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Abstract

In this paper we investigate additive properties of the generalized Drazin inverse in a Banach algebra. We
find some new conditions under which the generalized Drazin inverse of the sum a + b could be explicitly
expressed in terms of a, ad, b, bd. Also, some recent results of Castro and Koliha [New additive results for
the g-Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 1085–1097] are extended.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let A be a complex Banach algebra with the unit 1. By A−1, Anil, Aqnil we denote the sets
of all invertible, nilpotent and quasinilpotent elements in A, respectively. Let us recall that the
Drazin inverse of a ∈ A [1] is the element x ∈ A (denoted by aD) which satisfies
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xax = x, ax = xa, ak+1x = ak (1)

for some nonnegative integer k. The least such k is the index of a, denoted by ind(a). When
ind(a) = 1 then the Drazin inverse aD is called the group inverse and it is denoted by a#. The
conditions (1) are equivalent to

xax = x, ax = xa, a − a2x ∈ Anil. (2)

The concept of the generalized Drazin inverse in a Banach algebra was introduced by Koliha
[2]. The condition a − a2x ∈ Anil was replaced by a − a2x ∈ Aqnil. Hence, the generalized
Drazin inverse of a is the element x ∈ A (written ad) which satisfies

xax = x, ax = xa, a − a2x ∈ Aqnil. (3)

We mention that an alternative definition of the generalized Drazin inverse in a ring is also given
in [3–5]. These two concepts of generalized Drazin inverse are equivalent in the case when the
ring is actually a complex Banach algebra with a unit. It is well-known that ad is unique whenever
it exists [2]. The set Ad consists of all a ∈ A such that ad exists. For interesting properties of
Drazin inverse see [6–8].

Let a ∈ A and let p ∈ A be a idempotent (p = p2). Then we write

a = pap + pa(1 − p) + (1 − p)ap + (1 − p)a(1 − p)

and use the notations

a11 = pap, a12 = pa(1 − p), a21 = (1 − p)ap, a22 = (1 − p)a(1 − p).

Every idempotent p ∈ A induces a representation of an arbitrary element a ∈ A given by the
following matrix:

a =
[

pap pa(1 − p)

(1 − p)ap (1 − p)a(1 − p)

]
p

=
[
a11 a12
a21 a22

]
p

. (4)

Let a� be the spectral idempotent of a corresponding to {0}. It is well-known that a ∈ Ad can
be represented in the following matrix form:

a =
[
a11 0
0 a22

]
p

,

relative to p = aad = 1 − a�, where a11 is invertible in the algebra pAp and a22 is quasinilpotent
in the algebra (1 − p)A(1 − p). Then the generalized Drazin inverse is given by

ad =
[
a−1

11 0
0 0

]
p

.

The motivation for this paper was the paper of Djordjević and Wei [9] and the paper of
Castro and Koliha [10]. In both of these papers the conditions under which the generalized
Drazin inverse (a + b)d could be expressed in terms of a, ad, b, bd were considered. In [9] this
problem is investigated for a bounded linear operator on an arbitrary complex Banach space under
assumption that AB = 0 and these results are the generalizations of the results from [11] where the
same problem was considered for matrices. Castro and Koliha [10] considered the same problem
for the elements of the Banach algebra with unit under some weaker conditions. They generalized
the results from [9].

In the present paper we investigate additive properties of the generalized Drazin inverse in
a Banach algebra and find an explicit expression for the generalized Drazin inverse of the sum
a + b under various conditions.
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In the first part of the paper we find some new conditions, which are nonequivalent to the
conditions from [10], allowing for the generalized Drazin inverse of a + b to be expressed in
terms of a, ad, b, bd. It is interesting to note that in some cases we obtain the same expression for
(a + b)d as in [10]. In the rest of the paper we generalize recent results from [10].

2. Results

First we state the following result which is proved in [12] for matrices, extended in [13] for a
bounded linear operator and in [10] for arbitrary elements in a Banach algebra.

Theorem 2.1. Let x ∈ A and let

x =
[
a c

0 b

]
p

,

relative to the idempotent p ∈ A.

(1) If a ∈ (pAp)d and b ∈ ((1 − p)A(1 − p))d, then x is generalized Drazin invertible and

xd =
[
ad u

0 bd

]
p

, (5)

where u = ∑∞
n=0(a

d)n+2cbnb� +∑∞
n=0 a�anc(bd)n+2 − adcbd.

(2) If x ∈ Ad and a ∈ (pAp)d, then b ∈ ((1 − p)A(1 − p))d and xd is given by (5).

Now, we state an auxiliary result.

Lemma 2.1. Let a, b ∈ Aqnil and let ab = ba or ab = 0, then a + b ∈ Aqnil.

Proof. If ab = ba we have that

r(a + b) � r(a) + r(b),

which gives that a + b ∈ Aqnil. The case when ab = 0 follows from the equation

(λ − a)(λ − b) = λ(λ − (a + b)). �

Considering the previous lemma, the first idea was to replace the basic condition ab = 0
which was used in the papers [11,9] by the condition ab = ba. As we expected, this condition
was not enough to derive a formula for (a + b)d. Hence, to this aim we assume the following
three conditions for a, b ∈ Ad:

a = ab�, b�ba� = b�b and b�a�ba = b�a�ab. (6)

Instead of the condition ab = ba we assume the weaker condition b�a�ba = b�a�ab. Notice
that

a = ab� ⇔ abd = 0 ⇔ Aa ⊆ Ab�, (7)

b�ba� = b�b ⇔ b�bad = 0 ⇔ Ab�b ⊆ Aa�, (8)

b�a�ba = b�a�ab ⇔ (ba − ab)A ⊆ (b�a�)◦, (9)

where for u ∈ A, u◦ = {x ∈ A : ux = 0}.
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For matrices and bounded linear operators on a Banach space the conditions (7)–(9) are equiv-
alent to

N(b�) ⊆ N(a), N(a�) ⊆ N(b�b), R(ba − ab) ⊆ N(b�a�).

Remark that conditions (6) are not symmetric in a, b like the conditions (3.1) from [10], so
our expression for (a + b)d is not symmetric in a, b at all.

In the next theorem under the assumption that for a, b ∈ Ad the conditions (6) hold, we offer
the following expression for (a + b)d.

Theorem 2.2. Let a, b ∈ Ad be such that (6) is satisfied. Then a + b ∈ Ad and

(a + b)d =
(

bd +
∞∑

n=0

(bd)n+2a(a + b)n

)
a�

−
∞∑

n=0

∞∑
k=0

(bd)n+2a(a + b)n(ad)k+2b(a + b)k+1 (10)

+
∞∑

n=0

(bd)n+2a(a + b)nadb −
∞∑

n=0

bda(ad)n+2b(a + b)n.

Before proving Theorem 2.2 we have to prove the following result which is a special case of
this theorem:

Theorem 2.3. Let a ∈ Aqnil, b ∈ Ad are such that b�ab = b�ba and a = ab�. Then (6) is
satisfied, a + b ∈ Ad and

(a + b)d = bd +
∞∑

n=0

(bd)n+2a(a + b)n. (11)

Proof. First, suppose that b ∈ Aqnil. Then b� = 1 and from b�ab = b�ba we obtain that ab =
ba. Using Lemma 2.1, a + b ∈ Aqnil and (11) holds. Now, we assume that b is not quasinil-
potent and we consider the matrix representation of a and b relative to the p = 1 − b�. We
have

b =
[
b1 0
0 b2

]
p

, a =
[
a11 a12
a21 a22

]
p

,

where b1 ∈ (pAp)−1 and b2 ∈ ((1 − p)A(1 − p))qnil ⊂ Aqnil. From a = ab�, it follows that
a11 = 0 and a21 = 0. We denote a1 = a12 and a2 = a22. Hence,

a + b =
[
b1 a1

0 a2 + b2

]
p

.

The condition b�ab = b�ba implies that a2b2 = b2a2. Hence, using Lemma 2.1, we get
a2 + b2 ∈ ((1 − p)A(1 − p))qnil. Now, by Theorem 2.1, we obtain that a + b ∈ Ad and
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(a + b)d =
[
b−1

1

∑∞
n=0 b

−(n+2)
1 a1(a2 + b2)

n

0 0

]
p

=bd +
∞∑

n=0

(bd)n+2a(a + b)n. �

Let us observe that the expressions for (a + b)d in (11) and in (3.6), Theorem 3.3 [10] are
exactly the same. If we assume that ab = ba instead of b�ab = b�ba, we will get a much simpler
expression for (a + b)d.

Corollary 2.1. Let a ∈ Aqnil, b ∈ Ad are such that ab = ba and a = ab�, then a + b ∈ Ad

and

(a + b)d = bd.

Proof. From the condition a = ab�, as we mentioned before, it follows that abd = 0. Now,
because the Drazin inverse bd is double commutant of a, we have that

(bd)n+2a(a + b)n = a(bd)n+2(a + b)n = 0. �

Proof of the Theorem 2.2. If b is quasinilpotent we can apply Theorem 2.3. Hence, we assume
that b is neither invertible nor quasinilpotent and consider the following matrix representation of
a and b relative to the p = 1 − b�:

b =
[
b1 0
0 b2

]
p

, a =
[
a11 a12
a21 a22

]
p

,

where b1 ∈ (pAp)−1 and b2 ∈ ((1 − p)A(1 − p))qnil. As in the proof of Theorem 2.3, from

a = ab� it follows that a =
[

0 a1
0 a2

]
p

and

a + b =
[
b1 a1
0 a2 + b2

]
p

.

From the conditions b�a�ba = b�a�ab and b�ba� = b�b, we obtain that a�
2b2a2 = a�

2a2b2

and b2 = b2a
�
2 . Now, by Theorem 2.3 it follows that (a2 + b2) ∈ ((1 − p)A(1 − p))d and

(a2 + b2)
d = ad

2 +
∞∑

n=0

(ad
2 )n+2b2(a2 + b2)

n. (12)

By Theorem 2.1 we get

(a + b)d =
[
b−1

1 u

0 (a2 + b2)
d

]
p

,

where u = ∑∞
n=0 b

−(n+2)
1 a1(a2 + b2)

n(a2 + b2)
� − b−1

1 a1(a2 + b2)
d and by b−1

1 we denote the
inverse of b1 in the algebra pAp. Using (12), we have that

u =
∞∑

n=0

b
−(n+2)
1 a1(a2 + b2)

n = a�
2 −

∞∑
n=0

b
−(n+2)
1 a1(a2 + b2)

nad
2 b2
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×
∞∑

n=0

∞∑
k=0

(b1)
−(n+2)a1(a2 + b2)

n(ad
2 )k+2b2(a2 + b2)

k+1 − b−1
1 a1a

d
2

−
∞∑

n=0

b−1
1 a1(a

d
2 )n+2b2(a2 + b2)

n

By a straightforward computation we obtain that (10) holds. �

Corollary 2.2. Leta, b ∈ Ad are such thatab = ba, a = ab� andb� = ba� = b�b, thena + b ∈
Ad and

(a + b)d = bd.

Let us also observe that if a, b are such that a is invertible and b is group invertible than the
conditions (8) and (9) are satisfied, so we have to assume just that a = ab�. In the opposite case
when b is invertible we get a = 0.

As we mentioned before, Hartwig et al. in [11] for matrices and Djordjević and Wei [9]
for operators used the condition AB = 0 to derive the formula (a + b)d. Castro and Koliha
[10] relaxed this hypothesis by assuming the following three conditions symmetric in a, b ∈
Ad,

a�b = b, ab� = a, b�aba� = 0. (13)

It is easy to see that ab = 0 implies (13), but the converse is not true (see Example 3.1, [10]).
It is interesting to remark that the conditions (13) and (6) are independent, neither of them

implies the other one, but in some cases we obtain the same expressions for (a + b)d.
If we consider the algebra A of all complex 3 × 3 matrices and a, b ∈ A which are given in

the Example 3.1 [10], we can see that the conditions (13) are satisfied, but the conditions (6) are
not satisfied. In the following example we have the opposite case. We construct matrices a, b in
the algebra A of all complex 3 × 3 matrices such that (6) is satisfied but (13) is not satisfied. If
we assume that ab = ba in Theorem 2.2 the expression for (a + b)d will be exactly the same as
in Theorem 3.5 [10] (in this paper Corollary 2.4).

Example. Let

a =

1 0 0

0 0 0
0 0 0


 , b =


0 1 0

0 0 0
0 0 0


 .

Then,

a� =

0 0 0

0 1 0
0 0 1




and b� = 1. Now, we can see that a = ab�, a�ab = a� = ba and ba� = b i.e., (6) is satisfied.
Also, a�b = 0 /= b, so (13) is not satisfied.

In the rest of the paper we will present a generalization of the results from [10]. We will use
some weaker conditions than in [10]. For example in the next theorem which is the generalization



D.S. Cvetković-Ilić et al. / Linear Algebra and its Applications 418 (2006) 53–61 59

of Theorem 3.3 [10] we will assume that e = (1 − b�)(a + b)(1 − b�) ∈ Ad instead of ab� = a.

If ab� = a then e = (1 − b�)b =
[

b1 0
0 0

]
p

for p = 1 − b� and ed = bd.

Theorem 2.4. Let b ∈ Ad, a ∈ Aqnil be such that

e = (1 − b�)(a + b)(1 − b�) ∈ Ad and b�ab = 0,

then a + b ∈ Ad and

(a + b)d = ed +
∞∑

n=0

(ed)n+2ab�(a + b)n.

Proof. The case when b ∈ Aqnil follows from Lemma 2.1. Hence, we assume that b is not
quasinilpotent,

b =
[
b1 0
0 b2

]
p

and a =
[
a11 a12
a21 a22

]
p

,

where p = 1 − b�. From b�ab = 0 we have that b�a(1 − b�) = 0, i.e., a21 = 0. Denote a1 = a11,
a22 = a2 and a12 = a3. Then,

a + b =
[
a1 + b1 a3

0 a2 + b2

]
p

.

Also, b�ab = 0 implies that a2b2 = 0, so a2 + b2 ∈ ((1 − p)A(1 − p))qnil, according to Lemma
2.1. Now, applying Theorem 2.1, we obtain that

(a + b)d =
[
(a1 + b1)

d u

0 0

]
p

,

where u = ∑∞
n=0((a1 + b1)

d)(n+2)a3(a2 + b2)
n. By a direct computation we verify that

(a + b)d = ed +
∞∑

n=0

(ed)n+2ab�(a + b)n. �

Now, as a corollary we obtain Theorem 3.3 from [10].

Corollary 2.3. Let b ∈ Ad, a ∈ Aqnil and let ab� = a, b�ab = 0. Then a + b ∈ Ad and

(a + b)d = bd +
∞∑

n=0

(bd)n+2a(a + b)n.

The next result is a generalization of Theorem 3.5 in [10]. For simplicity we use the following
notation:

e=(1 − b�)(a + b)(1 − b�) ∈ Ad,

f =(1 − a�)(a + b)(1 − a�),

A1 =(1 − a�)A(1 − a�),

A2 =(1 − b�)A(1 − b�),

where a, b ∈ Ad are given.
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We also prove the next result which is the generalization of Theorem 3.5 [10].

Theorem 2.5. Let a, b ∈ Ad be such that (1 − a�)b(1 − a�) ∈ Ad, f ∈ A−1
1 and e ∈ Ad

2 . If

(1 − a�)ba� = 0, b�aba� = 0, a� = a(1 − b�)a� = 0

then a + b ∈ Ad and

(a + b)d =
(

bd +
∞∑

n=0

(bd)n+2a(a + b)n

)
a� +

∞∑
n=0

b�(a + b)na�b(f )
−(n+2)
A1

−
∞∑

n=0

∞∑
k=0

(bd)k+1a(a + b)n+ka�b(f )
−(n+2)
A1

− bda�b(f )−1
A1

−
∞∑

n=0

(bd)n+2a(a + b)na�b(f )−1
A1

+ (f )−1
A1

,

where by (f )−1
A1

we denote the inverse of f in A1.

Proof. Obviously, if a is invertible, then the statement of the theorem holds. If a is quasinilpotent,
then the result follows from Theorem 2.4. Hence, we assume that a is neither invertible nor
quasinilpotent. As in the proof of Theorem 2.2, we have that

a =
[
a1 0
0 a2

]
p

, b =
[
b11 b12
b21 b22

]
p

,

where p = 1 − a�, a1 ∈ (pAp)−1 and a2 ∈ ((1 − p)A(1 − p))qnil. From (1 − a�)ba� = 0, we
have that b12 = 0. Denote b1 = b11, b22 = b2 and b21 = b3. Then,

a + b =
[
a1 + b1 0

b3 a2 + b2

]
p

.

The condition a�b�aba� = 0 expressed in the matrix form yields

a�b�aba� =
[

0 0
0 b�

2

] [
a1 0
0 a2

] [
0 0
0 b2

]
=
[

0 0
0 b�

2a2b2

]
=
[

0 0
0 0

]
.

Similarly, a�a(1 − b�) = 0 implies that a2b
�
2 = a2. From Corollary 2.3 we get that a2 + b2 ∈

Ad and

(a2 + b2)
d = bd

2 +
∞∑

n=0

(bd
2 )n+2a2(a2 + b2)

n.

Now, using Theorem 2.1 we obtain that a + b ∈ Ad and

(a + b)d =
[
(a1 + b1)

d 0
u (a2 + b2)

d

]
p

,

where

u =
∞∑

n=0

b�
2(a2 + b2)

nb3(f )
−(n+2)
A1
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−
∞∑

n=0

∞∑
k=0

(bd
2 )k+1a2(a2 + b2)

n+kb3(f )
−(n+2)
A1

− bd
2b3(f )−1

A1

−
∞∑

n=0

(bd
2 )n+2a2(a2 + b2)

nb3(f )−1
A1

.

By a straightforward computation we obtain that the result holds. �

Corollary 2.4. Let a, b ∈ Ad satisfy the conditions (13). Then a + b ∈ Ad and

(a + b)d =
(

bd +
∞∑

n=0

(bd)n+2a(a + b)n

)
a� +

∞∑
n=0

b�(a + b)nb(ad)(n+2)

−
∞∑

n=0

∞∑
k=0

(bd)k+1a(a + b)n+kb(ad)(n+2) + b�ad

−
∞∑

n=0

(bd)n+2a(a + b)nbad.

Proof. We have that f = (1 − a�)a, so (f )−1
A1

= ad. �
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