

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 418 (2006) 53-61

www.elsevier.com/locate/laa

Additive results for the generalized Drazin inverse in a Banach algebra $\stackrel{\diamond}{\Rightarrow}$

Dragana S. Cvetković-Ilić^a, Dragan S. Djordjević^a, Yimin Wei^{b,*}

 ^a Department of Mathematics, Faculty of Sciences, University of Niš, P.O. Box 224, Višegradska 33, 18000 Niš, Serbia and Montenegro
 ^b School of Mathematical Sciences, Fudan University and Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University), Ministry of Education, Shanghai 200433, PR China

> Received 4 May 2005; accepted 20 January 2006 Available online 9 March 2006 Submitted by R.A. Brualdi

Abstract

In this paper we investigate additive properties of the generalized Drazin inverse in a Banach algebra. We find some new conditions under which the generalized Drazin inverse of the sum a + b could be explicitly expressed in terms of a, a^d , b, b^d . Also, some recent results of Castro and Koliha [New additive results for the *g*-Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 1085–1097] are extended. © 2006 Elsevier Inc. All rights reserved.

AMS classification: 15A09; 46H30; 46H05; 15A33

Keywords: Banach algebra; Generalized drazin inverse; Drazin inverse; Additive result

1. Introduction

Let \mathscr{A} be a complex Banach algebra with the unit 1. By \mathscr{A}^{-1} , $\mathscr{A}^{\mathsf{nil}}$, $\mathscr{A}^{\mathsf{qnil}}$ we denote the sets of all invertible, nilpotent and quasinilpotent elements in \mathscr{A} , respectively. Let us recall that the Drazin inverse of $a \in \mathscr{A}$ [1] is the element $x \in \mathscr{A}$ (denoted by a^{D}) which satisfies

* Corresponding author.

0024-3795/\$ - see front matter $_{\odot}$ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2006.01.015

^{*} Supported by Grant No. 1232 of the Ministry of Science, Technology and Development, Republic of Serbia and National Natural Science Foundation of China under grant 10471027.

E-mail addresses: dragana@pmf.ni.ac.yu, gagamaka@ptt.yu (D.S. Cvetković-Ilić); ganedj@eunet.yu, dragan@pmf.ni.ac.yu (D.S. Djordjević); ymwei@fudan.edu.cn (Y. Wei).

$$xax = x, \quad ax = xa, \quad a^{k+1}x = a^k \tag{1}$$

for some nonnegative integer k. The least such k is the index of a, denoted by ind(a). When ind(a) = 1 then the Drazin inverse a^{D} is called the group inverse and it is denoted by $a^{\#}$. The conditions (1) are equivalent to

$$xax = x, \quad ax = xa, \quad a - a^2 x \in \mathscr{A}^{\mathsf{nil}}.$$

The concept of the generalized Drazin inverse in a Banach algebra was introduced by Koliha [2]. The condition $a - a^2 x \in \mathcal{A}^{nil}$ was replaced by $a - a^2 x \in \mathcal{A}^{qnil}$. Hence, the generalized Drazin inverse of *a* is the element $x \in \mathcal{A}$ (written a^d) which satisfies

$$xax = x, \quad ax = xa, \quad a - a^2 x \in \mathscr{A}^{\mathsf{qnil}}.$$
 (3)

We mention that an alternative definition of the generalized Drazin inverse in a ring is also given in [3–5]. These two concepts of generalized Drazin inverse are equivalent in the case when the ring is actually a complex Banach algebra with a unit. It is well-known that a^d is unique whenever it exists [2]. The set \mathscr{A}^d consists of all $a \in \mathscr{A}$ such that a^d exists. For interesting properties of Drazin inverse see [6–8].

Let $a \in \mathscr{A}$ and let $p \in \mathscr{A}$ be a idempotent $(p = p^2)$. Then we write

$$a = pap + pa(1-p) + (1-p)ap + (1-p)a(1-p)$$

and use the notations

$$a_{11} = pap, \quad a_{12} = pa(1-p), \quad a_{21} = (1-p)ap, \quad a_{22} = (1-p)a(1-p)$$

Every idempotent $p \in \mathcal{A}$ induces a representation of an arbitrary element $a \in \mathcal{A}$ given by the following matrix:

$$a = \begin{bmatrix} pap & pa(1-p) \\ (1-p)ap & (1-p)a(1-p) \end{bmatrix}_p = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}_p.$$
 (4)

Let a^{π} be the spectral idempotent of *a* corresponding to {0}. It is well-known that $a \in \mathscr{A}^{d}$ can be represented in the following matrix form:

$$a = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix}_p,$$

relative to $p = aa^d = 1 - a^{\pi}$, where a_{11} is invertible in the algebra $p \mathscr{A} p$ and a_{22} is quasinilpotent in the algebra $(1 - p)\mathscr{A}(1 - p)$. Then the generalized Drazin inverse is given by

$$a^{\mathsf{d}} = \begin{bmatrix} a_{11}^{-1} & 0\\ 0 & 0 \end{bmatrix}_p.$$

The motivation for this paper was the paper of Djordjević and Wei [9] and the paper of Castro and Koliha [10]. In both of these papers the conditions under which the generalized Drazin inverse $(a + b)^d$ could be expressed in terms of a, a^d , b, b^d were considered. In [9] this problem is investigated for a bounded linear operator on an arbitrary complex Banach space under assumption that AB = 0 and these results are the generalizations of the results from [11] where the same problem was considered for matrices. Castro and Koliha [10] considered the same problem for the elements of the Banach algebra with unit under some weaker conditions. They generalized the results from [9].

In the present paper we investigate additive properties of the generalized Drazin inverse in a Banach algebra and find an explicit expression for the generalized Drazin inverse of the sum a + b under various conditions.

In the first part of the paper we find some new conditions, which are nonequivalent to the conditions from [10], allowing for the generalized Drazin inverse of a + b to be expressed in terms of a, a^d, b, b^d . It is interesting to note that in some cases we obtain the same expression for $(a + b)^d$ as in [10]. In the rest of the paper we generalize recent results from [10].

2. Results

First we state the following result which is proved in [12] for matrices, extended in [13] for a bounded linear operator and in [10] for arbitrary elements in a Banach algebra.

Theorem 2.1. Let $x \in \mathcal{A}$ and let

$$x = \begin{bmatrix} a & c \\ 0 & b \end{bmatrix}_p,$$

relative to the idempotent $p \in \mathcal{A}$ *.*

(1) If
$$a \in (p \mathscr{A} p)^{\mathsf{d}}$$
 and $b \in ((1-p) \mathscr{A} (1-p))^{\mathsf{d}}$, then x is generalized Drazin invertible and

$$x^{\mathsf{d}} = \begin{bmatrix} a^{\mathsf{d}} & u \\ 0 & b^{\mathsf{d}} \end{bmatrix}_{p},\tag{5}$$

where $u = \sum_{n=0}^{\infty} (a^{\mathsf{d}})^{n+2} cb^n b^{\pi} + \sum_{n=0}^{\infty} a^{\pi} a^n c(b^{\mathsf{d}})^{n+2} - a^{\mathsf{d}} cb^{\mathsf{d}}$. (2) If $x \in \mathscr{A}^{\mathsf{d}}$ and $a \in (p\mathscr{A}p)^{\mathsf{d}}$, then $b \in ((1-p)\mathscr{A}(1-p))^{\mathsf{d}}$ and x^{d} is given by (5).

Now, we state an auxiliary result.

Lemma 2.1. Let $a, b \in \mathscr{A}^{qnil}$ and let ab = ba or ab = 0, then $a + b \in \mathscr{A}^{qnil}$.

Proof. If ab = ba we have that

 $r(a+b) \leqslant r(a) + r(b),$

which gives that $a + b \in \mathscr{A}^{qnil}$. The case when ab = 0 follows from the equation

 $(\lambda - a)(\lambda - b) = \lambda(\lambda - (a + b)).$

Considering the previous lemma, the first idea was to replace the basic condition ab = 0 which was used in the papers [11,9] by the condition ab = ba. As we expected, this condition was not enough to derive a formula for $(a + b)^d$. Hence, to this aim we assume the following three conditions for $a, b \in \mathcal{A}^d$:

$$a = ab^{\pi}, \quad b^{\pi}ba^{\pi} = b^{\pi}b \quad \text{and} \quad b^{\pi}a^{\pi}ba = b^{\pi}a^{\pi}ab.$$
 (6)

Instead of the condition ab = ba we assume the weaker condition $b^{\pi}a^{\pi}ba = b^{\pi}a^{\pi}ab$. Notice that

$$a = ab^{\pi} \Leftrightarrow ab^{\mathsf{d}} = 0 \Leftrightarrow \mathscr{A}a \subseteq Ab^{\pi},\tag{7}$$

$$b^{\pi}ba^{\pi} = b^{\pi}b \Leftrightarrow b^{\pi}ba^{\mathsf{d}} = 0 \Leftrightarrow \mathscr{A}b^{\pi}b \subseteq \mathscr{A}a^{\pi},\tag{8}$$

$$b^{\pi}a^{\pi}ba = b^{\pi}a^{\pi}ab \Leftrightarrow (ba - ab)\mathscr{A} \subseteq (b^{\pi}a^{\pi})^{\circ}, \tag{9}$$

where for $u \in \mathcal{A}$, $u^{\circ} = \{x \in \mathcal{A} : ux = 0\}$.

For matrices and bounded linear operators on a Banach space the conditions (7)–(9) are equivalent to

$$\mathcal{N}(b^{\pi}) \subseteq \mathcal{N}(a), \quad \mathcal{N}(a^{\pi}) \subseteq \mathcal{N}(b^{\pi}b), \quad \mathscr{R}(ba-ab) \subseteq \mathcal{N}(b^{\pi}a^{\pi}).$$

Remark that conditions (6) are not symmetric in *a*, *b* like the conditions (3.1) from [10], so our expression for $(a + b)^d$ is not symmetric in *a*, *b* at all.

In the next theorem under the assumption that for $a, b \in \mathscr{A}^{d}$ the conditions (6) hold, we offer the following expression for $(a + b)^{d}$.

Theorem 2.2. Let $a, b \in \mathcal{A}^{d}$ be such that (6) is satisfied. Then $a + b \in \mathcal{A}^{d}$ and

$$(a+b)^{d} = \left(b^{d} + \sum_{n=0}^{\infty} (b^{d})^{n+2} a(a+b)^{n}\right) a^{\pi}$$
$$-\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} (b^{d})^{n+2} a(a+b)^{n} (a^{d})^{k+2} b(a+b)^{k+1}$$
$$+\sum_{n=0}^{\infty} (b^{d})^{n+2} a(a+b)^{n} a^{d} b - \sum_{n=0}^{\infty} b^{d} a(a^{d})^{n+2} b(a+b)^{n}.$$
(10)

Before proving Theorem 2.2 we have to prove the following result which is a special case of this theorem:

Theorem 2.3. Let $a \in \mathscr{A}^{qnil}$, $b \in \mathscr{A}^{d}$ are such that $b^{\pi}ab = b^{\pi}ba$ and $a = ab^{\pi}$. Then (6) is satisfied, $a + b \in \mathscr{A}^{d}$ and

$$(a+b)^{d} = b^{d} + \sum_{n=0}^{\infty} (b^{d})^{n+2} a(a+b)^{n}.$$
(11)

Proof. First, suppose that $b \in \mathscr{A}^{qnil}$. Then $b^{\pi} = 1$ and from $b^{\pi}ab = b^{\pi}ba$ we obtain that ab = ba. Using Lemma 2.1, $a + b \in \mathscr{A}^{qnil}$ and (11) holds. Now, we assume that b is not quasinilpotent and we consider the matrix representation of a and b relative to the $p = 1 - b^{\pi}$. We have

$$b = \begin{bmatrix} b_1 & 0\\ 0 & b_2 \end{bmatrix}_p, \qquad a = \begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{bmatrix}_p$$

where $b_1 \in (p \mathscr{A} p)^{-1}$ and $b_2 \in ((1-p) \mathscr{A} (1-p))^{\mathsf{qnil}} \subset \mathscr{A}^{\mathsf{qnil}}$. From $a = ab^{\pi}$, it follows that $a_{11} = 0$ and $a_{21} = 0$. We denote $a_1 = a_{12}$ and $a_2 = a_{22}$. Hence,

$$a+b = \begin{bmatrix} b_1 & a_1 \\ 0 & a_2+b_2 \end{bmatrix}_p$$

The condition $b^{\pi}ab = b^{\pi}ba$ implies that $a_2b_2 = b_2a_2$. Hence, using Lemma 2.1, we get $a_2 + b_2 \in ((1 - p)\mathscr{A}(1 - p))^{\mathsf{qnil}}$. Now, by Theorem 2.1, we obtain that $a + b \in \mathscr{A}^{\mathsf{d}}$ and

$$(a+b)^{\mathsf{d}} = \begin{bmatrix} b_1^{-1} & \sum_{n=0}^{\infty} b_1^{-(n+2)} a_1 (a_2 + b_2)^n \\ 0 & 0 \end{bmatrix}_p$$
$$= b^{\mathsf{d}} + \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a (a+b)^n. \quad \Box$$

Let us observe that the expressions for $(a + b)^d$ in (11) and in (3.6), Theorem 3.3 [10] are exactly the same. If we assume that ab = ba instead of $b^{\pi}ab = b^{\pi}ba$, we will get a much simpler expression for $(a + b)^d$.

Corollary 2.1. Let $a \in \mathscr{A}^{qnil}$, $b \in \mathscr{A}^{d}$ are such that ab = ba and $a = ab^{\pi}$, then $a + b \in \mathscr{A}^{d}$ and

$$(a+b)^{\mathsf{d}} = b^{\mathsf{d}}.$$

Proof. From the condition $a = ab^{\pi}$, as we mentioned before, it follows that $ab^{d} = 0$. Now, because the Drazin inverse b^{d} is double commutant of a, we have that

$$(b^{\mathsf{d}})^{n+2}a(a+b)^n = a(b^{\mathsf{d}})^{n+2}(a+b)^n = 0.$$

Proof of the Theorem 2.2. If *b* is quasinilpotent we can apply Theorem 2.3. Hence, we assume that *b* is neither invertible nor quasinilpotent and consider the following matrix representation of *a* and *b* relative to the $p = 1 - b^{\pi}$:

$$b = \begin{bmatrix} b_1 & 0\\ 0 & b_2 \end{bmatrix}_p, \qquad a = \begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{bmatrix}_p$$

where $b_1 \in (p \mathscr{A} p)^{-1}$ and $b_2 \in ((1-p)\mathscr{A}(1-p))^{\mathsf{qnil}}$. As in the proof of Theorem 2.3, from $a = ab^{\pi}$ it follows that $a = \begin{bmatrix} 0 & a_1 \\ 0 & a_2 \end{bmatrix}_p$ and

$$a+b = \begin{bmatrix} b_1 & a_1 \\ 0 & a_2+b_2 \end{bmatrix}_p$$

From the conditions $b^{\pi}a^{\pi}ba = b^{\pi}a^{\pi}ab$ and $b^{\pi}ba^{\pi} = b^{\pi}b$, we obtain that $a_2^{\pi}b_2a_2 = a_2^{\pi}a_2b_2$ and $b_2 = b_2a_2^{\pi}$. Now, by Theorem 2.3 it follows that $(a_2 + b_2) \in ((1 - p)\mathscr{A}(1 - p))^d$ and

$$(a_2 + b_2)^{\mathsf{d}} = a_2^{\mathsf{d}} + \sum_{n=0}^{\infty} (a_2^{\mathsf{d}})^{n+2} b_2 (a_2 + b_2)^n.$$
(12)

By Theorem 2.1 we get

$$(a+b)^{\mathsf{d}} = \begin{bmatrix} b_1^{-1} & u \\ 0 & (a_2+b_2)^{\mathsf{d}} \end{bmatrix}_p,$$

where $u = \sum_{n=0}^{\infty} b_1^{-(n+2)} a_1 (a_2 + b_2)^n (a_2 + b_2)^{\pi} - b_1^{-1} a_1 (a_2 + b_2)^d$ and by b_1^{-1} we denote the inverse of b_1 in the algebra $p \mathscr{A} p$. Using (12), we have that

$$u = \sum_{n=0}^{\infty} b_1^{-(n+2)} a_1 (a_2 + b_2)^n = a_2^{\pi} - \sum_{n=0}^{\infty} b_1^{-(n+2)} a_1 (a_2 + b_2)^n a_2^{\mathsf{d}} b_2$$

$$\times \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} (b_1)^{-(n+2)} a_1 (a_2 + b_2)^n (a_2^{\mathsf{d}})^{k+2} b_2 (a_2 + b_2)^{k+1} - b_1^{-1} a_1 a_2^{\mathsf{d}} - \sum_{n=0}^{\infty} b_1^{-1} a_1 (a_2^{\mathsf{d}})^{n+2} b_2 (a_2 + b_2)^n$$

By a straightforward computation we obtain that (10) holds. \Box

Corollary 2.2. Let $a, b \in \mathscr{A}^{d}$ are such that $ab = ba, a = ab^{\pi}$ and $b^{\pi} = ba^{\pi} = b^{\pi}b$, then $a + b \in \mathscr{A}^{d}$ and

$$(a+b)^{\mathsf{d}} = b^{\mathsf{d}}.$$

Let us also observe that if a, b are such that a is invertible and b is group invertible than the conditions (8) and (9) are satisfied, so we have to assume just that $a = ab^{\pi}$. In the opposite case when b is invertible we get a = 0.

As we mentioned before, Hartwig et al. in [11] for matrices and Djordjević and Wei [9] for operators used the condition AB = 0 to derive the formula $(a + b)^d$. Castro and Koliha [10] relaxed this hypothesis by assuming the following three conditions symmetric in $a, b \in \mathcal{A}^d$,

$$a^{\pi}b = b, \quad ab^{\pi} = a, \quad b^{\pi}aba^{\pi} = 0.$$
 (13)

It is easy to see that ab = 0 implies (13), but the converse is not true (see Example 3.1, [10]). It is interesting to remark that the conditions (13) and (6) are independent, neither of them implies the other one, but in some cases we obtain the same expressions for $(a + b)^d$.

If we consider the algebra \mathscr{A} of all complex 3×3 matrices and $a, b \in \mathscr{A}$ which are given in the Example 3.1 [10], we can see that the conditions (13) are satisfied, but the conditions (6) are not satisfied. In the following example we have the opposite case. We construct matrices a, b in the algebra \mathscr{A} of all complex 3×3 matrices such that (6) is satisfied but (13) is not satisfied. If we assume that ab = ba in Theorem 2.2 the expression for $(a + b)^d$ will be exactly the same as in Theorem 3.5 [10] (in this paper Corollary 2.4).

Example. Let

$$a = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then,

$$a^{\pi} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and $b^{\pi} = 1$. Now, we can see that $a = ab^{\pi}$, $a^{\pi}ab = a^{\pi} = ba$ and $ba^{\pi} = b$ i.e., (6) is satisfied. Also, $a^{\pi}b = 0 \neq b$, so (13) is not satisfied.

In the rest of the paper we will present a generalization of the results from [10]. We will use some weaker conditions than in [10]. For example in the next theorem which is the generalization

of Theorem 3.3 [10] we will assume that $e = (1 - b^{\pi})(a + b)(1 - b^{\pi}) \in \mathscr{A}^{\mathsf{d}}$ instead of $ab^{\pi} = a$. If $ab^{\pi} = a$ then $e = (1 - b^{\pi})b = \begin{bmatrix} b_1 & 0 \\ 0 & 0 \end{bmatrix}_p$ for $p = 1 - b^{\pi}$ and $e^{\mathsf{d}} = b^{\mathsf{d}}$.

Theorem 2.4. Let $b \in \mathscr{A}^{\mathsf{d}}$, $a \in \mathscr{A}^{\mathsf{qnil}}$ be such that

 $e=(1-b^{\pi})(a+b)(1-b^{\pi})\in \mathscr{A}^{\mathsf{d}} \quad and \quad b^{\pi}ab=0,$

then $a + b \in \mathscr{A}^{\mathsf{d}}$ and

$$(a+b)^{d} = e^{d} + \sum_{n=0}^{\infty} (e^{d})^{n+2} a b^{\pi} (a+b)^{n}$$

Proof. The case when $b \in \mathscr{A}^{qnil}$ follows from Lemma 2.1. Hence, we assume that b is not quasinilpotent,

$$b = \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}_p \quad \text{and} \quad a = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}_p$$

where $p = 1 - b^{\pi}$. From $b^{\pi}ab = 0$ we have that $b^{\pi}a(1 - b^{\pi}) = 0$, i.e., $a_{21} = 0$. Denote $a_1 = a_{11}$, $a_{22} = a_2$ and $a_{12} = a_3$. Then,

$$a+b = \begin{bmatrix} a_1+b_1 & a_3\\ 0 & a_2+b_2 \end{bmatrix}_p$$

Also, $b^{\pi}ab = 0$ implies that $a_2b_2 = 0$, so $a_2 + b_2 \in ((1 - p)\mathscr{A}(1 - p))^{qnil}$, according to Lemma 2.1. Now, applying Theorem 2.1, we obtain that

$$(a+b)^{\mathsf{d}} = \begin{bmatrix} (a_1+b_1)^{\mathsf{d}} & u \\ 0 & 0 \end{bmatrix}_p$$

where $u = \sum_{n=0}^{\infty} ((a_1 + b_1)^d)^{(n+2)} a_3 (a_2 + b_2)^n$. By a direct computation we verify that

$$(a+b)^{d} = e^{d} + \sum_{n=0}^{\infty} (e^{d})^{n+2} a b^{\pi} (a+b)^{n}.$$

Now, as a corollary we obtain Theorem 3.3 from [10].

Corollary 2.3. Let $b \in \mathscr{A}^{\mathsf{d}}$, $a \in \mathscr{A}^{\mathsf{qnil}}$ and let $ab^{\pi} = a$, $b^{\pi}ab = 0$. Then $a + b \in \mathscr{A}^{\mathsf{d}}$ and

$$(a+b)^{d} = b^{d} + \sum_{n=0}^{\infty} (b^{d})^{n+2} a(a+b)^{n}.$$

The next result is a generalization of Theorem 3.5 in [10]. For simplicity we use the following notation:

$$e = (1 - b^{\pi})(a + b)(1 - b^{\pi}) \in \mathscr{A}^{\mathsf{d}},$$

$$f = (1 - a^{\pi})(a + b)(1 - a^{\pi}),$$

$$\mathscr{A}_{1} = (1 - a^{\pi})\mathscr{A}(1 - a^{\pi}),$$

$$\mathscr{A}_{2} = (1 - b^{\pi})\mathscr{A}(1 - b^{\pi}),$$

where $a, b \in A^{d}$ are given.

We also prove the next result which is the generalization of Theorem 3.5 [10].

Theorem 2.5. Let $a, b \in \mathcal{A}^{d}$ be such that $(1 - a^{\pi})b(1 - a^{\pi}) \in \mathcal{A}^{d}$, $f \in \mathcal{A}_{1}^{-1}$ and $e \in \mathcal{A}_{2}^{d}$. If $(1 - a^{\pi})ba^{\pi} = 0$ $b^{\pi}aba^{\pi} = 0$ $a^{\pi} = a(1 - b^{\pi})a^{\pi} = 0$

$$(1 - a^{\pi})ba^{\pi} = 0, \quad b^{\pi}aba^{\pi} = 0, \quad a^{\pi} = a(1 - b^{\pi})a^{\pi} =$$

then $a + b \in \mathscr{A}^{\mathsf{d}}$ *and*

$$(a+b)^{\mathsf{d}} = \left(b^{\mathsf{d}} + \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^n\right) a^{\pi} + \sum_{n=0}^{\infty} b^{\pi} (a+b)^n a^{\pi} b(f)_{\mathscr{A}_1}^{-(n+2)}$$
$$- \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} (b^{\mathsf{d}})^{k+1} a(a+b)^{n+k} a^{\pi} b(f)_{\mathscr{A}_1}^{-(n+2)} - b^{\mathsf{d}} a^{\pi} b(f)_{\mathscr{A}_1}^{-1}$$
$$- \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^n a^{\pi} b(f)_{\mathscr{A}_1}^{-1} + (f)_{\mathscr{A}_1}^{-1},$$

where by $(f)_{\mathscr{A}_1}^{-1}$ we denote the inverse of f in \mathscr{A}_1 .

Proof. Obviously, if a is invertible, then the statement of the theorem holds. If a is quasinilpotent, then the result follows from Theorem 2.4. Hence, we assume that a is neither invertible nor quasinilpotent. As in the proof of Theorem 2.2, we have that

$$a = \begin{bmatrix} a_1 & 0\\ 0 & a_2 \end{bmatrix}_p, \qquad b = \begin{bmatrix} b_{11} & b_{12}\\ b_{21} & b_{22} \end{bmatrix}_p$$

where $p = 1 - a^{\pi}$, $a_1 \in (p \mathscr{A} p)^{-1}$ and $a_2 \in ((1 - p) \mathscr{A} (1 - p))^{\mathsf{qnil}}$. From $(1 - a^{\pi})ba^{\pi} = 0$, we have that $b_{12} = 0$. Denote $b_1 = b_{11}$, $b_{22} = b_2$ and $b_{21} = b_3$. Then,

$$a+b = \begin{bmatrix} a_1+b_1 & 0\\ b_3 & a_2+b_2 \end{bmatrix}_p$$

The condition $a^{\pi}b^{\pi}aba^{\pi} = 0$ expressed in the matrix form yields

$$a^{\pi}b^{\pi}aba^{\pi} = \begin{bmatrix} 0 & 0 \\ 0 & b_2^{\pi} \end{bmatrix} \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & b_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & b_2^{\pi}a_2b_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Similarly, $a^{\pi}a(1-b^{\pi}) = 0$ implies that $a_2b_2^{\pi} = a_2$. From Corollary 2.3 we get that $a_2 + b_2 \in \mathcal{A}^d$ and

$$(a_2 + b_2)^{\mathsf{d}} = b_2^{\mathsf{d}} + \sum_{n=0}^{\infty} (b_2^{\mathsf{d}})^{n+2} a_2 (a_2 + b_2)^n$$

Now, using Theorem 2.1 we obtain that $a + b \in \mathscr{A}^{d}$ and

$$(a+b)^{\mathsf{d}} = \begin{bmatrix} (a_1+b_1)^{\mathsf{d}} & 0\\ u & (a_2+b_2)^{\mathsf{d}} \end{bmatrix}_p,$$

where

$$u = \sum_{n=0}^{\infty} b_2^{\pi} (a_2 + b_2)^n b_3(f)_{\mathscr{A}_1}^{-(n+2)}$$

$$-\sum_{n=0}^{\infty}\sum_{k=0}^{\infty}(b_{2}^{\mathsf{d}})^{k+1}a_{2}(a_{2}+b_{2})^{n+k}b_{3}(f)_{\mathscr{A}_{1}}^{-(n+2)}-b_{2}^{\mathsf{d}}b_{3}(f)_{\mathscr{A}_{1}}^{-1}\\-\sum_{n=0}^{\infty}(b_{2}^{\mathsf{d}})^{n+2}a_{2}(a_{2}+b_{2})^{n}b_{3}(f)_{\mathscr{A}_{1}}^{-1}.$$

By a straightforward computation we obtain that the result holds. \Box

Corollary 2.4. Let $a, b \in \mathcal{A}^{d}$ satisfy the conditions (13). Then $a + b \in \mathcal{A}^{d}$ and

$$(a+b)^{\mathsf{d}} = \left(b^{\mathsf{d}} + \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^{n}\right) a^{\pi} + \sum_{n=0}^{\infty} b^{\pi} (a+b)^{n} b(a^{\mathsf{d}})^{(n+2)} - \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} (b^{\mathsf{d}})^{k+1} a(a+b)^{n+k} b(a^{\mathsf{d}})^{(n+2)} + b^{\pi} a^{\mathsf{d}} - \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^{n} ba^{\mathsf{d}}.$$

Proof. We have that $f = (1 - a^{\pi})a$, so $(f)_{\mathscr{A}_1}^{-1} = a^{\mathsf{d}}$. \Box

References

- [1] M.P. Drazin, Pseudoinverse in associative rings and semigroups, Am. Math. Month. 65 (1958) 506–514.
- [2] J.J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996) 367–381.
- [3] R.E. Harte, Spectral projections, Irish Math. Soc. Newslett. 11 (1984) 10-15.
- [4] R.E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988.
- [5] R.E. Harte, On quasinilpotents in rings, PanAm. Math. J. 1 (1991) 10-16.
- [6] N. Castro González, J.J. Koliha, V. Rakocevic, Continuity and general perturbation of the Drazin inverse for closed linear operators, Abstract Appl. Anal. 7 (2002) 335–347.
- [7] J.J. Koliha, V. Rakocevic, Holomorphic and meromorphic properties of the g-Drazin inverse, Demonstratio Mathematica 38 (2005) 657–666.
- [8] J.J. Koliha, V. Rakocevic, Differentiability of the g-Drazin inverse, Stud. Math. 168 (2005) 193-201.
- [9] D.S. Djordjević, Y. Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc. 73 (2002) 115–125.
- [10] N. Castro González, J.J. Koliha, New additive results for the g-Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 1085–1097.
- [11] R.E. Hartwig, G. Wang, Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001) 207-217.
- [12] C.D. Meyer Jr., N.J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math. 33 (1) (1977) 1–7.
- [13] D.S. Djordjević, P.S. Stanimirović, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J. 51 (126) (2001) 617–634.