysis, we know that a bridge component-state
of C; should be inserted between C3[Foo3] and C4[Foo4]|. The result new tree is
shown in Fig. 10. Inspecting this tree and we find that if we remove Cy4[Brgl] and
C5[Brg2], the associated CIN will not be affected. We therefore remove these two
nodes to get the final 7' shown in Fig. 11.

It is easy to prove that N = M (T) If we ignore the bridge component-states in
T, the behavior of T is exactly the same as the behavior of 7. This simple example
clearly illustrates how we can transform a component architecture into a new form
by inserting bridge component-states into the DBT.

3.8 Behavior Invariance Theorem

Definition 3.6 A bridge component-state, also called bridge state in short,
is a special state in a behavior tree. It is visible when the tree is observed from the
solution domain, but it becomes invisible when we observe the tree in the problem
domain. It is similar to the concept of a hidden event in CSP [8]. When we observe

344 L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348

=
[Foo;]

Cs Cs

[Brgs] [Foos]
Ca C,

[Foos] [Brgasl
Ca

[Foos]

Fig. 11. Prune the unnecessary bridge component-states and get the final T
a system from higher level, some low level details become unobservable

Generally, a design behavior tree (DBT) is a bridge to connect the two domains
of a system: the problem domain and the solution domain. In the problem domain,
a DBT should capture all the functional requirements and in the solution domain,
many design decisions are properties that directly emerge from a DBT.

Proposition 3.7 When we insert bridge states in a DBT, the bridge states will not
change the functional requirements captured by the behavior tree.

Theorem 3.8 Let T be a DBT and N be its associated CIN, where N = M(T).
Suppose there are a total of s components C1,Co,...,Cs in N and N is an arbitrary
connected network that includes and only includes those s components. Then, by

adding extra nodes to T, we can produce a new DBT T with N as the associated
CIN, where N = M(T).

Proof. Let us compare N and N , because they have the same component set, if
they are different, they must have different link sets. If there is a link (Cj, C})
that only exist in N, we can simply add a node of C; under a node of Cj in tree
T to make the associated CIN have link (C;,C;). So the problem is how we can
remove links, which are not in N, from N by inserting nodes in 7. If a link (Cj, Cy)
only belongs to IV, then in tree T, there must be nodes of C} that are directly
connected to nodes of C. Because N is a connected network, there must exist a
path between C; and Cj, in N. Excluding C; and Cj, supposing the rest part of the
path is C,,, Cy,, ..., Cy,, then at the each occurrence of a direct connection between
a node of C; and a node of C in T', we add a series of nodes of Cy,,,Cy,, ..., Cy,.
Then the modified behavior tree’s associated CIN will not have the direct link of
(C1,Ck). Because the inserted nodes are ordered according to an existing path in
N , the insertion of the new states will not introduce extra links that are not in N.

Theorem 3.9 Let T be a DBT and N be its associated CIN. N has s components
Cy, Oy, ..., Cs and N is an arbitrary connected network that only includes those s
components. Then, we can create a new DBT T that capture the same set of func-
tional requirements as T, and has N = M(T).

L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348 345

This theorem is the direct result from Theorem 3.8 and Proposition 3.7. It states
that the component architecture can be independent to the functional requirements.
Therefore, it is possible for us to investigate universal optimized software architec-
ture regardless the functional requirements of a particular system. In the next
section, we propose a tree-structured architecture as a possible universal optimized
form for software architecture due to some unique features of trees.

4 Software Normalization

4.1 Trees and Normalized DBTs

There are a number of equivalent definitions of trees and a number of mathematical
properties that imply this equivalence [9]. Since most of the properties are obvious,
we will not repeat some of the proofs.

Proposition 4.1 A connected graph is a tree when and only when for each pair of
nodes in the graph; there is only one unique path between them. [9].A connected
graph is a tree when and only when there is no circular path.

Proposition 4.2 A connected graph with n nodes has at least (n — 1) links. It is a
tree when and only when there are (n—1) links. In other words, a tree is a connected
graph with the least possible number of links [10].

Definition 4.3 A DBT is called a normalized DBT if the associated CIN is a
tree. A software system with a normalized DBT is called normalized software
system with normalized architecture.

Theorem 4.4 Any DBT can be normalized (transformed into a normalized DBT)
without changing the functional requirements. (Direct result from Theorem 3.9).

Proposition 4.5 For a CIN N with n components, the number of the links must
be greater than or equal to (n — 1). The number of links equals to (n — 1) if and
only if the system is normalized.

If we use the number of links among components as a measure of the complexity
of the architecture of software systems, Proposition 4.5 indicates that a normalized
software system has the simplest architecture.

Proposition 4.6 Let T be a DBT and N be its associated CIN. T is normalized
when and only when for all pairs of components C; and C; in N, there exists only
one path between the two components in N provided no node in the DBT is included
twice in a path.

This proposition is a direct result from Proposition 4.1 and the definition of a
normalized system * . It indicates a very important feature of a normalized software
system. For large software systems, we frequently face the problem of passing
references, messages or attributes between different components. Because we cannot

4 For a pair of components, it may have multiple types of information exchanged between them, for example,
data flows or controls. However, in this paper, we assume that we can apply one type of abstract connection
that can pass all the different types of information.

346 L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348

make each pair of components directly connected, we have to use some components
as bridges to pass messages or references. If there are multiple paths between two
components, we may not know which paths are used and which are not and it will
make the change impact analysis [2] more difficult.

Proposition 4.7 If there are no mutual components in two tree-structured CINs,
when the two CINs are connected by a link, the new CIN is also tree-structured.

Proposition 4.8 Consider two tree-structured CINs Ny, No. If there is only one
mutual component C in both CINs, the two CINs can be merged through the mutual
component C'; then the merged CIN is also tree-structured.

Theorem 4.9 If a normalized DBT T is broken into two DBTs T1 and Ts by
cutting off a link; then Tv and T are also normalized DBTs.

Proof. If T is not normalized, let N7 be the associated CIN of T7. N7 is not tree-
structured. According to Proposition 4.6, there exists at least a pair of components
C;, C; in N; that are connected by more than one path. When 77 and T are
merged into the original T', because no link in the T} is lost in T', the associated
CIN of T has all the links in N;. So the multiple paths linking C; and Cy are also
in T7’s associated CIN, but this is contrary to the condition that 7" is normalized.
Therefore, we know T} is normalized, and similarly 75 must be normalized.

Proposition 4.7, Proposition 4.8 and Theorem 4.9 specify an important feature
of trees. That is, if a tree is broken into two parts, each part is still a tree; if two
trees are integrated into one graph, the graph is also a tree if the integration is based
on some specified rules. This feature is important for building large scale systems
because the normalization property can be hold in different levels.

4.2 Case Study

In the second section, we have used an example of Microwave Oven to explain the
fundamental concepts of GSE. Here we will normalize it to demonstrate how the
component architecture can be simplified through the normalization. Fig. 12 shows
a normalized DBT. The normalized process is a mixture of inserting bridge states
and adjusting the order of some states. The bridge component-states are filled with
grey. The associated CIN of the DBT is shown in Fig. 13.

Comparing the normalized DBT with the original DBT in Fig. 4, we have found
that differences between the two behavior trees are trivial and both DBTs capture
all the functional requirements in Table 1. However the differences between the two
CINs are significant. The CIN shown in Fig. 13 is much simpler than the original
CIN in Fig. 5. Even though the Microwave Oven case study is a small system
with only 7 components, the architecture normalization has dramatically simplified
the component architecture. If the same process is applied in large systems, we
expect that the impact of simplification on the component architecture will be
more significant.

The tree shown in Fig. 5 has only two levels. This does not mean that a normal-
ization process can only produce a CIN of two levels. Theoretically, we can have the

L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348

OVEN
RE| open
USER
R8 | 22p0cr-Closed??
OVEN
RE| (Bridget)
DOOR OVEN BUTTON LIGHT
R6 [Closed] R6 [idle] R3 [Enabled] R8 [Off]
R1 USER R8 USER
TiButton-Push?? - | 7?Door-Openea?
Ri OVEN R8 OVEN
[Bridged] - [Bridge2]
R1 ?;:h;); R4 L[‘EE]T R8 OVEN * R4 LIGHT
- [Open) - ©enl
POWER-TUBE OVEN
R1 - R1 R8 BUTTON R8 DOOR
[Energizec] [coaking] | Disablent X [Over]
WSER USER OVEN
R2 | rsuton-Pusti? RS | 72Dcor-Openedr? R | 72 1imec-ou 72
OVEN OVEN LGHT POWER-TUBE
R2 [Bridged] RS {Bridges] R7 o R7 ©on
/\ BUTTON ‘L
R2 OVEN Ro| BUTTON R3| [pisatieq)
[Extra-Minute] [Pushed] R7 BEEPER
\I’ ‘lf ¢ [Sounded]
R2 OVEN * POWER-TUBE OVEN DOOR OVEN
+ [Cosking] Ri1 [of RS | (caoking-stoppec) RS [Open] ’RT [Cooking-Finished
Fig. 12. A normalized DBT for the Microwave Oven case study
OVEN
IL
‘ USER | ‘ DOOR ‘ | LIGHT ‘ ‘ BOTTON | ‘ POWER-TUBE ‘ | BEEFER

Fig. 13. The tree-structured CIN associated with the DBT in Fig. 12

347

CIN as any preferred forms, but due to the limitation of space, no further examples

can be given in this paper.

348 L. Wen, G.R. Dromey / Electronic Notes in Theoretical Computer Science 160 (2006) 335-348

5 Conclusion

This paper has addressed two things: the relationship between the functional re-
quirements and the component architecture of a system, and the control of changes
on the architecture of a system. A consequence of this work shows the advantages of
using tree-like architecture as an optimized form due to its simplicity and scalability.

The component architecture of a system must support the implementation of all
the integrated behaviors of a system. The latter are in turn implied by the set of
functional requirements for the system. Current software engineering practice sug-
gests that, for a given problem, there exist many different approaches to designing
a solution to the problem [11] each of which may lead to a system with a different
component architecture. What we have sought to do is establish the relationship
between a set of functional requirements and the component architecture of a sys-
tem and then shown how systematic change of the architecture can be achieved
without affecting the set of functional requirements that the system satisfies.

Once we have the means to systematically change the component architecture
of a system we can equally effectively use this power to resist the consequences of
changes on the architecture of a system. It is a well known observation of software
engineering practice that repeated change to the functional requirements of a soft-
ware system tends to gradually degrade the original component architecture and
increase the cost of the maintenance. The results in this paper prove that we can
usually keep the component architecture stable when a system is changed. This has
significant implications for reducing the cost of software maintenance.

References
[1] Geoff, R. G., From Requirements to Design: Formalizing the Key Steps, (Invited Keynote Address),
SEFM’2003, pp. 2-11, Brisbane, September, 2003.

[2] Wen, L., Dromey, R. G., From Requirements Change to Design Change: A Formal Path, SEFM 2004,
pp. 104-113, 2004.

[3] SQI Paper, http://www.sqi.gu.edu.au/gse/papers.

[4] Shlaer, S., Mellor, S.J., “Structured Development for Real-Time Systems”, Vols. 1-3, Yourdon Press,
1985.

[5] Bass, L., Clements, P. and Kazman, R., “Software Architecture in Practice”, Addision Wesley Longman,
Inc. 1998.

[6] Stafford, J. A., Wolf, A. L., “Software Architecture”, Component-Based Software Engineering, putting
the pieces together, Chapter 20, 2001.

[7] Perry, D., Wolf, A., Foundations for the Study of Software Architecture, SIGSOFT Software Engineering
Notes, Vol. 17, No. 4, Oct., 1992.

[8] Hoare, C.A.R., “Communicating Sequential Processes”, Prentice-Hall, 1985.

[9] Knuth, D. E., “The Art of Computer Programming, Fundamental Algorithms”, 3rd edition, Vol 1,
Addison Wesley Longman, 1992

[10] Sedgewick, R., “Algorithms”, Addison-Wesley Publishing Company, Inc, 1989.
[11] Glass, R. L., “Facts and Fallacies of Software Engineering”, Pearson Education, Inc, 2003.

[12] Medvidovic, N., “One the Role of Middleware in Architecture-Based Software Development”, SEKE’
02, 2002.

	Introduction
	Genetic Software Engineering
	Behavior Trees
	GSE Design Process

	Architecture Transformation Theory
	Definitions
	A Simple Example
	Behavior Invariance Theorem

	Software Normalization
	Trees and Normalized DBTs
	Case Study

	Conclusion
	References

