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Abstract

In this paper we investigate additive properties of the generalized Drazin inverse in a Banach algebra. We
find some new conditions under which the generalized Drazin inverse of the sum a + b could be explicitly
expressed in terms of a, ad, b, 9, Also, some recent results of Castro and Koliha [New additive results for
the g-Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 1085-1097] are extended.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let ./ be a complex Banach algebra with the unit 1. By .o/~ !, /™ o791 we denote the sets
of all invertible, nilpotent and quasinilpotent elements in .«Z, respectively. Let us recall that the
Drazin inverse of a € .o/ [1] is the element x € .o (denoted by aP) which satisfies
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xax =x, ax =xa, atlx =gk (1)

for some nonnegative integer k. The least such k is the index of a, denoted by ind(a). When
ind(a) = 1 then the Drazin inverse aP is called the group inverse and it is denoted by a*. The
conditions (1) are equivalent to

xax =x, ax =xa, a—a*xe ./, 2)

The concept of the generalized Drazin inverse in a Banach algebra was introduced by Koliha
[2]. The condition a — ax € /™ was replaced by a — a?x € 79!, Hence, the generalized
Drazin inverse of a is the element x € .o/ (written ad) which satisfies

xax =x, ax=xa, a—a’x € /MM 3)

‘We mention that an alternative definition of the generalized Drazin inverse in aring is also given
in [3-5]. These two concepts of generalized Drazin inverse are equivalent in the case when the
ring is actually a complex Banach algebra with a unit. It is well-known that a9 is unique whenever
it exists [2]. The set .9 consists of all a € .« such that a9 exists. For interesting properties of
Drazin inverse see [6-8].

Leta € .o and let p € .7 be a idempotent (p = p?). Then we write

a = pap + pa(l — p) + (1 — p)ap + (1 — p)a(l — p)
and use the notations

ayp = pap, app=pa(l—p), ay=(1-plap, axn=(1-pa(l-p).
Every idempotent p € .o/ induces a representation of an arbitrary element a € .7 given by the
following matrix:

_ pap pa(l — p) _ann a2
= [(1 —plap (1 —pa(l— p)]p N [azl azz]p' @

Let a™ be the spectral idempotent of a corresponding to {0}. It is well-known that a € .o/ d can
be represented in the following matrix form:

0= |:6111 0 ]
0 an |,

relative to p = aa% =1 — a™, where a1 isinvertible in the algebra p.o/ p and ay; is quasinilpotent
in the algebra (1 — p).oZ(1 — p). Then the generalized Drazin inverse is given by

a=[4 0]
0O o0
p
The motivation for this paper was the paper of Djordjevi¢ and Wei [9] and the paper of
Castro and Koliha [10]. In both of these papers the conditions under which the generalized
Drazin inverse (a + b)d could be expressed in terms of a, ad, b, b9 were considered. In [9] this
problem is investigated for a bounded linear operator on an arbitrary complex Banach space under
assumption that A B = 0 and these results are the generalizations of the results from [11] where the
same problem was considered for matrices. Castro and Koliha [10] considered the same problem
for the elements of the Banach algebra with unit under some weaker conditions. They generalized
the results from [9].
In the present paper we investigate additive properties of the generalized Drazin inverse in
a Banach algebra and find an explicit expression for the generalized Drazin inverse of the sum
a + b under various conditions.
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In the first part of the paper we find some new conditions, which are nonequivalent to the
conditions from [10], allowing for the generalized Drazin inverse of a 4+ b to be expressed in
terms of a, ad, b, b9, Itis interesting to note that in some cases we obtain the same expression for
(a + b)d as in [10]. In the rest of the paper we generalize recent results from [10].

2. Results

First we state the following result which is proved in [12] for matrices, extended in [13] for a
bounded linear operator and in [10] for arbitrary elements in a Banach algebra.

Theorem 2.1. Let x € o7/ and let

P
10 b|”
p
relative to the idempotent p € </ .

() Ifa € (p;z/p)d andb e (1 — p)Z(1 — p))d, then x is generalized Drazin invertible and
d
d a u
x% = |:O bd:|p’ %)

where u = Y02 (a%)"2eb"b™ + 3% jata" c(b%)" 2 — a9ch.
) Ifx € /Yanda € (ptp)9, thenb € (1 — p)o/(1 — p))Y and x9 is given by (5).

Now, we state an auxiliary result.
Lemma 2.1. Let a, b € /9" and let ab = ba or ab = 0, then a + b € /9,

Proof. If ab = ba we have that
r(a+b) <r(a)+r(b),

which gives thata 4 b € /9 The case when ab = 0 follows from the equation
A—a)r—-b=rx(Ah—-(a+b). O

Considering the previous lemma, the first idea was to replace the basic condition ab = 0
which was used in the papers [11,9] by the condition ab = ba. As we expected, this condition
was not enough to derive a formula for (a + b)d. Hence, to this aim we assume the following
three conditions fora, b € o/ d.

a=ab", b"ba™=b"b and b a"ba = b a"ab. (6)

Instead of the condition ab = ba we assume the weaker condition b™a"ba = b"a™ab. Notice
that

a=ab" & abd =0 & Ja C AP, @)
bba™ = b™b < b"ha% = 0 & Sb"b C Aad”, 8)
b"a"ba = b"a"ab & (ba — ab).s/ C (b"a™)°, 9)

where foru € .o/, u° = {x € o/ : ux = 0}.
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For matrices and bounded linear operators on a Banach space the conditions (7)—(9) are equiv-
alent to

N (B C N (a), N(a®) S N (B"b), R(ba—ab) N (b a").

Remark that conditions (6) are not symmetric in a, b like the conditions (3.1) from [10], so
our expression for (a + b) is not symmetric in a, b at all.

In the next theorem under the assumption that fora, b € .o/ 9 the conditions (6) hold, we offer
the following expression for (a + b)9.

Theorem 2.2. Let a, b € </° be such that (6) is satisfied. Thena + b € /% and

(a+b)?= (bd + Y 0" a(a + b)”) ar

n=0

=Y N at@ + b @) b + b (10)
n=0 k=0

o0 oo
+Z(bd)n+2a(a+b)nadb_Zbda(ad)li+2b(a+b)n.
n=0 n=0

Before proving Theorem 2.2 we have to prove the following result which is a special case of
this theorem:

Theorem 2.3. Let a € /9 b e /9 are such that b™ab = b™ba and a = ab™. Then 6) is
satisfied, a + b € % and

@+ =4+ Y ata +b)". (11)
n=0

Proof. First, suppose that b € 279! Then b™ = 1 and from b™ab = b™ba we obtain that ab =

ba. Using Lemma 2.1, a + b € /9 and (11) holds. Now, we assume that b is not quasinil-
potent and we consider the matrix representation of a and b relative to the p =1 — b™. We

have
b= by 0 _|an  an
L0 b ““lan an| -
p p
where by € (pZp)~' and by € (1 — p).Z(1 — p)3 79 From a = ab™, it follows that
a1 = 0 and ap; = 0. We denote a; = ajp and ap = ap>. Hence,

by ap
a+b= .
0 az-i-bzp

The condition b™ab = b™ba .implies that axby = bray. Hence, using Lemma 2.1, we get
ar+ by € (1 — p)/(1 — p))@ Now, by Theorem 2.1, we obtain that a + b € <79 and



D.S. Cvetkovié-1li¢ et al. / Linear Algebra and its Applications 418 (2006) 53-61 57

(a+b)d= [bl_l Yntobr “Para + bz)n}
0 0
P
o
=%+ Y oY@+ )" O
n=0
Let us observe that the expressions for (a + b9 in (11) and in (3.6), Theorem 3.3 [10] are
exactly the same. If we assume that ab = ba instead of b™ab = b™ba, we will get a much simpler
expression for (a + b)d.

Corollary 2.1. Let a € M b e o7 are such that ab = ba and a = ab™, then a + b € /9
and

(a+b)? =pY.
Proof. From the condition a = ab™, as we mentioned before, it follows that abd = 0. Now,
because the Drazin inverse 59 is double commutant of a, we have that

B a4+ b)" = a2 @ +b)" =0. O
Proof of the Theorem 2.2. If b is quasinilpotent we can apply Theorem 2.3. Hence, we assume

that b is neither invertible nor quasinilpotent and consider the following matrix representation of
a and b relative tothe p = 1 — b™:

b= by O _|lan an
L0 b “lay an] -
P P
where b; € (poZ/p)~" and by € (1 — p).Z(1 — p))?™. As in the proof of Theorem 2.3, from

ai
0 ap

_ b[ al
ath= [0 a2~|—b2L'
From the conditions b™a"ba = b™a™ab and b"ba™ = b™b, we obtain that aJbrar = ajabs
and by, = bga’z‘. Now, by Theorem 2.3 it follows that (ay + by) € ((1 — p)o/(1 — p))d and

and
P

a = ab™ it follows that a =

o0
(@ +b2) = ad + ) (@) Pba(az + by)". (12)
n=0

By Theorem 2.1 we get

d_ bl_l u ]

where u = Y% 0 b7 " P ay (ag + b2) (a2 + b2)™ — by 'ay(az + b2)¥ and by b ! we denote the
inverse of b; in the algebra p.o/ p. Using (12), we have that

]

o0
u= be(nJrz)a] (a2 + b)" = al — be(HZ)M (a2 + bz)"agbz
n=0 n=0
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oo 0
x Y > b)) Pay(ay + b)" (a9 Pha(ar + b))t — b arad
n=0 k=0

oo
= b @) P bytas + )"
n=0

By a straightforward computation we obtain that (10) holds. [

Corollary 2.2. Leta,b € /9 aresuchthatab = ba,a = ab™ andb™ = ba™ = b"b, thena + b €
9% and

(a+ b)Y =p°.

Let us also observe that if a, b are such that a is invertible and b is group invertible than the
conditions (8) and (9) are satisfied, so we have to assume just that @ = ab™. In the opposite case
when b is invertible we get a = 0.

As we mentioned before, Hartwig et al. in [11] for matrices and Djordjevi¢ and Wei [9]
for operators used the condition AB = 0 to derive the formula (a + b)9. Castro and Koliha
[1%] relaxed this hypothesis by assuming the following three conditions symmetric in a, b €
/7,

a*b=b, ab™=a, b aba™ =0. (13)

It is easy to see that ab = 0 implies (13), but the converse is not true (see Example 3.1, [10]).

It is interesting to remark that the conditions (13) and (6) are independent, neither of them
implies the other one, but in some cases we obtain the same expressions for (a + b)d.

If we consider the algebra .o7 of all complex 3 x 3 matrices and a, b € .o/ which are given in
the Example 3.1 [10], we can see that the conditions (13) are satisfied, but the conditions (6) are
not satisfied. In the following example we have the opposite case. We construct matrices a, b in
the algebra .o of all complex 3 x 3 matrices such that (6) is satisfied but (13) is not satisfied. If
we assume that ab = ba in Theorem 2.2 the expression for (a + b)d will be exactly the same as
in Theorem 3.5 [10] (in this paper Corollary 2.4).

Example. Let

1 0 O 0 1 0
a=|(0 0 0], b=(0 0 O
0 0 O 0 0 O
Then,
0 0 O
a =0 1 0
0 0 1

and b™ = 1. Now, we can see that a = ab™, a™ab = a™ = ba and ba™ = b i.e., (6) is satisfied.
Also, a™b = 0 # b, so (13) is not satisfied.

In the rest of the paper we will present a generalization of the results from [10]. We will use
some weaker conditions than in [10]. For example in the next theorem which is the generalization
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of Theorem 3.3 [10] we will assume thate = (1 — b™)(a + b)(1 — b™) € /9 instead of ab™ = a.
Ifab™ = a then e = (1 — b™)b = [”01 8]p for p = 1 — b™ and &% = 59,

Theorem 2.4. Let b € /9, a € /9 be such that
e=0—=bYa+b)(1—->b")e.#% and b ab=0,
thena + b € 4% and

o0
(a+b)3 =ed+ Z(ed)"+2ab”(a +b)".
n=0

Proof. The case when b € .79 follows from Lemma 2.1. Hence, we assume that b is not
quasinilpotent,

b= by O and a = |91 2 ’
0 b » ax  an|,
where p = 1 — b™. From b™ab = O we have that b™a(1 — b™) = 0,i.e.,az; = 0.Denotea; = ay,
ajr = ap and alp = as. Then,

a1+ b az
a+b—|: 0 a2+b2]p'

Also, bab = 0 implies that asby = 0,s0a2 + b> € ((1 — p).oZ(1 — p)) according to Lemma
2.1. Now, applying Theorem 2.1, we obtain that

d_ [@+b6)% u
(a+Db) —[ 0 OL,

where u = 2% (a1 + b)) "D az(ay + by)". By a direct computation we verify that
o0
@+b)=et+) (HPab"@+b)". O
n=0

Now, as a corollary we obtain Theorem 3.3 from [10].

Corollary 2.3. Let b € &id, a € /M and let ab™ = a,bab=0.Thena + b € /9 and

oo
(a +b)d — bd + Z(bd)n+2a(a _{_b)n'
n=0

The next result is a generalization of Theorem 3.5 in [10]. For simplicity we use the following
notation:

e=(1—b")(a+b)(1—b") € o/,

f=0—a"(a+b)1 —a"),
A1=(1—-a"A (1 —a"),
Ar=(1—->b"A (1 -Db"),

where a, b € A9 are given.
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We also prove the next result which is the generalization of Theorem 3.5 [10].

Theorem 2.5. Let a, b € /9 be such that (1 —a™)b(1 —a™) € /%, f € o/ and e € 43. If
(1—a™ba™ =0, b aba™ =0, a"=a(l—->b"a"=0
thena + b € /% and

o o
(a+b) = (bd + 309 ata + b)") a3 b a b))
n=0 n=0

oo o0
— Z Z(bd)k+la(a + b)n-i-kanb(f);/(l"+2) _ bdanb(f)tﬂll
n=0 k=0

=3 6" 2ata + b)"a"b(f)} + ().
n=0

where by (f);,lI we denote the inverse of f in /1.

Proof. Obviously, if a is invertible, then the statement of the theorem holds. If a is quasinilpotent,
then the result follows from Theorem 2.4. Hence, we assume that a is neither invertible nor
quasinilpotent. As in the proof of Theorem 2.2, we have that

_ |:al 0] b= [1711 blz]
0 a , by b »
where p =1 —a", a; € (pZp) ' anday € (1 — p).Z(1 — p)®! From (1 — a™ba™ = 0, we

have that b1, = 0. Denote by = b1, bpop = by and by; = b3. Then,

ai; + by 0 i|
P

a+b:[ b3 ax + by

The condition a™™aba™ = 0 expressed in the matrix form yields

wrx om0 07[ar 0J[0 07 _[o o 7 _[o o
s 1011 | S e R

Similarly, a™a(1 — b™) = 0 implies that a;b’ = a;. From Corollary 2.3 we get that ay + by €
/9 and

o
(a2 + b)) = b3 + > 6" az(az + by)".
n=0
Now, using Theorem 2.1 we obtain thata + b € o/ 4 and

(a1 + by)° 0 }
P

d _
(@+8) ‘[ W a2+ by

where

oo
u=7y bia+b2)"b3()) N
n=0
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o0 o0
=33 BN ar(ar + b b () — bSbs ()
n=0 k=0

— Z(bg)"+2a2(a2 + bz)"b3(f)_;ll-
n=0

By a straightforward computation we obtain that the result holds. [

Corollary 2.4. Leta, b € o/ d satisfy the conditions (13). Thena + b € o/ d and

oo oo
@+ =64+ )" ?a@+b)" |a"+ ) b"(a+b)"bah)"?
n=0 n=0
[e . Sle ]
- Z BHY M a(a + by b@@®) "D 4 prad
n=0 k=0

o0
- Z(bd)"+2a(a + b)"bad.
n=0

Proof. We have that f = (1 —a™a,so (f)} =a% O
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