Additive results for the generalized Drazin inverse in a Banach algebra ${ }^{\text {H/ }}$

Dragana S. Cvetković-Ilić ${ }^{\text {a }}$, Dragan S. Djordjević ${ }^{\text {a }}$, Yimin Wei ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Sciences, University of Niš, P.O. Box 224, Višegradska 33, 18000 Niš, Serbia and Montenegro
b School of Mathematical Sciences, Fudan University and Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University), Ministry of Education, Shanghai 200433, PR China
Received 4 May 2005; accepted 20 January 2006
Available online 9 March 2006
Submitted by R.A. Brualdi

Abstract

In this paper we investigate additive properties of the generalized Drazin inverse in a Banach algebra. We find some new conditions under which the generalized Drazin inverse of the sum $a+b$ could be explicitly expressed in terms of $a, a^{\mathrm{d}}, b, b^{\mathrm{d}}$. Also, some recent results of Castro and Koliha [New additive results for the g-Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 1085-1097] are extended. © 2006 Elsevier Inc. All rights reserved.

AMS classification: 15A09; 46H30; 46H05; 15A33
Keywords: Banach algebra; Generalized drazin inverse; Drazin inverse; Additive result

1. Introduction

Let \mathscr{A} be a complex Banach algebra with the unit 1 . By $\mathscr{A}^{-1}, \mathscr{A}^{\text {nil }}, \mathscr{A}^{\text {qnil }}$ we denote the sets of all invertible, nilpotent and quasinilpotent elements in \mathscr{A}, respectively. Let us recall that the Drazin inverse of $a \in \mathscr{A}[1]$ is the element $x \in \mathscr{A}$ (denoted by a^{D}) which satisfies

[^0]\[

$$
\begin{equation*}
x a x=x, \quad a x=x a, \quad a^{k+1} x=a^{k} \tag{1}
\end{equation*}
$$

\]

for some nonnegative integer k. The least such k is the index of a, denoted by $\operatorname{ind}(a)$. When $\operatorname{ind}(a)=1$ then the Drazin inverse a^{D} is called the group inverse and it is denoted by $a^{\#}$. The conditions (1) are equivalent to

$$
\begin{equation*}
x a x=x, \quad a x=x a, \quad a-a^{2} x \in \mathscr{A}^{\mathrm{nil}} \tag{2}
\end{equation*}
$$

The concept of the generalized Drazin inverse in a Banach algebra was introduced by Koliha [2]. The condition $a-a^{2} x \in \mathscr{A}^{\text {nil }}$ was replaced by $a-a^{2} x \in \mathscr{A}^{\text {qnil }}$. Hence, the generalized Drazin inverse of a is the element $x \in \mathscr{A}$ (written a^{d}) which satisfies

$$
\begin{equation*}
x a x=x, \quad a x=x a, \quad a-a^{2} x \in \mathscr{A}^{\text {qnil }} . \tag{3}
\end{equation*}
$$

We mention that an alternative definition of the generalized Drazin inverse in a ring is also given in [3-5]. These two concepts of generalized Drazin inverse are equivalent in the case when the ring is actually a complex Banach algebra with a unit. It is well-known that a is unique whenever it exists [2]. The set \mathscr{A}^{d} consists of all $a \in \mathscr{A}$ such that a^{d} exists. For interesting properties of Drazin inverse see [6-8].

Let $a \in \mathscr{A}$ and let $p \in \mathscr{A}$ be a idempotent $\left(p=p^{2}\right)$. Then we write

$$
a=p a p+p a(1-p)+(1-p) a p+(1-p) a(1-p)
$$

and use the notations

$$
a_{11}=p a p, \quad a_{12}=p a(1-p), \quad a_{21}=(1-p) a p, \quad a_{22}=(1-p) a(1-p) .
$$

Every idempotent $p \in \mathscr{A}$ induces a representation of an arbitrary element $a \in \mathscr{A}$ given by the following matrix:

$$
a=\left[\begin{array}{cc}
p a p & p a(1-p) \tag{4}\\
(1-p) a p & (1-p) a(1-p)
\end{array}\right]_{p}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]_{p} .
$$

Let a^{π} be the spectral idempotent of a corresponding to $\{0\}$. It is well-known that $a \in \mathscr{A}^{\mathrm{d}}$ can be represented in the following matrix form:

$$
a=\left[\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right]_{p},
$$

relative to $p=a a^{\mathrm{d}}=1-a^{\pi}$, where a_{11} is invertible in the algebra $p \mathscr{A} p$ and a_{22} is quasinilpotent in the algebra $(1-p) \mathscr{A}(1-p)$. Then the generalized Drazin inverse is given by

$$
a^{\mathrm{d}}=\left[\begin{array}{cc}
a_{11}^{-1} & 0 \\
0 & 0
\end{array}\right]_{p}
$$

The motivation for this paper was the paper of Djordjević and Wei [9] and the paper of Castro and Koliha [10]. In both of these papers the conditions under which the generalized Drazin inverse $(a+b)^{\mathrm{d}}$ could be expressed in terms of $a, a^{\mathrm{d}}, b, b^{\mathrm{d}}$ were considered. In [9] this problem is investigated for a bounded linear operator on an arbitrary complex Banach space under assumption that $A B=0$ and these results are the generalizations of the results from [11] where the same problem was considered for matrices. Castro and Koliha [10] considered the same problem for the elements of the Banach algebra with unit under some weaker conditions. They generalized the results from [9].

In the present paper we investigate additive properties of the generalized Drazin inverse in a Banach algebra and find an explicit expression for the generalized Drazin inverse of the sum $a+b$ under various conditions.

In the first part of the paper we find some new conditions, which are nonequivalent to the conditions from [10], allowing for the generalized Drazin inverse of $a+b$ to be expressed in terms of $a, a^{\mathrm{d}}, b, b^{\mathrm{d}}$. It is interesting to note that in some cases we obtain the same expression for $(a+b)^{\mathrm{d}}$ as in [10]. In the rest of the paper we generalize recent results from [10].

2. Results

First we state the following result which is proved in [12] for matrices, extended in [13] for a bounded linear operator and in [10] for arbitrary elements in a Banach algebra.

Theorem 2.1. Let $x \in \mathscr{A}$ and let

$$
x=\left[\begin{array}{ll}
a & c \\
0 & b
\end{array}\right]_{p}
$$

relative to the idempotent $p \in \mathscr{A}$.
(1) If $a \in(p \mathscr{A} p)^{\mathrm{d}}$ and $b \in((1-p) \mathscr{A}(1-p))^{\mathrm{d}}$, then x is generalized Drazin invertible and

$$
x^{\mathrm{d}}=\left[\begin{array}{cc}
a^{\mathrm{d}} & u \tag{5}\\
0 & b^{\mathrm{d}}
\end{array}\right]_{p}
$$

where $u=\sum_{n=0}^{\infty}\left(a^{\mathrm{d}}\right)^{n+2} c b^{n} b^{\pi}+\sum_{n=0}^{\infty} a^{\pi} a^{n} c\left(b^{\mathrm{d}}\right)^{n+2}-a^{\mathrm{d}} c b^{\mathrm{d}}$.
(2) If $x \in \mathscr{A}^{\mathrm{d}}$ and $a \in(p \mathscr{A} p)^{\mathrm{d}}$, then $b \in((1-p) \mathscr{A}(1-p))^{\mathrm{d}}$ and x^{d} is given by (5).

Now, we state an auxiliary result.
Lemma 2.1. Let $a, b \in \mathscr{A}^{\text {qnil }}$ and let $a b=b a$ or $a b=0$, then $a+b \in \mathscr{A}^{\text {qnil }}$.
Proof. If $a b=b a$ we have that

$$
r(a+b) \leqslant r(a)+r(b)
$$

which gives that $a+b \in \mathscr{A}^{\text {qnil }}$. The case when $a b=0$ follows from the equation

$$
(\lambda-a)(\lambda-b)=\lambda(\lambda-(a+b))
$$

Considering the previous lemma, the first idea was to replace the basic condition $a b=0$ which was used in the papers [11,9] by the condition $a b=b a$. As we expected, this condition was not enough to derive a formula for $(a+b)^{\mathrm{d}}$. Hence, to this aim we assume the following three conditions for $a, b \in \mathscr{A}^{\mathrm{d}}$:

$$
\begin{equation*}
a=a b^{\pi}, \quad b^{\pi} b a^{\pi}=b^{\pi} b \quad \text { and } \quad b^{\pi} a^{\pi} b a=b^{\pi} a^{\pi} a b . \tag{6}
\end{equation*}
$$

Instead of the condition $a b=b a$ we assume the weaker condition $b^{\pi} a^{\pi} b a=b^{\pi} a^{\pi} a b$. Notice that

$$
\begin{align*}
& a=a b^{\pi} \Leftrightarrow a b^{\mathrm{d}}=0 \Leftrightarrow \mathscr{A} a \subseteq A b^{\pi}, \tag{7}\\
& b^{\pi} b a^{\pi}=b^{\pi} b \Leftrightarrow b^{\pi} b a^{\mathrm{d}}=0 \Leftrightarrow \mathscr{A} b^{\pi} b \subseteq \mathscr{A} a^{\pi}, \tag{8}\\
& b^{\pi} a^{\pi} b a=b^{\pi} a^{\pi} a b \Leftrightarrow(b a-a b) \mathscr{A} \subseteq\left(b^{\pi} a^{\pi}\right)^{\circ}, \tag{9}
\end{align*}
$$

where for $u \in \mathscr{A}, u^{\circ}=\{x \in \mathscr{A}: u x=0\}$.

For matrices and bounded linear operators on a Banach space the conditions (7)-(9) are equivalent to

$$
\mathscr{N}\left(b^{\pi}\right) \subseteq \mathscr{N}(a), \quad \mathscr{N}\left(a^{\pi}\right) \subseteq \mathscr{N}\left(b^{\pi} b\right), \quad \mathscr{R}(b a-a b) \subseteq \mathscr{N}\left(b^{\pi} a^{\pi}\right)
$$

Remark that conditions (6) are not symmetric in a, b like the conditions (3.1) from [10], so our expression for $(a+b)^{\mathrm{d}}$ is not symmetric in a, b at all.

In the next theorem under the assumption that for $a, b \in \mathscr{A}^{\mathrm{d}}$ the conditions (6) hold, we offer the following expression for $(a+b)^{\mathrm{d}}$.

Theorem 2.2. Let $a, b \in \mathscr{A}^{\mathrm{d}}$ be such that (6) is satisfied. Then $a+b \in \mathscr{A}^{\mathrm{d}}$ and

$$
\begin{align*}
(a+b)^{\mathrm{d}}= & \left(b^{\mathrm{d}}+\sum_{n=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n}\right) a^{\pi} \\
& -\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n}\left(a^{\mathrm{d}}\right)^{k+2} b(a+b)^{k+1} \tag{10}\\
& +\sum_{n=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n} a^{\mathrm{d}} b-\sum_{n=0}^{\infty} b^{\mathrm{d}} a\left(a^{\mathrm{d}}\right)^{n+2} b(a+b)^{n}
\end{align*}
$$

Before proving Theorem 2.2 we have to prove the following result which is a special case of this theorem:

Theorem 2.3. Let $a \in \mathscr{A}^{\text {qnil }}, b \in \mathscr{A}^{\mathrm{d}}$ are such that $b^{\pi} a b=b^{\pi} b a$ and $a=a b^{\pi}$. Then (6) is satisfied, $a+b \in \mathscr{A}^{\mathrm{d}}$ and

$$
\begin{equation*}
(a+b)^{\mathrm{d}}=b^{\mathrm{d}}+\sum_{n=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n} \tag{11}
\end{equation*}
$$

Proof. First, suppose that $b \in \mathscr{A}^{\text {qnil. Then }} b^{\pi}=1$ and from $b^{\pi} a b=b^{\pi} b a$ we obtain that $a b=$ $b a$. Using Lemma 2.1, $a+b \in \mathscr{A}^{\text {qnil }}$ and (11) holds. Now, we assume that b is not quasinilpotent and we consider the matrix representation of a and b relative to the $p=1-b^{\pi}$. We have

$$
b=\left[\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right]_{p}, \quad a=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]_{p},
$$

where $b_{1} \in(p \mathscr{A} p)^{-1}$ and $b_{2} \in((1-p) \mathscr{A}(1-p))^{\text {qnil }} \subset \mathscr{A}^{\text {qnil }}$. From $a=a b^{\pi}$, it follows that $a_{11}=0$ and $a_{21}=0$. We denote $a_{1}=a_{12}$ and $a_{2}=a_{22}$. Hence,

$$
a+b=\left[\begin{array}{cc}
b_{1} & a_{1} \\
0 & a_{2}+b_{2}
\end{array}\right]_{p}
$$

The condition $b^{\pi} a b=b^{\pi} b a$ implies that $a_{2} b_{2}=b_{2} a_{2}$. Hence, using Lemma 2.1, we get $a_{2}+b_{2} \in((1-p) \mathscr{A}(1-p))^{\text {qnil }}$. Now, by Theorem 2.1, we obtain that $a+b \in \mathscr{A}^{\mathrm{d}}$ and

$$
\begin{aligned}
(a+b)^{\mathrm{d}} & =\left[\begin{array}{cc}
b_{1}^{-1} & \sum_{n=0}^{\infty} b_{1}^{-(n+2)} a_{1}\left(a_{2}+b_{2}\right)^{n} \\
0 & 0
\end{array}\right]_{p} \\
& =b^{\mathrm{d}}+\sum_{n=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n} .
\end{aligned}
$$

Let us observe that the expressions for $(a+b)^{\mathrm{d}}$ in (11) and in (3.6), Theorem 3.3 [10] are exactly the same. If we assume that $a b=b a$ instead of $b^{\pi} a b=b^{\pi} b a$, we will get a much simpler expression for $(a+b)^{\text {d }}$.

Corollary 2.1. Let $a \in \mathscr{A}^{\text {qnil }}, b \in \mathscr{A}^{\mathrm{d}}$ are such that $a b=b a$ and $a=a b^{\pi}$, then $a+b \in \mathscr{A}^{\mathrm{d}}$ and

$$
(a+b)^{\mathrm{d}}=b^{\mathrm{d}}
$$

Proof. From the condition $a=a b^{\pi}$, as we mentioned before, it follows that $a b^{\mathrm{d}}=0$. Now, because the Drazin inverse b^{d} is double commutant of a, we have that

$$
\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n}=a\left(b^{\mathrm{d}}\right)^{n+2}(a+b)^{n}=0
$$

Proof of the Theorem 2.2. If b is quasinilpotent we can apply Theorem 2.3. Hence, we assume that b is neither invertible nor quasinilpotent and consider the following matrix representation of a and b relative to the $p=1-b^{\pi}$:

$$
b=\left[\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right]_{p}, \quad a=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]_{p},
$$

where $b_{1} \in(p \mathscr{A} p)^{-1}$ and $b_{2} \in((1-p) \mathscr{A}(1-p))^{\text {qnil }}$. As in the proof of Theorem 2.3, from $a=a b^{\pi}$ it follows that $a=\left[\begin{array}{ll}0 & a_{1} \\ 0 & a_{2}\end{array}\right]_{p}$ and

$$
a+b=\left[\begin{array}{cc}
b_{1} & a_{1} \\
0 & a_{2}+b_{2}
\end{array}\right]_{p} .
$$

From the conditions $b^{\pi} a^{\pi} b a=b^{\pi} a^{\pi} a b$ and $b^{\pi} b a^{\pi}=b^{\pi} b$, we obtain that $a_{2}^{\pi} b_{2} a_{2}=a_{2}^{\pi} a_{2} b_{2}$ and $b_{2}=b_{2} a_{2}^{\pi}$. Now, by Theorem 2.3 it follows that $\left(a_{2}+b_{2}\right) \in((1-p) \mathscr{A}(1-p))^{\mathrm{d}}$ and

$$
\begin{equation*}
\left(a_{2}+b_{2}\right)^{\mathrm{d}}=a_{2}^{\mathrm{d}}+\sum_{n=0}^{\infty}\left(a_{2}^{\mathrm{d}}\right)^{n+2} b_{2}\left(a_{2}+b_{2}\right)^{n} \tag{12}
\end{equation*}
$$

By Theorem 2.1 we get

$$
(a+b)^{\mathrm{d}}=\left[\begin{array}{cc}
b_{1}^{-1} & u \\
0 & \left(a_{2}+b_{2}\right)^{\mathrm{d}}
\end{array}\right]_{p}
$$

where $u=\sum_{n=0}^{\infty} b_{1}^{-(n+2)} a_{1}\left(a_{2}+b_{2}\right)^{n}\left(a_{2}+b_{2}\right)^{\pi}-b_{1}^{-1} a_{1}\left(a_{2}+b_{2}\right)^{\text {d }}$ and by b_{1}^{-1} we denote the inverse of b_{1} in the algebra $p \mathscr{A} p$. Using (12), we have that

$$
u=\sum_{n=0}^{\infty} b_{1}^{-(n+2)} a_{1}\left(a_{2}+b_{2}\right)^{n}=a_{2}^{\pi}-\sum_{n=0}^{\infty} b_{1}^{-(n+2)} a_{1}\left(a_{2}+b_{2}\right)^{n} a_{2}^{\mathrm{d}} b_{2}
$$

$$
\begin{aligned}
& \times \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(b_{1}\right)^{-(n+2)} a_{1}\left(a_{2}+b_{2}\right)^{n}\left(a_{2}^{\mathrm{d}}\right)^{k+2} b_{2}\left(a_{2}+b_{2}\right)^{k+1}-b_{1}^{-1} a_{1} a_{2}^{\mathrm{d}} \\
& -\sum_{n=0}^{\infty} b_{1}^{-1} a_{1}\left(a_{2}^{\mathrm{d}}\right)^{n+2} b_{2}\left(a_{2}+b_{2}\right)^{n}
\end{aligned}
$$

By a straightforward computation we obtain that (10) holds.
Corollary 2.2. Let $a, b \in \mathscr{A}^{\mathrm{d}}$ are such that $a b=b a, a=a b^{\pi}$ and $b^{\pi}=b a^{\pi}=b^{\pi} b$, then $a+b \in$ \mathscr{A}^{d} and

$$
(a+b)^{\mathrm{d}}=b^{\mathrm{d}}
$$

Let us also observe that if a, b are such that a is invertible and b is group invertible than the conditions (8) and (9) are satisfied, so we have to assume just that $a=a b^{\pi}$. In the opposite case when b is invertible we get $a=0$.

As we mentioned before, Hartwig et al. in [11] for matrices and Djordjević and Wei [9] for operators used the condition $A B=0$ to derive the formula $(a+b)^{\text {d }}$. Castro and Koliha [10] relaxed this hypothesis by assuming the following three conditions symmetric in $a, b \in$ \mathscr{A}^{d},

$$
\begin{equation*}
a^{\pi} b=b, \quad a b^{\pi}=a, \quad b^{\pi} a b a^{\pi}=0 . \tag{13}
\end{equation*}
$$

It is easy to see that $a b=0$ implies (13), but the converse is not true (see Example 3.1, [10]).
It is interesting to remark that the conditions (13) and (6) are independent, neither of them implies the other one, but in some cases we obtain the same expressions for $(a+b)^{\mathrm{d}}$.

If we consider the algebra \mathscr{A} of all complex 3×3 matrices and $a, b \in \mathscr{A}$ which are given in the Example 3.1 [10], we can see that the conditions (13) are satisfied, but the conditions (6) are not satisfied. In the following example we have the opposite case. We construct matrices a, b in the algebra \mathscr{A} of all complex 3×3 matrices such that (6) is satisfied but (13) is not satisfied. If we assume that $a b=b a$ in Theorem 2.2 the expression for $(a+b)^{\text {d }}$ will be exactly the same as in Theorem 3.5 [10] (in this paper Corollary 2.4).

Example. Let

$$
a=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad b=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Then,

$$
a^{\pi}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and $b^{\pi}=1$. Now, we can see that $a=a b^{\pi}, a^{\pi} a b=a^{\pi}=b a$ and $b a^{\pi}=b$ i.e., (6) is satisfied. Also, $a^{\pi} b=0 \neq b$, so (13) is not satisfied.

In the rest of the paper we will present a generalization of the results from [10]. We will use some weaker conditions than in [10]. For example in the next theorem which is the generalization
of Theorem 3.3 [10] we will assume that $e=\left(1-b^{\pi}\right)(a+b)\left(1-b^{\pi}\right) \in \mathscr{A}^{\mathrm{d}}$ instead of $a b^{\pi}=a$. If $a b^{\pi}=a$ then $e=\left(1-b^{\pi}\right) b=\left[\begin{array}{cc}b_{1} & 0 \\ 0 & 0\end{array}\right]_{p}$ for $p=1-b^{\pi}$ and $e^{\mathrm{d}}=b^{\mathrm{d}}$.

Theorem 2.4. Let $b \in \mathscr{A}^{\mathrm{d}}, a \in \mathscr{A}^{\text {qnil }}$ be such that

$$
e=\left(1-b^{\pi}\right)(a+b)\left(1-b^{\pi}\right) \in \mathscr{A}^{\mathrm{d}} \quad \text { and } \quad b^{\pi} a b=0
$$

then $a+b \in \mathscr{A}^{\mathrm{d}}$ and

$$
(a+b)^{\mathrm{d}}=e^{\mathrm{d}}+\sum_{n=0}^{\infty}\left(e^{\mathrm{d}}\right)^{n+2} a b^{\pi}(a+b)^{n}
$$

Proof. The case when $b \in \mathscr{A}^{\text {qnil }}$ follows from Lemma 2.1. Hence, we assume that b is not quasinilpotent,

$$
b=\left[\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right]_{p} \quad \text { and } \quad a=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]_{p},
$$

where $p=1-b^{\pi}$. From $b^{\pi} a b=0$ we have that $b^{\pi} a\left(1-b^{\pi}\right)=0$, i.e., $a_{21}=0$. Denote $a_{1}=a_{11}$, $a_{22}=a_{2}$ and $a_{12}=a_{3}$. Then,

$$
a+b=\left[\begin{array}{cc}
a_{1}+b_{1} & a_{3} \\
0 & a_{2}+b_{2}
\end{array}\right]_{p}
$$

Also, $b^{\pi} a b=0$ implies that $a_{2} b_{2}=0$, so $a_{2}+b_{2} \in((1-p) \mathscr{A}(1-p))^{\text {qnil }}$, according to Lemma 2.1. Now, applying Theorem 2.1, we obtain that

$$
(a+b)^{\mathrm{d}}=\left[\begin{array}{cc}
\left(a_{1}+b_{1}\right)^{\mathrm{d}} & u \\
0 & 0
\end{array}\right]_{p}
$$

where $u=\sum_{n=0}^{\infty}\left(\left(a_{1}+b_{1}\right)^{\mathrm{d}}\right)^{(n+2)} a_{3}\left(a_{2}+b_{2}\right)^{n}$. By a direct computation we verify that

$$
(a+b)^{\mathrm{d}}=e^{\mathrm{d}}+\sum_{n=0}^{\infty}\left(e^{\mathrm{d}}\right)^{n+2} a b^{\pi}(a+b)^{n}
$$

Now, as a corollary we obtain Theorem 3.3 from [10].
Corollary 2.3. Let $b \in \mathscr{A}^{\mathrm{d}}, a \in \mathscr{A}^{\text {anil }}$ and let $a b^{\pi}=a, b^{\pi} a b=0$. Then $a+b \in \mathscr{A}^{\mathrm{d}}$ and

$$
(a+b)^{\mathrm{d}}=b^{\mathrm{d}}+\sum_{n=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n}
$$

The next result is a generalization of Theorem 3.5 in [10]. For simplicity we use the following notation:

$$
\begin{aligned}
e & =\left(1-b^{\pi}\right)(a+b)\left(1-b^{\pi}\right) \in \mathscr{A}^{\mathrm{d}}, \\
f & =\left(1-a^{\pi}\right)(a+b)\left(1-a^{\pi}\right), \\
\mathscr{A}_{1} & =\left(1-a^{\pi}\right) \mathscr{A}\left(1-a^{\pi}\right), \\
\mathscr{A}_{2} & =\left(1-b^{\pi}\right) \mathscr{A}\left(1-b^{\pi}\right),
\end{aligned}
$$

where $a, b \in A^{\mathrm{d}}$ are given.

We also prove the next result which is the generalization of Theorem 3.5 [10].
Theorem 2.5. Let $a, b \in \mathscr{A}^{\mathrm{d}}$ be such that $\left(1-a^{\pi}\right) b\left(1-a^{\pi}\right) \in \mathscr{A}^{\mathrm{d}}, f \in \mathscr{A}_{1}^{-1}$ and $e \in \mathscr{A}_{2}^{\mathrm{d}}$. If

$$
\left(1-a^{\pi}\right) b a^{\pi}=0, \quad b^{\pi} a b a^{\pi}=0, \quad a^{\pi}=a\left(1-b^{\pi}\right) a^{\pi}=0
$$

then $a+b \in \mathscr{A}^{\mathrm{d}}$ and

$$
\begin{aligned}
(a+b)^{\mathrm{d}}= & \left(b^{\mathrm{d}}+\sum_{n=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n}\right) a^{\pi}+\sum_{n=0}^{\infty} b^{\pi}(a+b)^{n} a^{\pi} b(f)_{\mathscr{A}_{1}}^{-(n+2)} \\
& -\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(b^{\mathrm{d}}\right)^{k+1} a(a+b)^{n+k} a^{\pi} b(f)_{\mathscr{A}_{1}}^{-(n+2)}-b^{\mathrm{d}} a^{\pi} b(f)_{\mathscr{A}_{1}}^{-1} \\
& -\sum_{n=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n} a^{\pi} b(f)_{\mathscr{A}_{1}}^{-1}+(f)_{\mathscr{A}_{1}}^{-1},
\end{aligned}
$$

where by $(f)_{\mathscr{A}_{1}}^{-1}$ we denote the inverse of f in \mathscr{A}_{1}.
Proof. Obviously, if a is invertible, then the statement of the theorem holds. If a is quasinilpotent, then the result follows from Theorem 2.4. Hence, we assume that a is neither invertible nor quasinilpotent. As in the proof of Theorem 2.2, we have that

$$
a=\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right]_{p}, \quad b=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]_{p}
$$

where $p=1-a^{\pi}, a_{1} \in(p \mathscr{A} p)^{-1}$ and $a_{2} \in((1-p) \mathscr{A}(1-p))^{\text {anil }}$. From $\left(1-a^{\pi}\right) b a^{\pi}=0$, we have that $b_{12}=0$. Denote $b_{1}=b_{11}, b_{22}=b_{2}$ and $b_{21}=b_{3}$. Then,

$$
a+b=\left[\begin{array}{cc}
a_{1}+b_{1} & 0 \\
b_{3} & a_{2}+b_{2}
\end{array}\right]_{p}
$$

The condition $a^{\pi} b^{\pi} a b a^{\pi}=0$ expressed in the matrix form yields

$$
a^{\pi} b^{\pi} a b a^{\pi}=\left[\begin{array}{cc}
0 & 0 \\
0 & b_{2}^{\pi}
\end{array}\right]\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & b_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & b_{2}^{\pi} a_{2} b_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

Similarly, $a^{\pi} a\left(1-b^{\pi}\right)=0$ implies that $a_{2} b_{2}^{\pi}=a_{2}$. From Corollary 2.3 we get that $a_{2}+b_{2} \in$ \mathscr{A}^{d} and

$$
\left(a_{2}+b_{2}\right)^{\mathrm{d}}=b_{2}^{\mathrm{d}}+\sum_{n=0}^{\infty}\left(b_{2}^{\mathrm{d}}\right)^{n+2} a_{2}\left(a_{2}+b_{2}\right)^{n} .
$$

Now, using Theorem 2.1 we obtain that $a+b \in \mathscr{A}^{\mathrm{d}}$ and

$$
(a+b)^{\mathrm{d}}=\left[\begin{array}{cc}
\left(a_{1}+b_{1}\right)^{\mathrm{d}} & 0 \\
u & \left(a_{2}+b_{2}\right)^{\mathrm{d}}
\end{array}\right]_{p},
$$

where

$$
u=\sum_{n=0}^{\infty} b_{2}^{\pi}\left(a_{2}+b_{2}\right)^{n} b_{3}(f)_{\mathscr{A}_{1}}^{-(n+2)}
$$

$$
\begin{aligned}
& -\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(b_{2}^{\mathrm{d}}\right)^{k+1} a_{2}\left(a_{2}+b_{2}\right)^{n+k} b_{3}(f)_{\mathscr{A}_{1}}^{-(n+2)}-b_{2}^{\mathrm{d}} b_{3}(f)_{\mathscr{A}_{1}}^{-1} \\
& -\sum_{n=0}^{\infty}\left(b_{2}^{\mathrm{d}}\right)^{n+2} a_{2}\left(a_{2}+b_{2}\right)^{n} b_{3}(f)_{\mathscr{A}_{1}}^{-1}
\end{aligned}
$$

By a straightforward computation we obtain that the result holds.
Corollary 2.4. Let $a, b \in \mathscr{A}^{\mathrm{d}}$ satisfy the conditions (13). Then $a+b \in \mathscr{A}^{\mathrm{d}}$ and

$$
\begin{aligned}
(a+b)^{\mathrm{d}}= & \left(b^{\mathrm{d}}+\sum_{n=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n}\right) a^{\pi}+\sum_{n=0}^{\infty} b^{\pi}(a+b)^{n} b\left(a^{\mathrm{d}}\right)^{(n+2)} \\
& -\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(b^{\mathrm{d}}\right)^{k+1} a(a+b)^{n+k} b\left(a^{\mathrm{d}}\right)^{(n+2)}+b^{\pi} a^{\mathrm{d}} \\
& -\sum_{n=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n} b a^{\mathrm{d}}
\end{aligned}
$$

Proof. We have that $f=\left(1-a^{\pi}\right) a$, so $(f)_{\mathscr{A}_{1}}^{-1}=a^{\mathrm{d}}$.

References

[1] M.P. Drazin, Pseudoinverse in associative rings and semigroups, Am. Math. Month. 65 (1958) 506-514.
[2] J.J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996) 367-381.
[3] R.E. Harte, Spectral projections, Irish Math. Soc. Newslett. 11 (1984) 10-15.
[4] R.E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988.
[5] R.E. Harte, On quasinilpotents in rings, PanAm. Math. J. 1 (1991) 10-16.
[6] N. Castro González, J.J. Koliha, V. Rakocevic, Continuity and general perturbation of the Drazin inverse for closed linear operators, Abstract Appl. Anal. 7 (2002) 335-347.
[7] J.J. Koliha, V. Rakocevic, Holomorphic and meromorphic properties of the g-Drazin inverse, Demonstratio Mathematica 38 (2005) 657-666.
[8] J.J. Koliha, V. Rakocevic, Differentiability of the g-Drazin inverse, Stud. Math. 168 (2005) 193-201.
[9] D.S. Djordjević, Y. Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc. 73 (2002) 115-125.
[10] N. Castro González, J.J. Koliha, New additive results for the g-Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 1085-1097.
[11] R.E. Hartwig, G. Wang, Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001) 207-217.
[12] C.D. Meyer Jr., N.J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math. 33 (1) (1977) 1-7.
[13] D.S. Djordjević, P.S. Stanimirović, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J. 51 (126) (2001) 617-634.

[^0]: ${ }^{4}$ Supported by Grant No. 1232 of the Ministry of Science, Technology and Development, Republic of Serbia and National Natural Science Foundation of China under grant 10471027.

 * Corresponding author.

 E-mail addresses: dragana@pmf.ni.ac.yu, gagamaka@ptt.yu (D.S. Cvetković-Ilić); ganedj@eunet.yu, dragan@ pmf.ni.ac.yu (D.S. Djordjević); ymwei@fudan.edu.cn (Y. Wei).

