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SUMMARY

Extrinsic signals controlling generation of neocor-
tical neurons during embryonic life have been diffi-
cult to identify. In this study we demonstrate that
the dorsal forebrain meninges communicate with
the adjacent radial glial endfeet and influence cortical
development. We took advantage of Foxc1 mutant
mice with defects in forebrain meningeal formation.
Foxc1 dosage and loss of meninges correlated with
a dramatic reduction in both neuron and intermediate
progenitor production and elongation of the neuroe-
pithelium. Several types of experiments demonstrate
that retinoic acid (RA) is the key component of this
secreted activity. In addition, Rdh10- and Raldh2-
expressing cells in the dorsal meninges were either
reduced or absent in the Foxc1 mutants, and Rdh10
mutants had a cortical phenotype similar to the
Foxc1 null mutants. Lastly, in utero RA treatment
rescued the cortical phenotype in Foxc1 mutants.
These results establish RA as a potent, meningeal-
derived cue required for successful corticogenesis.

INTRODUCTION

Early in cerebral cortical development, lateral expansion of the

cortical neuroepithelium dominates as neuroepithelial progeni-

tors in the ventricular zone (VZ), the radial glial cells, symmetri-

cally divide with both daughter cells re-entering the cell cycle.

As corticogenesis proceeds, the radial expansion of the cortex

begins as VZ progenitors divide asymmetrically to generate

postmitotic neurons directly or intermediate progenitor cells

(IPCs) destined for additional, neuron-generating divisions in

the subventricular zone (SVZ) (Chenn and McConnell, 1995;

Miyata et al., 2004; Noctor et al., 2004, 2008). The balance of
lateral and radial expansion of the neocortex depends upon

the appropriately timed switch from symmetric to asymmetric

divisions. Intrinsic (transcription factors, asymmetric protein

distribution, etc.) and extrinsic factors (growth factors and other

diffusible ligands) are implicated in the mechanics of this switch,

most of which localize to cells in cortical neuroepithelium (Chenn

and McConnell, 1995; Chenn and Walsh, 2002; Kawaguchi et al.,

2004; Li et al., 1998; Qian et al., 1997). The factors that control

the timing and continued progression of cortical neurogenesis,

however, have remained largely obscure. Here we present

evidence that all-trans retinoic acid (atRA) released from the

meninges is involved in the decision of neuroepithelial cells to

generate IPCs and neurons.

atRA is a hormone derived from vitamin A (retinol) that signals

via binding to its nuclear retinoic acid receptors (RAR) and reti-

noid X receptors (RXR) (Chambon, 1996). atRA synthesis is a

two-step process that requires retinol dehydrogenases (Rdh)

and retinaldehyde dehydrogenases (Raldh1, 2, and 3) (Napoli,

2004; Ross et al., 2000). Raldh2 is critical for atRA synthesis in

the developing embryo; Raldh2�/� embryos are almost entirely

devoid of atRA signaling and die around E9.5–E10.5 with defects

in head, trunk, and heart development (Niederreither et al., 1999).

Adequate atRA production during development also depends

upon the activity of Rdh10 as demonstrated by the dramatic

reduction in atRA levels in the Rdh10 hypomorph, which displays

head, limb, and organ defects typical of severe atRA deficiency

(Sandell et al., 2007).

Early forebrain morphogenesis requires atRA signaling (Ribes

et al., 2006), and at these early patterning stages the source of

atRA is the adjacent forming eye and nasal pits that express

Raldh2 and Raldh3 (Anchan et al., 1997; Molotkova et al.,

2007). Even as these rich sources of atRA become spatially

disparate from the dorsal forebrain, there is evidence of strong

and very specific atRA signaling in the cortical radial glial progen-

itors. This has been perplexing largely because even though

RARa and RXRa, b are expressed in the cortical neuroepithelium

(Dolle et al., 1994; Ruberte et al., 1993), the enzymes required for
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Figure 1. Foxc1 Gene Dosage Correlates with Severity of Dorsal Forebrain Phenotype

(A) E14.5 Foxc1+/+, Foxc1h/h, Foxc1h/l, and Foxc1l/l forebrains labeled with Tuj1 (green) and Ki-67 (red).

(B) Quantification of the dorsal forebrain length in WT and Foxc1h/h, Foxc1h/l, and Foxc1l/l brains.

(C) Nissl stains of E18.5 Foxc1h/h, Foxc1 h/l, and Foxc1l/l mutant brains. Arrows indicate cortical dysplasia.

Scale bars = 500 mm (A) and 1 mm (C). * and # denote statistical significance (p < 0.05) from WT and Foxc1h/h, respectively. Error bars depict ± the standard error

of the mean (SEM).
atRA synthesis are not expressed in the dorsal forebrain and,

consequently, the functional role of atRA during corticogenesis

has been largely neglected. In this study we show that mice

that fail to form complete forebrain meninges, Foxc1 mutants

(Vivatbutsiri et al., 2008; Zarbalis et al., 2007), have major defects

in the switch from lateral VZ expansion to neuronogenic radial

expansion of the cortex, and this is due to a loss of meningeal-

derived atRA.

RESULTS

Reduction or Loss of Foxc1 Leads to Lateral Expansion
of the Dorsal Forebrain and Decreased Neuron
Production
We previously identified a hypomorphic allele of the Foxc1 gene

(Foxc1hith) with perinatal cortical dysplasia due to defects in the

basement membrane and meningeal differentiation (Zarbalis

et al., 2007). These Foxc1 hypomorphs displayed an earlier

cortical phenotype characterized by a longer dorsal forebrain.

To fully characterize this phenotype we analyzed an allelic series

of Foxc1 mutants: Foxc1 hypomorphs (Foxc1hith/hith; Foxc1h/h),

a hypomorph-null hybrid (Foxc1hith/lacZ; Foxc1h/l), and Foxc1

null embryos (Foxc1lacZ/lacZ; Foxc1l/l) (Kume et al., 1998). At

E14.5, the dorsal forebrain was significantly longer (p < 0.05;

Figure 1B) and appeared thinner in all three Foxc1 mutants

compared to the wild-type (WT) with the phenotype worsening

with decreased gene dosage (Figure 1A). At E10.5 there was

no cortical phenotype in any of the Foxc1 mutant lines

(Figure S1A available online); however, by E12.5 dorsal forebrain

lengthening was evident (Figure S1B). The extended cortical wall

translated into cortical dysplasia that ranged from moderate to

severe at E18.5 (Figure 1C).
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The lateral expansion of the neuroepithelium in the Foxc1

mutants suggests a predominance of symmetric divisions. We

looked at this indirectly by analyzing expression of atypical-

PKCl (aPKCl) and Par3, proteins that are enriched at the apical

membrane of neuroepithelial cells undergoing symmetric divi-

sions (Costa et al., 2008). In WT brains at E14.5, aPKCl was

present at low levels in the apical membrane of VZ progenitors

along the ventricular surface with a few areas of bright apical

staining (Figure 2A). In all three Foxc1 mutant cortices, aPKCl

levels were significantly (p < 0.05) elevated (Figures 2A and

2C). Although less abundant, apical Par3 was also significantly

(p < 0.05) increased in all Foxc1 mutants with the Foxc1l/l

mutants having the largest increase (Figures 2B and 2C).

We next measured the output of asymmetric divisions,

neurons and IPCs. A bromodeoxyuridine (BrdU)/Ki-67 cell-cycle

exit assay was used to examine neuron generation. BrdU-

positive (BrdU+) but Ki-67-negative (Ki-67�) cells were counted

as cells that had exited the cell cycle. In WT cortex, a band of

BrdU+/Ki-67� cells was apparent above the SVZ (Figure 2D;

above dotted line). All three mutants had significantly (p < 0.05)

reduced BrdU+/Ki-67� populations though the Foxc1h/h was

less affected than the Foxc1h/l and Foxc1l/l mutants (Figures

2E–2H). Tbr2 immunolabeling was used to examine the IPC

population. Significant (p < 0.05) reductions in Tbr2+ cell number

were observed in all three Foxc1 mutants (Figures 2I–2M) with

the Foxc1 null having the most severe deficit (Figure 2L). At

E14.5, the decrease in cell-cycle exit (and presumably, to a lesser

extent, the decrease in IPCs) correlated with a decrease in

Ctip2+, postmitotic neurons in the Foxc1 mutants (Figures

2N–2Q).

To determine the consequences of the decreased production

of neurons and IPCs in older embryos, we examined expression



of a deep (Ctip2) and a superficial cortical layer marker (Brn2) at

E18.5. In all the Foxc1 mutants (Figures 2S–2U), the cortical

layers were disorganized (Figure 2R). Like at E14.5, the Ctip2+

cell population was progressively and dramatically reduced in

number according to genotype. The Brn2 population in the VZ,

SVZ, and upper cortical layers was even more affected with

very few Brn2+ cells present in the superficial cortex of the

Foxc1l/l brain (Figure 2U).

The decrease in neuron output and IPC production in the

Foxc1 mutants could be caused by defects in forebrain

patterning or the VZ progenitor population, a change in cell

cycle, or radial glia detachment. Expression of dorsal fore-

brain-restricted Pax6 and Tbr2 highlighted the elongation of

the dorsal forebrain, but both were present in a normal spatial

distribution (Figure S1C). Closer examination of Pax6, expressed

by neuronal progenitors in the VZ, showed that the thickness of

the Pax6+ layer appeared normal in all the Foxc1 mutants

(Figure S1D). The Pax6 expression coupled with the increased

length of the mutant cortices (and thus the neuroepithelium)

provides additional evidence that the neuronal progenitor popu-

lation is increased in the Foxc1 mutants. Cell-cycle analysis in

the VZ (S phase and total length of the cell cycle) at E14.5

showed no overt differences in either parameter between WT

and any of the Foxc1 mutants (Figure S1E). We also found no

evidence of increased apoptotic cell death at E14.5 or E18.5

(data not shown). Finally, because of previous work describing

basement membrane disruptions and radial glial detachment in

the Foxc1h/h brains at E18.5 (Zarbalis et al., 2007), we examined

laminin and nestin expression in the Foxc1l/l at E13.5. At this age,

the dorsal forebrain phenotype was apparent, but there was no

evidence of disruption in the basement membrane in the

Foxc1l/l cortex and the radial glial processes appeared well orga-

nized (Figures S1F and S1G). In both WT and Foxc11/l cortices,

the radial glial endfeet colocalized with laminin at the glia limitans

(Figure S1G, insets) and high-power, confocal images did not

reveal radial glial detachment in the Foxc1l/l cortex (Figure S1H).

The Dorsal Forebrain Meninges Are Reduced or Absent
in Foxc1 Mutants
The meninges are directly opposed to the radial glial endfeet

of the VZ progenitors, thus making them a potential root cause

of the cortical phenotype in the Foxc1 mutants. To examine the

distribution of meningeal fibroblasts in the Foxc1 mutants, we

used an antibody that recognizes Zic protein family members

that are expressed by meningeal fibroblasts (Inoue et al.,

2008). In the E14.5 WT brain, Zic+ meningeal cells completely

surrounded the forebrain (Figure 3A). Zic+ meningeal cells as

well as Zic+ Cajal-Retzius cells in the marginal zone of the brain

were evident at higher magnification (Figure 3A0). The Zic+

meningeal cells were present in ventral and lateral meninges of

the Foxc1h/h brain, but bright, Zic+ meningeal cells were absent

in the most dorsal meninges (Figures 3B and 3B0). In the

Foxc1h/l brain, Zic+ meningeal cells covered only a short portion

of the lateral cerebral wall (Figures 3C and 3C0). The Zic+

meninges in the Foxc1l/l were completely missing over the dorsal

forebrain but were present ventrally (Figures 3D and 3D0). To

confirm that the Zic labeling reflected a loss of meninges and

not just the loss of Zic expression, we looked at b-galactosidase
(b-gal) activity in Foxc1l/+ and Foxc1l/l. In the Foxc1l/+, darkly

labeled b-gal+ meningeal cells were present in a continuous layer

around the brain and more lightly labeled vascular cells were

evident in brain tissue (Figures 3E and 3E0). In contrast, the darkly

labeled b-gal+ meningeal cells in Foxc1l/l brains ended below the

ventral forebrain leaving only b-gal+ vascular cells in the supra-

cortical mesenchyme (Figures 3F and 3F0).

The Meninges Secrete a Diffusible Factor that Promotes
Cell-Cycle Exit
The progressive decrease in neuron and IPC production as

meningeal coverage declines suggests that the cortical pheno-

type in the Foxc1 mutants reflects a graded loss in a meningeal

signal that influences the behavior of radial glial progenitors. To

test this idea we performed two types of rescue experiments

using E13.5 forebrain explants (Figure 4A): (1) transplantation

of Foxc1h/h forebrain into normal meninges and (2) coculturing

of Foxc1h/h explants with Foxc1+/Zic+ meningeal cells (Figures

S2A and S2B) that conditioned the shared media.

Consistent with the in vivo experiments, untreated (i.e., no

transplantation and no conditioned media) Foxc1h/h forebrain

explants had a significantly (p < 0.05) reduced proportion of

BrdU+/Ki-67� cells (Figures 4B, 4C, and 4N). Meningeal trans-

plantation did not affect cell-cycle exit in the Foxc1+/ slices

(Figures 4D and 4H); however cell-cycle exit was improved in

the Foxc1h/h forebrain explants transplanted into the meningeal

‘‘ghosts’’ derived from Foxc1+/ forebrain (Figures 4E and 4N).

Similarly, coculturing Foxc1h/h forebrain explants with meningeal

cells also significantly (p < 0.05) increased the proportion of

BrdU+/Ki-67� cells but did not affect cell-cycle exit in the

Foxc1+/ forebrain explants (Figures 4F, 4G, and 4N).

atRA Is the Bioactive Component of Meningeal
Conditioned Medium and atRA Biosynthetic
Enzymes Are Missing from the Meninges
in the Foxc1 Mutant Mice
atRA is a potent neuronal differentiation signal and enzymes

required for atRA synthesis are expressed in the meninges,

making it an attractive candidate molecule as the meningeal

factor. Treatment with atRA (10 mM) did not affect cell-cycle

exit in the Foxc1+/ explants but increased cell-cycle exit in the

cortex of Foxc1h/h explants (Figures 4H, 4I, and 4N). We next

determined whether atRA is a required component of meningeal

conditioned media for rescue of Foxc1h/h slices. We cocultured

meningeal cells and slices in media with B27 supplement that

lacked vitamin A (B27-VA), the precursor used to make atRA.

In addition, we cultured slices in meningeal conditioned media

that had been exposed to sunlight to deplete the atRA. To

confirm that atRA was decreased, atRA levels were assayed

by liquid chromatography tandem mass spectrometry (LC/MS/

MS) (Kane et al., 2005, 2008) (Figure S2C). B27-VA conditioned

media and atRA-depleted conditioned media did not alter

cell-cycle exit in Foxc1+/ slices (Figures 4J, 4L, and 4N), but

both failed to rescue the cell-cycle exit phenotype in the

Foxc1h/h slices (Figures 4K, 4M, and 4N). We did, however,

notice an increased number of pyknotic nuclei in some Foxc1+/

and Foxc1h/h explants cultured in meningeal conditioned media

exposed to light (data not shown), which indicated increased cell
Cell 139, 597–609, October 30, 2009 ª2009 Elsevier Inc. 599



Figure 2. Defect in Switch from Symmetric to Asymmetric Divisions in the Neuroepithelium of Foxc1 Mutants

(A) aPKCl immunostaining in WT, Foxc1h/h, Foxc1h/l, and Foxc1l/l cortical neuroepithelium at E14.5.

(B) Par3 immunostaining (green) in the apical membrane of E14.5 WT, Foxc1h/h, Foxc1h/l, and Foxc1l/l cortical neuroepithelial cells with (right panels) and without

(left panels) DAPI nuclear stain (blue).

(C) Quantification of fluorescent intensities of aPKCl (top) and Par3 (bottom) in WT and Foxc1 mutants.
600 Cell 139, 597–609, October 30, 2009 ª2009 Elsevier Inc.



death. Cell-cycle exit in Foxc1+/ explants in this treatment condi-

tion did not differ from unconditioned media, indicating that the

change in cell viability was not influencing this parameter.

We next looked at the expression of Raldh2 and Rdh10, two

enzymes critical for atRA synthesis, in WT and Foxc1 mutant

meninges. In situ hybridization in E14.5 WT tissue showed that

Raldh2 and Rdh10 signal was very high in the meninges, with

no expression of Raldh2 evident in the dorsal forebrain and a

very low level of expression of Rdh10 in the cerebral wall (Figures

5A, 5A0, 5E, and 5E0). Unlike Raldh2, Rdh10 signal was also

present in the choroid plexus and in the cortical hem in WT,

Foxc1h/h, and Foxc1h/l brains; this is consistent with previous

analysis of Rdh10 expression in the embryonic brain (Romand

et al., 2008). In the Foxc1h/h brain, Raldh2 and Rdh10 expression

wasdetectable in ventral and lateral meninges, but the expression

intensity was patchy in the dorsal meningeal areas (Figures 5B,

(D–H) Representative staining from BrdU (red)/Ki-67 (green) cell-cycle exit assay; dotted line demarcates BrdU+/Ki-67� cells in the intermediate zone (IZ) of WT (D)

Foxc1h/h (E), Foxc1h/l (F), and Foxc1l/l (G) cortices. The percentage of exited cells was quantified for WT and Foxc1 mutants (H).

(I–M) Tbr2 immunostaining of IPCs in the VZ and SVZ of WT (I), Foxc1 h/h (J), Foxc1 h/l (K), and Foxc1l/l (L) cortices. Quantification of Tbr2+ cells in all genotypes (M).

(N–Q) Ctip2 (green) in E14.5 (N) WT, (O) Foxc1 h/h, (P) Foxc1h/l, and (Q) Foxc1l/l mutants. Dotted line denotes ventricular surface.

(R–U) Brn2 (green) and Ctip2 (red) colabeling in E18.5 (R) WT, (S) Foxc1 h/h, (T) Foxc1 h/l, and (U) Foxc1l/l mutants.

Scale bars = 25 mm (A and B), 100 mm (D–G, I–L), and 200 mm (N–U). * and ** denote a statistically significant difference (p < 0.05) from WT and both WT and

Foxc1h/h, respectively. Abbreviations: CP, cortical plate; IZ, intermediate zone; SVZ, subventricular zone; VZ, ventricular zone. Error bars depict ± SEM.

Figure 3. The Dorsal Forebrain Meninges Fail to

Form Completely in the Foxc1 Mutants

Low-magnification (A–D) and high-magnification (A0–D0)

images of Zic immunostaining in WT, Foxc1h/h, Foxc1h/l,

and Foxc1l/l E14.5 heads. Arrowheads in (A0), (B0), and

(C0) indicate Zic+ Cajal-Retzius cells and open arrows in

(A0) indicate Zic+ cells in the cortical vasculature. The

endpoint of the meninges (denoted by an asterisk in B,

C, and D) is shown in higher magnification view in (B0),

(C0), and (D0) and indicated by a dotted line. Lightly labeled

Zic+ vascular cells persist in the residual mesenchyme in

all mutants (open arrows in B0).

Low-magnification (E and F) and high-magnification

(E0 and F0) images of x-gal staining in E14.5 Foxc1+/l and

Foxc1l/l. Higher-magnification images show lightly labeled

b-gal+ cells in the cortical vasculature (E0 and F0; arrows).

Scale bars = 500 mm (A–D , E, and F) and 100 mm (A0–D0,

E0, and F0).

5B0, 5F, and 5F0). In addition, the intensity of the

Raldh2 and Rdh10 signal was reduced in the

Foxc1h/h meninges, though the intensity levels

were similar to WT in the facial mesenchyme.

Even fewer Rdh10- and Raldh2-expressing cells

surrounded the brains of the Foxc1h/l (Figures

5C, 5C0, 5G, and 5G0) and Foxc1l/l (Figures 5D,

5D0, 5H, and 5H0) mutants, though there was

expression in the residual, midline meninges.

Temporal and Spatial Appearance
of Raldh2+ Cells in the Meninges
Correlates with Neurogenic Gradient
To test whether the onset of the Foxc1 mutant

cortical phenotype (E12.5 in the Foxc1h/h;

E11.5 in the Foxc1h/l and Foxc1l/l mutants; data not shown) is

temporally and spatially related to the normal appearance of

Raldh2+ cells in the meninges, we examined Raldh2 protein

expression in WT brains on E11.5, E12.5, and E14.5. At E11.5,

no Raldh2 staining was present in the meninges but was evident

around the developing nasal cavities (Figure 6A). By E12.5,

Raldh2+ cells were present in the ventral meninges and a few

Raldh2+ cells were present in the lateral but not dorsal meninges

(Figures 6B and 6B0). This suggests that Raldh2+ cells appear

in a lateral to medial gradient, which is the same distribution

as the gradient for neuron production during this same

period. By E14.5 the entire meninges contained Raldh2+ cells

(Figure 6C). Colabeling of Raldh2 with Foxc1 or Foxc2 in the

dorsal meninges showed that the Raldh2+ cells represent a

subset of cells within the Foxc1+ meninges (Figure 6D). Foxc2,

a close homolog of Foxc1 that localizes to cells in the dura
Cell 139, 597–609, October 30, 2009 ª2009 Elsevier Inc. 601



Figure 4. Cell-Cycle Exit Defect in Foxc1h/h Explants Is Rescued by Exposure to Secreted Cues from Meninges and atRA

(A) Depiction of in vitro explant preparations: meningeal transplantation preparation (left diagram) and coculturing of Foxc1h/h mutant explants in media condi-

tioned by WT meninges (right diagram).

(B–M) BrdU (red) and Ki-67 (green) double-immunolabeling of Foxc1+/ and Foxc1h/h forebrain explants from the following treatment conditions: untreated Neuro-

basal media (NB) (B and C), meningeal transplantation (MT) (D and E), meningeal conditioned media (MCM) (F and G), atRA (H and I), MCM containing B27-VA

supplement (J and K), and atRA-depleted MCM (L and M). Dotted line demarcates transition from proliferative and postmitotic zones in the cerebral wall. Unless

noted otherwise, all media contained B27+VA supplement.

(N) Quantification of the percent BrdU+/Ki-67� in each explant treatment condition.

Scale bars = 50 mm. * indicates statistical significance from untreated Foxc1+/ explants (p < 0.05). Error bars depict ± SEM.
(Zarbalis et al., 2007), did not colabel with Raldh2+ cells in the

dorsal meninges (Figure 6E). In the ventral meninges, Foxc1

and Foxc2 both colocalized with meningeal Raldh2+ cells

(Figures 6F and 6G).

Cortical Expansion Phenotype in Rdh10

Hypomorph Mutants
To assess the requirement of atRA for corticogenesis, we used

an Rdh10 hypomorphic mutant that was recovered from the

same ENU mutagenesis screen as the Foxc1h/h mice (Zarbalis
602 Cell 139, 597–609, October 30, 2009 ª2009 Elsevier Inc.
et al., 2004) and that is viable to E16.5 (A.M.A. and A.P., unpub-

lished data). These mice have eye, face, and limb defects that are

very similar to a published Rdh10 hypomorphic allele that is only

viable until E13.5 (Sandell et al., 2007). Similar to the Foxc1l/l

cortical phenotype (Figure 6J), the dorsal forebrain of the

Rdh10 mutant was much longer than that of its WT littermate

at E13.5 (Figures 6H–6I), and the thickness of the postmitotic,

Tuj1+ layer was reduced (Figures 6K–6M). Unlike the Foxc1l/l,

the Zic+ meninges appear intact in the Rdh10 mutant (Figure S3).

Analysis of Brn2 and Ctip2 at E16.5 revealed a thinned cortex



in the Rdh10 mutant with very few Ctip2 and Brn2+ cells present

(Figures 6N and 6O). The reduction in upper and lower cortical

layer neurons was comparable to Foxc1l/l at E16.5 although

the cortical layering was disorganized in the Foxc1 mutant

(Figure 6P).

To assess whether atRA is reduced in the Foxc1l/l mutant

brains, total forebrain meninges or dorsal forebrain were

collected separately from E14.5 Foxc1l/l brains and Foxc1+/ litter-

mates. Meningeal tissue collected from the Foxc1l/l brains con-

tained significantly less atRA (�20%; p < 0.05) than littermate

controls (Figure 6Q). The decline was likely not greater because

it was difficult to only collect the tissue surrounding the cortex,

thus Raldh2/Rdh10-expressing meninges from the midline

and ventral forebrain Foxc1l/l meninges were included in the

tissue dissected. An even greater decrease in atRA was

observed in the Foxc1l/l cortices (�50%; p < 0.05). In addition,

there was �3-fold more atRA in the meninges than in the cortex

(0.74 mmol/mg tissue versus 0.28 mmol/mg tissue in Foxc1+/

samples).

Figure 5. Expression of Raldh2 and Rdh10

in Wild-Type and Foxc1 Mutant Meninges

Low-magnification (A–D) and high-magnification

(A0–D0 ) images of in situ hybridization for Raldh2

on E14.5 WT and Foxc1 mutant heads. The

endpoint of meningeal Raldh2 signal is indicated

by an arrow in (B)–(D). Red arrows in (B)–(D) indi-

cate Raldh2 signal in the midline correlating to

residual meninges.

Low-magnification (E–H) and high-magnification

(E0–H0) images of in situ hybridization for Rdh10

on E14.5 WT and Foxc1 mutant heads. The arrows

in (F)–(H) indicate the end of Rdh10 signal in the

Foxc1 mutants (magnified in F0–H0 ). Red arrows

in (F) and (G) indicate Rdh10 signal in the cortical

hem and choroid plexus of Foxc1h/h and Foxc1h/l

animals; it is not seen in the hem and choroid

plexus of (H) as these structures are not present

in the Foxc1l/l at this level.

Scale bars = 50 mm (A0–H0) and 500 mm (A–H).

Arrows in (A0)–(H0) indicate cells with positive

signal.

In Vivo Rescue of Foxc1 Mutants
by atRA Treatment
To examine in vivo rescue of the cortical

phenotype, we injected 20 mg/kg atRA

once daily into pregnant mice carrying

Foxc1h/h, Foxc1h/l, or Foxc1l/l mutant

embryos from E10.5 to E13.5 and

collected them on E14.5. The atRA

dosing regimen did not have any obvious

effect on WT brains but led to a dramatic

reduction in the dorsal forebrain length in

the Foxc1h/h and Foxc1h/l mutants as

compared to untreated mutants (Figures

7A–7F). Staining for Pax6 and Ctip2

untreated and atRA-treated brains high-

lights the decrease in the length of the

neuroepithelium and increased thickness

in the Ctip2+, postmitotic population in the atRA-treated Foxc1

mutants. Higher-magnification images of Ctip2 staining showed

that atRA treatment did not affect generation of Ctip+ neurons

in WT cortices but increased the number of Ctip2+ cells in the

cerebral wall of Foxc1h/h and Foxc1h/l mutants as compared to

untreated mutants (Figures 7I–7K). In the three litters analyzed,

Foxc1h/l mutants showed a range of dorsal forebrain rescue (Fig-

ure S5A). Interestingly, the 20 mg/kg atRA dose did not rescue

the cortical expansion phenotype in the Foxc1l/l mutant (data

not shown). A higher dose of atRA (30mg/kg) reduced the length

of the dorsal forebrain and increased the Ctip2+ population as

compared to the untreated Foxc1l/l mutant (Figures 7G, 7H,

and 7L). Unfortunately, the higher dose of atRA also appeared

to be toxic for the Foxc1l/l mutant embryos; in these brains,

tissue integrity was compromised, the cells in the head and brain

tissue appeared rounded, and there was activated caspase-3 in

the head mesenchyme (Figure S5B). Zic immunolabeling in WT

(Figures S4A and S4A0), Foxc1h/l (Figures S4B and S4B0), and

Foxc1l/l (Figures S4C and S4C0) atRA exposed brains ruled out
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that the rescue of the Foxc1 mutants was the result of an effect of

atRA on the formation of the meninges.

To quantify the atRA rescue, the length of the dorsal forebrain

and the number of Ctip+ cells in a defined field were analyzed

in atRA-treated WT and Foxc1 mutant brains and compared

to nontreated (NT) samples. atRA treatment significantly

decreased (p < 0.05) the length of the dorsal forebrain (Figure 7M)

and significantly increased (p < 0.05) the number of Ctip2+ cells

(Figure 7N) in all Foxc1 mutants as compared to their NT counter-

parts. atRA-treated Foxc1l/l forebrains remained significantly

Figure 6. Raldh2 Expression in the Developing Meninges and

Phenotype of Rdh10 Mutant

(A–C) Raldh2 (green) expression at E11.5 (A), E12.5 (B), and (C) E14.5.

Higher magnification of the box in (B) shows the leading edge of

Raldh2 in the meninges (B0; arrows).

(D–G) High-magnification image of dorsal WT meninges at E14.5

showing expression of Foxc1 (green) in the nucleus of Raldh2 (red)

expressing cells (D; arrows). Foxc2 is expressed in meningeal cells

above the Raldh2 cell layer but Raldh2+ cells in this area are not

Foxc2+ (E; arrows). In the ventral meninges, Raldh2+ cells express

both Foxc1 (F; arrows) and Foxc2 (G; arrows).

(H–J) Tuj1 (green) and Ki-67 (red) double-immunolabeling of E13.5 WT

(H), Rdh10 mutant (I), and Foxc1l/l (J) brains highlights the similarities in

the dorsal forebrain phenotype in the two mutants.

(K–P) High-magnification images of Tuj1 (green; K–M) or dual Ctip2

(red) and Brn-2 (green; N–P) immunolabeling in E13.5 and E16.5 WT

(K and N) Rdh10 mutant (L and O) and Foxc1l/l mutant (M and P).

(Q) Graph depicting atRA levels in the total forebrain meninges and

cortices of Foxc1+/ and Foxc1l/l embryos at E14.5. Values are reported

as percent of atRA in Foxc1+/ tissue.

Scale bars = 50 mm (D, E, K, L, and M), 100 mm (N–P), 200 mm (F and G),

and 500 mm (A–C, H–J). * indicates statistical significance from

Foxc1+/ (p < 0.05). Error bars depict ± SEM.

longer (p < 0.05) (Figure 7M) and had significantly fewer

(p < 0.05) Ctip2+ cells than WT brains. In addition, atRA-

treated Foxc1h/h and Foxc1h/l mutants showed significant

improvement in neuron (Figures S5C and S5D) and IPC

(Figures S5E and S5F) production as well as aPKCl and

Par3 expression (Figures S5G and S5H) compared to

untreated mutants.

To test whether atRA supplementation also improves

production of later generated neurons, we fed pregnant

mice an atRA-enriched diet that allowed longer treatment

times. The diet was less teratogenic than daily injections

of atRA and the atRA-diet rescued Foxc1h/h and Foxc1h/l

mutants at E14.5 to the same extent as the injections

(data not shown). The Foxc1h/l mutant exposed to atRA

from E10–E16.5 had a notable shorter, thicker cortex

than the untreated mutant (Figure 7O). Analysis of

Ctip2+ and Brn2+ in the neocortex confirmed a substantial

increase in both early and late-generated neurons in

the atRA-exposed Foxc1h/l mutant (Figure 7P). The

lengthening of the neocortex was also improved in the

atRA exposed (E10–E18.5) Foxc1h/h brain (Figure 7Q) as

was generation of both Brn2+ and Ctip2+ neurons

(Figure 7R); however there was still evidence of laminar

disorganization in the atRA-exposed Foxc1h/h cortex.

This is consistent with the cortical dysplasia observed in

E18.5 Foxc1h/h mutants caused by meningeal/basement

membrane defects that are likely present in the atRA-treated

mutants.

DISCUSSION

Controlling the Timing and Progression of Neocortical
Neurogenesis
The development of the mammalian neocortex is remarkable in

that a cohort of progenitors undergoes multiple rounds of
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division to produce a precisely defined set of distinct neuronal

subtypes that occupy disparate cellular layers. The overall size

of the cerebral cortex is controlled by the number of neuroepithe-

lial progenitors generated via symmetric divisions and by the

number of neurons that are generated from each progenitor via

asymmetric divisions during the period of embryonic neurono-

genesis (Caviness et al., 1995).

Though several proteins have been identified as central in the

mechanics of the switch from symmetric to asymmetric divi-

sions, few candidates have been identified that fit the criteria

of a trigger event that signals to the VZ progenitors to begin

undergoing neuronogenic divisions. The meninges are an ideal

source of this signal, in part because their close proximity to

the radial glial endfeet allows for a potent, short-range signal

that need not influence IPC proliferation events (IPCs do not

make contact with the glial limitans) or maturation of projection

neurons in the cortical plate. Further, we have shown that the

maturation of the meninges is such that the cells that make

meningeal-derived atRA appear in a lateral-to-medial gradient

as predicted for a signal responsible for the neurogenic gradient.

From an evolutionary perspective, it is possible that the expan-

sion of the neuroepithelium that is required to make a larger

neocortex relies not only on events intrinsic to the neocortical

neuroepithelium but also upon the timing of meningeal develop-

ment, specifically the arrival of atRA-producing cells.

From our work and the work of others, a model of atRA in fore-

brain development emerges. During forebrain patterning and the

earliest stages of cortical development prior to the arrival of

Raldh2/Rdh10 cells in the meninges, atRA diffuses from the

Raldh2, 3 enriched facial mesenchyme. Once corticogenesis

proceeds in earnest, a more local source of atRA in the form of

Raldh2/Rdh10 meningeal cells is required for neurogenic stimu-

lation as the developing cortex is now spatially separated from

atRA sources in the face (Figure 7S).

The Meninges Is a Signaling Center Regulating Brain
Development
The idea of the meninges as a source of developmental cues is

not a new concept. Previous studies showed that Cxcl12, a che-

mokine ligand, produced by the innermost layer of the meninges

regulates the positioning of cortical interneurons and Cajal-

Retzius cells by acting as a chemoattractant during corticogen-

esis (Borrell and Marin, 2006; Li et al., 2008; Lopez-Bendito et al.,

2008; Paredes et al., 2006). The outermost layer of the meninges,

the dura, is involved in the formation of the skull by releasing

TGF-b family members and FGF-2 to induce bone formation

(Ito et al., 2003; Mehrara et al., 1999). That we have identified

atRA as a key component of the neurogenic signal produced

by the middle meningeal layer now implicates all layers of the

embryonic meninges as sources of cues that regulate the devel-

opment of surrounding tissues. Further, the cranial neural crest

origin of the meninges, a key source of the tremendous diversity

of head structures seen in vertebrates (Le Douarin et al., 2007;

Santagati and Rijli, 2003), suggests that the meninges may be

an additional component of this evolutionary paradigm.

There is a possibility that the phenotype of the Foxc1 mutants

may be related to the vascular phenotype that is seen in these

mice. For example, endothelial cells secrete factors like FGF
that stimulate embryonic neural stem cells to undergo

symmetric, self-renewing divisions (Shen et al., 2004). Foxc1,

however, is expressed in pericytes and smooth muscle cells in

the meninges and cortical vasculature but not by endothelial

cells (J.A.S. and S.J.P., unpublished data). Also, the vascular

defects do not appear until after the cortical phenotype is

apparent in the Foxc1 mutants. There may be a pericyte-derived

factor that influences neurogenesis that is not produced in the

absence of Foxc1. This is unlikely given that mouse mutants

that have severely reduced pericyte numbers in the developing

cortex do not have a cortical phenotype (Hellstrom et al., 2001).

atRA as a Sequential Inducer of Forebrain Development
atRA is an ideal molecule to induce neuronogenic divisions

because it is a potent neural differentiation signal. Treatment of

embryonic stem cells with atRA triggers upregulation of a series

of neural-specific genes that ultimately results in the production

of both neurons and glia (Maden, 2001). Because it is such

a strong neuronal induction cue, restricting atRA production to

the meninges may prevent inappropriate atRA signaling. In

support of this, CRABP I, II and CRBP1, proteins that bind and

chaperone atRA and retinol, respectively (Napoli, 1999), are

expressed by the meninges during development, when they

may further titrate atRA exposure of the radial glial endfeet

(Ruberte et al., 1993). In addition, CRABP II is expressed in the

VZ of the developing cortex (Ruberte et al., 1993), where it likely

aids in the intracellular transport of atRA to the nucleus through

the cytoplasm of the radial glial fiber. This model of restricted

atRA exposure has already been established in the hindbrain.

atRA signaling in hindbrain is limited to migrating cells and fixed

structures adjacent to the regions of Raldh2-enriched meninges

(Zhang et al., 2003).

Despite the fact that atRA is a well-recognized cue for

neuronal differentiation, a function for this molecule in neocor-

tical development has been difficult to establish because the

key mutants in the signaling pathways exhibit phenotypes at

earlier stages of forebrain development and die before cortico-

genesis begins (Ribes et al., 2006). However, although not noted

in the original publication, in RARa/g double-knockout the dorsal

forebrain is elongated in a manner similar to the Rdh10 and

Foxc1l/l mutants (Figure 2h in Lohnes et al., 1994). Also, vitamin

A deprivation from E11 to E13 results in a reduction in postmi-

totic neurons in the telencephalon (Dickman et al., 1997). These

data are consistent with our analysis of the cortical phenotype

in the Rdh10 mutants. The Rdh10 mutants appear to have

meninges covering the cortex that presumably produce and

secrete other meningeal-derived cues like CXCL12 but are not

capable of producing normal levels of atRA. This provides further

evidence that atRA is the primary signal from the meninges regu-

lating corticogenesis.

Transgenic retinoic acid response element-lacZ reporter mice

(RARE-lacZ) are frequently used to assess retinoid signaling in

the developing embryo and have a strong b-gal signal in radial

glial cells in the forebrain (Haskell and LaMantia, 2005; Luo

et al., 2004). Our analysis of the RARE-hsp68lacZ transgene

(Rossant et al., 1991) in Foxc1+/l and Foxc1l/l brains revealed

that most of the b-gal observed in the dorsal forebrain persists

from transgene activation from an earlier developmental stage
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(data not shown). Indeed, Raldh2�/�;RARE-lacZ embryos, when

given atRA to avoid early lethality, show persistent b-gal activity

in the dorsal forebrain potentially resulting from early exposure

to atRA produced from Raldh3-expressing olfactory placodes

(Niederreither et al., 2002). In light of all the evidence implicating

atRA in cortical development, our observation of low RARE-lacZ

activation (as assayed by lacZ in situ probe) in the Foxc1+/l

cortices is not an accurate picture of the role of atRA signaling

during corticogenesis and thus is not useful in assessing whether

atRA signaling is altered in the Foxc1l/l mutants. The low RARE-

lacZ activation, despite the presence of atRA in the cortex, may

be a result of the high levels of RARE repressive activity in the

developing cortex, even in the presence of atRA which normally

relieves transcriptional repression of RAREs by RAR/RXR heter-

odimers (Liao et al., 2005). Also, the two RARE-lacZ transgenes

(RARE-hsp68lacZ [Rossant et al., 1991] and RARE/tk/b-gal [Bal-

kan et al., 1992]) both employ the RARE of the RARb2 gene

promoter. Previous studies showed that specific RAR/RXR

cofactors are intimately involved in both the activation and

repression of the RARE specific to the RARb2 promotor (Folkers

et al., 1998). Thus the absence or overabundance of these cofac-

tors in the forebrain likely influence the RARE-lacZ transgene

activation and could lead to false positives and negatives with

regard to retinoid signaling.

Summary
The Foxc1 mutants provide a unique opportunity to assess fore-

brain development in which a very discrete head structure, the

forebrain meninges, is reduced or completely absent. As a result,

we were able to identify a previously unknown role for the

meninges: promotion of cortical neuron generation through

release of a bioactive molecule. The identification of atRA as

the bioactive signal from the meninges is compelling, providing

impetus to pursue the details of atRA signaling in the VZ and to

determine the mechanism of control of the neuronogenic deci-

sion by atRA at this time.

EXPERIMENTAL PROCEDURES

Animals

Details of animal breeding, atRA treatment, and genotyping are found in the

Supplemental Data.

Cell-Cycle Exit, Tbr2, Ctip2, and Cerebral Length Analysis

For cell-cycle exit analysis, the pregnant dam was injected with BrdU (50 mg/kg

b.w.) on E13. Fetuses were harvested 18 hr following the injection and the

heads were processed for BrdU/Ki-67 double immunolabeling. The fraction

of cells that had exited the cell cycle was estimated by counting the number
of BrdU+ cells in a 200 mm portion of the dorsal forebrain and the number of

BrdU+/Ki-67� cells in the same area. The cell-cycle exit fraction reported is

the number of BrdU+/Ki-67� cells divided by the total number of BrdU+ cells.

For analysis of the Tbr2 and Ctip2 population, the total number of Tbr2+ or

Ctip2+ cells in a 200 mm portion of the dorsal forebrain was counted. Care

was taken to ensure that the population analyzed was at a comparable

rostral/caudal and lateral/medial position in each of the samples. Analysis of

dorsal forebrain length consisted of measuring the length of the ventricular

surface from the pallial-subpallial border to the tip of cortical hem in sections

from a similar rostral/caudal position. For each untreated and atRA-treated

genotype, cell-cycle exit, Tbr2, Ctip2, and cerebral length analysis was per-

formed on sections from a minimum of three WT brains and three brains from

each mutant line from a minimum of two separate litters (n R 2).

Forebrain Explants and Meningeal Cultures

Detailed methods of explant methods and meningeal cultures are in the

Supplemental Data.

In Situ Hybridization

Raldh2 and Rdh10 in situ hybridization was performed as previously

described (Zarbalis and Wurst, 2000). ISH with Rdh10 was performed using

a 900 bases long DIG-labeled riboprobe comprising coding sequences

and 30UTR. DIG-labeled riboprobe for Raldh2 was transcribed from a plasmid

containing 937 bp of coding sequence and 30UTR kindly provided by Dr. John

L.R. Rubenstein.

Immunohistochemistry and X-Gal Staining

Whole embryo or whole head from E10.5–E16.5 were collected and fixed

overnight at 4�C in 4% paraformaldehyde, cryoprotected, and frozen in

OCT. E18.5 heads were either fresh frozen in OCT or fixed as described above.

Tissue was cryosectioned in 12 mm increments. Immunostaining was per-

formed as described previously (Zarbalis et al., 2007) using the following

antibodies and concentrations: mouse anti-BrdU 1:50, BD Bioscience; rat

anti-BrdU 1:300, Novus; mouse anti-Tuj1 1:1000, Covance; rabbit anti-Zic

1:1500, gift from J. Aruga RIKEN Institute; rabbit anti-Raldh2 1:1000, gift

from P. McCaffery, University of Aberdeen; rabbit anti-Ki-67 1:300, LabVision;

rabbit anti-Tbr2 1:300, Chemicon; rat anti-Ctip2 1:800, Abcam; rabbit anti-

Brn2 1:200, Santa Cruz Biotechnologies; goat anti-Foxc1 1:300, Novus Bio-

logicals; goat anti-Foxc2 1:300, Novus Biologicals. For x-gal staining, heads

were fixed for 1 hr in 4% paraformaldehyde, cryoprotected, and cut in

25 mm increments. Sections were stained overnight with 1 mg/ml x-gal solution

(Sigma). All immunofluorescent and brightfield images were captured using

a Retiga CCD-cooled camera and associated QCapture Pro software (QImag-

ing Surrey). For quantification of the Par3 and aPKCl immunofluorescence,

the mean gray value was calculated using ImageJ software (NIH) and the

values were reported in the graphs as arbitrary units (a.u.). Analyzed images

were from three brains from at least two litters for each genotype/treatment

condition (n R 2).

Statistics

For pairwise analysis of treatment conditions and/or genotypes, Student’s t

tests were used. The standard errors of the mean (SEM) (±) are reported on

all graphs.
Figure 7. In Vivo Rescue of Foxc1 Forebrain Phenotype by atRA

(A–H) Ctip2 (green) and Pax6 (red) immunostaining on E14.5 untreated (A, C, E, and G) and atRA-treated (B, D, F, and H) WT and Foxc1 mutants.

(I–L) Ctip2 immunostaining in untreated and atRA-treated WT (I), Foxc1h/h (J), Foxc1h/l (K), and Foxc1l/l (L) at E14.5. Dotted line indicates ventricular surface.

(M) Quantification of the dorsal forebrain length; values are a percentage of the mean length of untreated WT.

(N) Quantification of Ctip2+ cells in untreated and atRA-treated WT and Foxc1 mutant cortices.

(O–P) Nissl-stained E16.5 brains from untreated WT and Foxc1h/l and embryos exposed to an atRA diet (O). Adjacent sections immunolabeled for Ctip2 (red) and

Brn-2 (green) (P).

(Q–R) Nissl staining (Q) and Ctip2 (red) and Brn-2 (green) immunolabeling (R) from untreated and atRA diet E18.5 WT and Foxc1h/h brains.

(S) Schematic of cortical neuroepithelial divisions prior to (E11.5) and after (E14.5) the arrival of Raldh2/Rdh10-expressing cells (red cells) in the meninges.

Scale bars = 500 mm (A–H, O, and Q) and 100 mm (I–L, P, and R). *#, *, and **# indicate statistical significance (p < 0.05) from both untreated/atRA-treated WT and

atRA-treated Foxc1 mutants, untreated/atRA-treated WT, and untreated Foxc1h/l and Foxc1l/l, respectively. Error bars depict ± SEM.
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