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Histone Demethylation Mediated by the
Nuclear Amine Oxidase Homolog LSD1

instance, histone H3 K9 (H3-K9) methylation is associ-
ated with heterochromatin formation (Nakayama et al.,
2001; Peters et al., 2002; Rea et al., 2000) and also
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K9 is then recognized and bound by the chromodomainBoston, Massachusetts 02115
protein HP1 (Bannister et al., 2001; Lachner et al., 2001;2 Department of Pharmacology and Molecular
Nakayama et al., 2001). The Suv39H-HP1 methylationSciences
system is proposed to be responsible for heterochroma-Johns Hopkins School of Medicine
tin propagation. In contrast, methylation of histone H3Baltimore, Maryland 21205
K4 (H3-K4) is linked to active transcription (Liang et al.,3 The Sidney Kimmel Comprehensive Cancer Center
2004; Litt et al., 2001; Noma et al., 2001; Santos-RosaJohns Hopkins School of Medicine
et al., 2002; Schneider et al., 2004), as is methylation ofBaltimore, Maryland 21231
arginine residues of histones H3 and H4 (Zhang and
Reinberg, 2001). Mechanisms that underlie methylation-
dependent transcriptional activation are not completelySummary
understood, although H3-K4-specific methylases have
recently been shown to associate with RNA polymerasePosttranslational modifications of histone N-terminal
II (Hamamoto et al., 2004; Ng et al., 2003b).tails impact chromatin structure and gene transcrip-

While histone acetylation is dynamically regulated bytion. While the extent of histone acetylation is deter-
HATs and HDACs, histone methylation has been consid-mined by both acetyltransferases and deacetylases,
ered a “permanent” modification. At least two modelsit has been unclear whether histone methylation is
are currently being considered to explain the turnoveralso regulated by enzymes with opposing activities.
of methyl groups on histones. The first one suggestsHere, we provide evidence that LSD1 (KIAA0601), a
that a cell may remove histone methylation by clippingnuclear homolog of amine oxidases, functions as a
the histone tail (Allis et al., 1980) or by replacing thehistone demethylase and transcriptional corepressor.
methylated histone with a variant histone in the case ofLSD1 specifically demethylates histone H3 lysine 4,
methyl group turnover at H3-K9 (Ahmad and Henikoff,which is linked to active transcription. Lysine demeth-
2002; Briggs et al., 2001; Johnson et al., 2004). However,ylation occurs via an oxidation reaction that generates
this mechanism would not allow for dynamic regulationformaldehyde. Importantly, RNAi inhibition of LSD1
of histone methylation and the plasticity that may becauses an increase in H3 lysine 4 methylation and
essential for gene transcription regulation in some bio-concomitant derepression of target genes, suggesting
logical processes. The second model proposes the exis-that LSD1 represses transcription via histone demeth-
tence of histone demethylases that function to removeylation. The results thus identify a histone demethylase
the methyl groups from lysine and arginine, which wouldconserved from S. pombe to human and reveal dy-
make dynamic regulation possible. Recently, a humannamic regulation of histone methylation by both his-
peptidyl arginine deiminase, PADI4/PAD4, has beentone methylases and demethylases.
shown to antagonize methylation on the arginine resi-
dues by converting arginine to citrulline (Cuthbert etIntroduction
al., 2004; Wang et al., 2004). PADI4/PAD4 catalyzes the
deimination reaction irrespective of whether the arginine

The histone N-terminal tails are subjected to multiple residue is methylated or not. These findings suggest
covalent modifications that affect chromatin structure that histone methylation can be dynamically regulated
and consequently transcription. One of the best-charac- through the opposing actions of histone methylases and
terized modifications is acetylation, which is controlled enzymes such as PADI4/PAD4. However, since PADI4/
by both histone acetyltransferases (HATs) and deacety- PAD4 catalyzes deimination but not demethylation, it
lases (HDACs), suggesting that acetylation regulation is remains unclear whether bona fide histone demethyl-
a dynamic process (Kouzarides, 2000). More recently, ases exist. The search for histone demethylases began
histone methylation has also emerged as a form of post- in the 1960s when Paik and colleagues first reported
translational modification that significantly impacts an enzyme that can demethylate free mono- and di-
chromatin structure (Rice and Allis, 2001; Zhang and N-methyllysine (Kim et al., 1964). Subsequently, the
Reinberg, 2001). Unlike histone acetylation, which takes same investigators partially purified an activity that can
places only on lysine (K), methylation occurs on both demethylate histones (Paik and Kim, 1973, 1974). These
lysine and arginine (R). While acetylation is generally early studies suggested the possibility that histone de-
correlated with active transcription (Roth et al., 2001), methylases may exist, but the molecular identities of
histone methylation is linked to both transcriptional acti- these putative histone demethylases have remained elu-
vation and repression (Zhang and Reinberg, 2001). For sive for the past four decades.

Classical amine oxidases play important roles in me-
tabolism and their substrates range from small mole-*Correspondence: yang_shi@hms.harvard.edu
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cules (e.g., spermine and spermidine) to proteins. More such as SPAC23E2.02 of S. pombe contain an additional
HMG box, suggesting possible DNA binding activity.recently, amine oxidases have also been proposed to

function as histone demethylases via an oxidation reac- The amine oxidase homology region was used for the
construction of a phylogenetic tree shown in Figure 1B.tion that removes methyl groups from lysine or arginine

residues of histones (Bannister et al., 2002). KIAA0601 Interestingly, LSD1 homologs appear to be absent in
S. cerevisiae.encodes a protein that shares significant sequence ho-

mology with FAD-dependent amine oxidases (Hum- Since LSD1 has been found in a number of corepres-
sor complexes (Hakimi et al., 2002, 2003; Humphrey etphrey et al., 2001; Shi et al., 2003). We identified

KIAA0601/NPAO as a component of the CtBP corepres- al., 2001; Shi et al., 2003; Tong et al., 1998; You et al.,
2001), we wished to determine whether it plays a directsor complex (Shi et al., 2003), and it has also been found

in a number of other corepressor complexes, including role in transcriptional repression. We first asked whether
LSD1 functions as a repressor when directed to a targetNRD (Tong et al., 1998), Co-REST (You et al., 2001), and

subsets of the HDAC complexes (Hakimi et al., 2002, promoter. As shown in Figure 1D, when fused to the
GAL4 DNA binding domain (G4LSD1), LSD1 repressed2003; Humphrey et al., 2001). Recent studies of the

C. elegans homolog, SPR-5, provided genetic evidence G4-TK-Luc reporter gene in a dose-dependent manner.
As a control, G4 DNA binding domain alone (G4DBD)for a role in transcriptional repression (Eimer et al., 2003;

Jarriault and Greenwald, 2002). However, its exact role had no repressive effect on the same promoter and
instead activated the promoter slightly (Figure 1D). Fur-in transcriptional regulation has been unclear.

To understand the function and mechanism of action thermore, G4LSD1 had no effect on TK-Luc reporter
lacking the G4 binding sites, suggesting that repressionof KIAA0601, we undertook molecular, biochemical, and

enzymological analyses of the protein. Using multiple was not due to squelching (data not shown). Importantly,
a C-terminal deletion mutant (G4LSD1�C) that lacks aexperimental approaches, we provide evidence that

KIAA0601 is a lysine-specific demethylase with sub- large portion of the amine oxidase homologous region
(diagrammed in Figure 1C) and is therefore enzymati-strate specificity for K4-methylated histone H3. We now

refer to this protein as LSD1 (Lysine Specific Demethyl- cally inactive (see below) was significantly compromised
in its ability to repress transcription, although some re-ase 1) to reflect this newly identified role. We show that

LSD1 functions as a transcriptional corepressor that sidual repression activity was observed for this mutant
(Figure 1E). Since repression mediated by LSD1 requiresparticipates in the silencing of endogenous neuron-spe-

cific genes. Significantly, RNAi knockdown of LSD1 re- the C-terminal amine oxidase homology domain, the
transcriptional function of LSD1 may therefore be linkedsulted in an increase in H3-K4 methylation and a con-

comitant derepression of the target genes. These to its enzymatic activity.
findings suggest a model where LSD1 represses tran-
scription by demethylating histone H3 at K4, whose LSD1 Is a Lysine-Specific Histone Demethylase
methylation is linked to active transcription (Liang et al., LSD1 is a flavin-containing protein based on its ability
2004; Litt et al., 2001; Noma et al., 2001; Santos-Rosa to bind FAD (Humphrey et al., 2001 and data not shown).
et al., 2002; Schneider et al., 2004). Since LSD1 and its Its sequence homology with amine oxidases predicts
related proteins are present from S. pombe to mammals, that LSD1 may catalyze oxidation reactions of biogenic
demethylation is likely an evolutionarily conserved func- amines including monoamine, polyamines, or N-methyl-
tion for this family of proteins. The identification of LSD1 ated protein substrates (such as histones) (Bannister et
as a histone demethylase indicates that, similar to ace- al., 2002). Amine oxidation catalyzed by flavin-con-
tylation, histone methylation is also a dynamic process taining amine oxidases is characterized by oxidative
and is subject to regulation by both methylases and de- cleavage of the �-carbon bond of the substrate to form
methylases. an imine intermediate, which, in turn, is hydrolyzed to

form an aldehyde and amine via a nonenzymatic pro-
cess. In a complete catalytic cycle, the cofactor FAD isResults
reduced to FADH2 and then is likely to be reoxidized
by oxygen to produce hydrogen peroxide (Binda et al.,LSD1 Is a Transcriptional Corepressor

that Is Evolutionarily Conserved 2002). We hypothesized that, as a flavin-containing
amine oxidase homolog, LSD1 may catalyze the conver-Figure 1A shows a schematic diagram of the predicted

domains of LSD1 and its related proteins. The C-terminal sion of mono- or dimethylated K (or R) to nonmethylated
K (or R) and formaldehyde (Figure 2A). Since LSD1 is a2/3 of LSD1 displays significant sequence homology

with FAD-dependent amine oxidases. The N terminus transcriptional corepressor, we further speculated that
it might specifically remove methyl groups from lysineof LSD1 has a SWIRM domain, which is found in a num-

ber of proteins involved in chromatin regulation (Aravind (or arginine) whose methylation is linked to active tran-
scription. We chose to focus on H3-K4 methylation sinceand Iyer, 2002). Although the function of the SWIRM

domain is currently unclear, the domain sets LSD1 and this is one of the best-characterized sites where both
di- and trimethylation have been linked to active tran-its family members apart from the conventional amine

oxidases involved in metabolism. By searching for pro- scription (Liang et al., 2004; Litt et al., 2001; Noma et
al., 2001; Santos-Rosa et al., 2002; Schneider et al.,teins that have both the amine oxidase and the SWIRM

domains, we identified a LSD1-like protein AOF1 in hu- 2004). To investigate this possibility, a histidine epitope-
tagged LSD1 (HIS-LSD1) was expressed in bacteria andman (Figure 1A). In addition, we found three LSD-like

proteins in C. elegans, one in Drosophila, four in Arabi- purified to near homogeneity (Figure 2B). FAD was found
to copurify with LSD1 rendering the purified protein yel-dopsis, and two in S. pombe (Figure 1A). Some members
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Figure 1. LSD1 Is a Transcriptional Corepressor and Is Evolutionarily Conserved

(A) Diagram of the LSD1-like amine oxidase family members in different species. The deduced amino acid sequences are retrieved from NCBI
GenBank and analyzed by the NCBI Conserved Domain Search Program. The SWIRM (oval with vertical stripes), amine oxidase domain (filled
oval), and FAD binding motif (diamond) are drawn proportionally. Some family members contain a spacer region in their amine oxidase domain,
which is shown by rectangles with diagonal stripes. The S. pombe protein SPAC23E2.02 contains an HMG domain (hexagon). NP_187650.1
has been described previously as FLD that is involved in regulating flowering time (He et al., 2003).
(B) Two subfamilies of LSD1-like proteins. The amine oxidase domains of these proteins are classified into two subfamilies based on ClustalW-
aligned phylogenetic tree. A noted difference is that the LSD1 subfamily (seven members) contains the spacer region but not the AOF1
subfamily (six members) (except NP_193364.1).
(C) Diagrams of G4LSD1 and the C-terminal deletion mutant G4LSD1�C. AO: amine oxidase.
(D) G4LSD1 represses transcription. Various amounts of G4LSD1 and G4DBD plasmids were transfected into HeLa cells together with the
G4TK-Luc reporter gene, and their repression activities were analyzed by measuring the luciferase activity. The reporter activity in presence
of the pcDNA3 vector (pcDNA3) was designated as 1. The data are the means of two independent experiments.
(E) G4LSD1�C mutant is defective in repression. The repression activity was expressed as fold of repression (means � SD from three
independent experiments) relative to the G4DBD control. The repression activity of wt G4LSD1 was arbitrarily designated as 100.

low, which is characteristic of FAD bound proteins (data panel C2, compare lanes 7 and 8), indicating substrate
specificity of this enzyme. The significant reduction ofnot shown). The HIS-LSD1 proteins were incubated with

histone H3 peptides carrying dimethylated K4 (di- the methylation signal on K4 in the presence of LSD1
was not due to degradation of the diMeK4H3 peptidesMeK4H3) or K9 (diMeK9H3), and the methylation status

was determined using a diMeK4H3- or diMeK9H3-spe- since LSD1 had no effect on the stability of the H3
peptides (Figure 2C, panel C3, compare lane 1 with lanescific antibody, respectively. As shown in Figure 2C, even

the lowest amount of LSD1 used (lane 2, 1 �g � 10 2–4). This putative enzymatic activity is abolished upon
heat treatment, which caused protein denaturation, con-pmole) effectively reduced dimethylation level at K4 (1

nmole of diMeK4H3) but had no effect on nonmethylated sistent with the possibility that LSD1 was the enzyme
responsible for the observed demethylation (Figure 2D,H3 (not shown). This represented approximately 1:100

molar ratio of LSD1 to diMeK4H3, consistent with this top panel, compare lanes 2 and 3 with lane 1). As a
control, FMS1, which is an amine oxidase related tobeing an enzyme-driven reaction. In contrast, LSD1

failed to reduce the dimethylation level at K9 (Figure 2C, LSD1 in sequence, failed to catalyze the same enzymatic
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Figure 2. Demethylation of diMeK4H3 Peptides by LSD1

(A) Possible chemical reactions for LSD1-catalyzed demethylation. Only diMeK4H3 is shown, but the proposed reactions are also compatible
with monomethylated lysines or methylated arginines.
(B) Purification of HIS-LSD1 from bacteria. Coomassie blue staining of affinity-purified HIS-tagged human LSD1 (HIS-LSD1). LSD1 protein
concentration was estimated by comparing with the BSA standard (lanes 3 and 4). Lane1: 10 �l HIS-LSD1, lane 2: empty vector control, lanes
3 and 4: 10 and 5 �g of BSA. Estimated HIS-LSD1 concentration is 3 �g/�l. The asterisk (*) indicates possible minor breakdown products of
HIS-LSD1.
(C) Demethylation assay using diMeK4H3 and diMeK9H3 peptides as substrates. Different amounts of purified HIS-LSD1 and HIS-FMS1, a
yeast polyamine oxidase, were incubated with diMeK4H3 or diMeK9H3, respectively, and analyzed by Western blot analysis with either a
diMeK4H3- or diMeK9H3-specific antibody (panel C1 and C2). The biotin and HIS antibodies were used to detect the histone peptides, which
were conjugated to biotin (panel C3), and HIS-LSD1 or HIS-FMS1, respectively (panel C4).
(D) Heat treatment and analysis of the LSD1 C-terminal deletion mutant HIS-LSD1�C. Heat treatment at 75�C as well as deletion of aa 428–851
inactivated the enzymatic activity of LSD1 (top panel, compare lanes 1 and 4 with lanes 2 and 3, respectively). The amount of HIS-LSD1 used
in the assays was visualized by Western blotting using an anti-HIS epitope tag antibody (lower panel). Asterisks (*) denote possible breakdown
products of HIS-LSD1.

reaction (Figure 2C, panel C1, compare lane 5 with lanes A1 compare lanes 2 and 3 with lane 1). The same blot
was re-probed by a pan H3 acetylation antibody, which2–4). In contrast, FMS1 has previously been shown to

catalyze oxidation of polyamine (Landry and Sternglanz, detected similar levels of acetylation with or without
LSD1 (Figure 3A, panel A2, compare lane 2 with lane 1),2003). Importantly, HIS-LSD1 had barely detectable

polyamine oxidation activity, yielding only a 2-fold above suggesting that the loss of the methylation signal was
not due to fortuitous degradation of histone H3. We nextbackground signal, which was about a thousand-fold

less active than FMS1 (data not shown). Therefore, LSD1 determined whether LSD1 could catalyze demethylation
of histone H3 with either mono- or trimethylated K4, theis likely a histone demethylase but not a polyamine oxi-

dase. Significantly, the same C-terminal deletion mutant latter modification being also linked to active transcrip-
tion. As shown in Figure 3B, while LSD1 reduced theLSD1�C, which was compromised transcriptionally (Fig-

ure 1E), also failed to demethylate diMeK4H3 peptides signal representing monomethylated K4 of histone H3,
it had no effect on trimethylated K4 (compare panel B2(Figure 2D, top panel, lane 4), suggesting that LSD1-

mediated transcriptional repression may be linked to with panel B3). The inability of LSD1 to convert trimethy-
lated K4 to an unmodified product is likely to be due tothis potential histone demethylase activity.

We next asked whether LSD1 can mediate demethyl- the inherent chemistry of the flavin-containing amine
oxdases, which requires a protonated nitrogen in theation reactions when native histones isolated from HeLa

cells were used as substrates. As shown in Figure 3A, substrates, thus restricting the substrates to mono- or
dimethylated peptides (Figure 2A). The modification-wild-type LSD1, but not LSD1�C, significantly reduced

the signals detected by the diMeK4H3 antibody (panel specific antibodies used in the above assays were either
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Figure 3. Specific Demethylation at K4 of Histone H3 by LSD1 but Not LSD1�C

Native histones were isolated from HeLa cells, incubated with purified HIS-LSD1 or HIS-LSD1�C, respectively, and analyzed by Western
blotting using antibodies that recognize methylation at specific lysines and arginines. The same blots in (A), (B), (C), and (D) were first probed
with the anti-diMeK4H3 antibody and then stripped and reprobed with the antibodies indicated on the right. Equal amounts of histones were
used within each set of reactions (Control, LSD1-, or LSD1�C-treated) as shown by Ponceau S staining of the blots (panels A5, C5, and D4)
or by blotting with a histone H3-specific antibody (panel B5). The amounts of LSD1 or LSD1�C used in the demethylation reactions were
visualized by an anti-HIS epitope tag antibody (panels A6, B6, C7, and D5). Note the dramatic reduction of the methylation signal detected
only by the �-diMeK4H3 antibody (A1, B1, C1, and D1).

commercial antibodies (see Experimental Procedures) To confirm the above results, we turned to mass spec-
trometry. As predicted by the chemical reaction outlinedor antibodies that have been reported in the literatures

(e.g., anti-diMeK79H3 and anti-diMeK20H4 [Feng et al., in Figure 2A, demethylation of a dimethyl-K4 histone
H3 by LSD1 is expected to regenerate an unmodified2002; Fang et al., 2002]). Additional specificity tests are

documented in Supplemental Figure S1 at http:// histone H3 with the net loss of 28 Da equal to the molecu-
lar weight of 2 CH2. K4- and K9-dimethylated histonewww.cell.com/cgi/content/full/119/7/941/DC1/.

To further determine the substrate specificity of LSD1, H3 peptides were incubated with purified HIS-LSD1, and
the reaction mixtures were analyzed by mass spectrom-we examined a number of other amino acid residues on

histones whose methylation is likely to be linked to ac- etry. As shown in Figure 4, the diMeK4H3 peptide peaked
at a molecular mass of 2863 Da as expected. Signifi-tive transcription; these residues included K36 and K79

of histone H3 (Feng et al., 2002; Krogan et al., 2003; Ng cantly, upon incubation with HIS-LSD1, but not HIS-
LSD1�C, a new peak appeared at a molecular mass ofet al., 2003a; Schaft et al., 2003), R2, R17 and R26 of

histone H3 (Bauer et al., 2002; Chen et al., 1999; Schurter 2835 Da, which corresponded to the molecular weight
of the unmodified histone H3 peptide (Figures 4B andet al., 2001), and R3 of histone H4 (Strahl et al., 2001).

We found no difference in the signal intensity detected 4C). As a control, the K9-dimethylated H3 peptides were
found to be unaffected by HIS-LSD1 (Figure 4E), consis-by Western blotting, in the presence or absence of LSD1,

using the modification-specific antibodies designed to tent with the Western blotting results described earlier.
Taken together these findings strongly suggest thatvisualize methylation at these sites (Figure 3A, panel A4;

Figure 3B, panel B4; Figure 3C, panels C2 and C3; and LSD1 is a histone demethylase with a substrate prefer-
ence for methylated K4 over K9 of histone H3.Figure 3D, panels D2 and D3, compare lane 2 with lane

1), suggesting a high level of substrate specificity of this
putative enzymatic activity. LSD1 also failed to remove LSD1-Mediated Histone Demethylation

Generates Formaldehydethe methyl groups from H3-K9, H3-K27, and H4-K20
(Figure 3C, panel C4; Figure 3A, panel A3; and data not We used a third independent method to investigate the

possibility that LSD1 is a histone demethylase. As shownshown), modifications that are linked to transcriptional
silencing (Cao et al., 2002, Czermin et al., 2002 #2921; in Figure 2A, the demethylation reaction mediated by

LSD1 is predicted to generate formaldehyde. To deter-Fang et al., 2002; Kuzmichev et al., 2002; Muller et al.,
2002; Nishioka et al., 2002; Rea et al., 2000). Similar to mine whether formaldehyde was produced in LSD1-

mediated enzymatic reactions, we first used the form-the bacterially purified LSD1, endogenous LSD1 isolated
from HeLa cells also displayed the same substrate spec- aldehyde dehydrogenase (FDH) assay to detect the

presence of formaldehyde (Lizcano et al., 2000). Thisificity as the recombinant HIS-LSD1 protein (data not
shown). Taken together, these findings support our assay employs formaldehyde dehydrogenase to convert

formaldehyde to formic acid using NAD� as the electronmodel that LSD1 functions as a transcriptional corepres-
sor by demethylating sites associated with active tran- acceptor (Figure 5A), whose reduction to NADH can be

spectrophotometrically measured at OD 340 nm. Thus,scription but not repression.
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Figure 4. LSD1 Converts diMeK4H3 Peptides to Peptides with Molecular Weight Corresponding to Unmodified H3

Shown are MALDI mass spectrometry results of diMeK4H3 (A, B, and C) or diMeK9H3 peptides (D, E, and F) after incubation with buffer (No
Enzyme, A and D), HIS-LSD1 (B and E), or HIS-LSD1�C (C and F). Note the appearance of a 2835.343 Da peak in (B) only, which corresponds
to H3 peptide removed of two methyl groups from the input diMeK4H3 peptides.

when the demethylation reaction is coupled with the tigate the substrate specificity of LSD1. As shown in
Figure 5E, only when HIS-LSD1 was incubated with di-FDH assay, the enzymatic activity of LSD1 and reaction

kinetics can be determined by measuring the production MeK4H3, but not diMeR2H3 or diMeK9H3, did we detect
a robust increase in the absorbance at OD 340 nm,of NADH. A standard curve was first generated using

purified FDH (EC 1.2.1.46), NAD�, and different amounts indicating the production of formaldehyde and thus suc-
cessful demethylation. Furthermore, we failed to detectof formaldehyde ranging from 1 pmole to 10 nmole,

within which a linear relationship was found between formaldehyde when triMeK4H3 was used as substrate,
suggesting that LSD1 is also unable to catalyze demeth-the production of NADH and the range of formaldehyde

used in the assay (Supplemental Figure S2 on the Cell ylation of the triMeK4H3 peptide (Figure 5F). This result
is consistent with the Western blotting assays usingwebsite). Subsequently, the coupled demethylation-

FDH assays were carried out within this linear range modification-specific antibodies shown in Figure 3B.
To further confirm the production of formaldehydeand were initiated with the addition of the diMeK4H3

substrates. The continuous production of the formalde- in the LSD1-mediated demethylation reaction, we next
used electrospray ionization liquid chromatography-hyde as the demethylation proceeded was monitored

by OD measurement at 340 nm at different time points. mass spectrometry (ESI-LC-MS) to detect formalde-
hyde. The formaldehyde produced in the demethylationAs shown in Figure 5B, a robust increase of absorbance

at 340 nm was observed within the first 5 min of the reaction was captured by dimedone to irreversibly form
the dimedone adduct, formaldemethone, which can bereaction, indicating that substantial amounts of formal-

dehyde were produced in the LSD1-catalyzed demethyl- detected by the absorbance at OD 254 nm (Rozylo et
al., 2000). The formaldemethone was eluted from anation reaction. The fact that formaldehyde was gener-

ated in the demethylation reaction strongly suggests HPLC column and the mass of the formaldehyde deriva-
tive was analyzed by LC-MS. Using this assay, we identi-that the reaction had occurred as proposed in Figure

2A. Increasing the amount of either the enzyme (LSD1) or fied formaldehyde in the LSD1-, but not LSD1�C-medi-
ated demethylation reaction (Figure 6, compare panelthe substrates (diMeK4H3) in the demethylation reaction

resulted in a dose-responsive increase in the conversion G with panel F). Taken together, mass spectrometry and
the FDH assay identified formaldehyde and unmodifiedof NAD to NADH, respectively (Figures 5C and 5D). We

next used the demethylation-FDH-coupled spectropho- histone H3 peptides as the products of the demethyl-
ation reaction catalyzed by LSD1.tometric assay as another independent means to inves-
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Figure 5. LSD1-Mediated Histone Demethylation Generates Formaldehyde

(A) Chemical reaction for formaldehyde dehydrogenase (FDH)-based formaldehyde detection assay.
(B) Detection of formaldehyde in the demethylation-FDH-coupled assays. The FDH assay was coupled with the demethylation reaction using
15 �g of LSD1 and the substrate diMeK4H3 peptides at an initial concentration of 50 �M. The NADH production was measured at OD 340 nm.
(C) LSD1 dose-dependent formaldehyde production. The demethylation-FDH-coupled assays were carried out using fixed amount of the
substrate (diMeK4H3 peptides, 5 �M) but varying amounts of the enzyme LSD1. No LSD1 (0 �g), no FDH, or HIS-LSD1�C (15 �g) was used
as negative controls.
(D) Demethylation-FDH-coupled assays with fixed amount of the enzyme LSD1 but varying amounts of the substrate diMeK4H3 peptides.
The production of formaldehyde was measured with the substrates varying from 0–100 �M. Twenty micrograms of HIS-LSD1 were used in
all reactions.
(E and F) Demethylation-FDH-coupled assays to determine LSD1 substrate specificity. (E) Formaldehyde production was monitored by
measuring NADH production at OD 340 nm in reactions containing 10 �g of HIS-LSD1 together with 10 �M of diMeK4H3, diMeR2H3, or
diMeK9H3 peptides as substrates, respectively. (F) Same assays as in (B) but the substrates were 10 �M of diMeK4H3 or triMeK4H3.

LSD1 Regulation of Endogenous Target Gene knockdown cells indicates that LSD1 is an essential
component of the Co-REST complex and is likely to beTranscription and H3-K4 Methylation In Vivo

We next asked whether native LSD1 regulates endoge- required for silencing specific neuronal genes in non-
neuronal cells. However, LSD1 targets are probably notnous target gene transcription and histone demethyl-

ation in vivo. Previous studies identified LSD1 in the limited to neuron-specific genes. As shown in Figure
7, we also identified p57KIP2, a cyclin-dependent kinaseCo-REST complex whose primary function is to silence

neuronal specific genes in non-neuronal cells (Ballas et inhibitor (Lee et al., 1995), as a potential LSD1 target
gene whose transcription also appeared to be negativelyal., 2001). A number of Co-REST target genes have been

reported including genes that encode the sodium chan- regulated by LSD1. Interestingly, p57KIP2 has recently
been shown to play a role in developing dopamine cellsnels (SCNs) and acetylcholine receptors (AchR) (Lunyak

et al., 2002). We asked whether these promoters can be (Joseph et al., 2003).
We next investigated whether LSD1 regulates histonederepressed when LSD1 was knocked down by DNA

vector-based RNAi (Sui et al., 2002). The lsd1 RNAi plas- demethylation in vivo. Using chromatin immunoprecipi-
tation (ChIP), we found LSD1 located at the target genemid reduced LSD1 expression efficiently, as judged by

immunostaining (Figure 7A) and Western blotting (Figure promoters (within 2 kb of the transcription initiation site)
in HeLa or control RNAi-treated cells (Figure 7D, panel7B). Concomitant with the decrease in LSD1 expression,

we observed an increase in M4 AchR, SCN1A, SCN2A, D3, lanes 1, 3, 4, 6, 7, 9, 10, 12, 13 and 15), but LSD1
promoter occupancy was significantly reduced in theand SCN3A expression as determined by RT-PCR (Fig-

ure 7C). Derepression of these target genes in the LSD1 lsd1 RNAi cells (Figure 7D, panel D3, lanes 2, 5, 8, 11,



Cell
948

Figure 6. Identification of Formaldehyde in the LSD1-Mediated Demethylation Reaction by ESI-LC-MS Mass Spectrometry

(A) Chemical reaction of formaldehyde (FA) with dimedone to form the dimedone adduct formaldemethone.
(B, C, and D) Selected ion monitoring (SIM) Chromatogram (11–17 min) of formaldemethone (FDM) derived from pure FA at concentration of
1 �M (B), 10 �M (C), and 100 �M (D). The FDM is detected at the 14.93 min peak fraction, which shows dose-responsive ion intensity (compare
[B], [C], and [D]). FDM (plus one proton, therefore, FDMH�) was also identified by MS analysis based on its molecular weight (H).
(E, F, and G) SIM Chromatogram (11–17 min) of FDM derived from the demethylation reactions catalyzed by No Enzyme (E), HIS-LSD1�C (F),
or HIS-LSD1 (G). Based on the peak position for the standard FDM shown above, the 14.95 min peak detected in the LSD1-catalyzed
demethylation reaction represents FDM, and its molecular mass (panel I, 293.2 g/mole) further confirmed its identity as FDMH�. The asterisk
(*) denotes the nonspecific signal that peaks at 13.24 min in all chromatographic profiles. Note that a significant amount of FDM was detected
only in the reaction catalyzed by HIS-LSD1.

and 14). Importantly, concomitant with the decrease of role in restricting neuron-specific gene transcription in
non-neuronal HeLa cells (Figure 7). Importantly, RNAiLSD1 occupancy at the target promoters, we observed

an increase in H3-K4 dimethylation (Figure 7D, panel inhibition of LSD1 resulted in an increase in H3-K4 meth-
ylation (Figure 7), which is linked to active transcription,D4, lanes 2, 5, 8, 11, and 14) that coincided with the

increase in the promoter activity (Figure 7C). Thus, LSD1 and a concomitant derepression of the target genes,
suggesting that LSD1 mediates transcriptional repres-promoter occupancy appears to be inversely correlated

with promoter activity and H3-K4 dimethylation. Taken sion via histone demethylation in vivo.
Strikingly, as a histone demethylase, LSD1 displaystogether, these findings support the hypothesis that

LSD1 regulates histone K4 demethylation at specific stringent substrate specificity, which is manifested at
two different levels. First, LSD1 is able to distinguishloci in vivo, which is correlated with LSD1-mediated

repression of target gene transcription. histone H3 peptides with the same type of methylation
(dimethylation on lysine) that occurred on different lysine
residues (K4 versus K9, K36, and K79). It is possibleDiscussion
that the sequences surrounding these lysine residues
may contribute to this selectivity. Second, the substrateWe have provided multiple lines of evidence that support

the conclusion that LSD1 is a histone lysine demethyl- specificity of LSD1 is further highlighted by its ability to
discriminate between di- and trimethylation on the samease. These include the direct demethylation assays (Fig-

ures 2 and 3); mass spectrometry (Figures 4 and 6); lysine H3-K4. The inability to demethylate triMeK4H3 is
consistent with the chemical nature of the amine oxida-and the demethylation-FDH-coupled spectrophotomet-

ric assays (Figure 5) that revealed the demethylation tion reaction catalyzed by flavin-containing amine oxi-
dases; this reaction requires a protonated nitrogen andproducts, i.e., demethylated histone peptides (mass

spectrometry) and formaldehyde (FDH and mass spec- thus precludes triMeK4H3 as a substrate (Figure 2A and
Bannister et al., 2002). This suggests that triMeK4H3trometry). We have also shown that LSD1 functions as

a transcriptional corepressor and plays an important turnover is accomplished either by histone replacement
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Figure 7. LSD1 Regulation of Endogenous Target Gene Transcription and H3-K4 Methylation In Vivo

(A and B) An lsd1 RNAi plasmid efficiently knocked down LSD1 expression. (A) Immunostaining of LSD1 protein in HeLa cells transfected
with either the U6 control (A1 and A2) or the lsd1 RNAi plasmids (A3 and A4).
(B) Western blots of LSD1 expression in the control and the lsd1 RNAi-treated HeLa cells. DAPI staining was used to mark the nuclei of the cells.
(C) Upregulation of neuron-specific and the CDK inhibitor p57KIP2 RNA levels in lsd1 RNAi cells. RT-PCR shows derepression of the neuronal-
specific M4 AchR (panel C1) and SCN1A-3A (panels C2–C4) genes as well as the CDK inhibitor p57KIP2 (panel C5) in cells where LSD1 expression
was inhibited by RNAi. GAPDH was used as a negative control (panel C6).
(D) LSD1 promoter occupancy is inversely correlated with H3-K4 methylation. LSD1 occupancy at the above promoters (�1 to �2 kb) (Figure
7C) was shown by chromatin immunoprecipitation (ChIP) in the lsd1 and control RNAi-treated HeLa cells (panel D3). The H3-K4 methylation
status was analyzed by ChIP using an anti-diMeK4H3 antibody (panel D4). The input and IgG controls were indicated on the right (panels D1
and D2). The GAPDH promoter was used as an additional ChIP control.

or by an unidentified triMeK4H3-specific demethylase. conclusion that LSD1 is a histone demethylase is our
ability to identify the demethylation reaction products,Alternatively, additional mechanisms, such as direct hy-

droxylation of the methyl groups, may be involved in i.e., formaldehyde and the unmodified histone H3 pep-
tides. Thus we have accounted for the major reactionconverting triMeK4H3 to an unmodified product. Our

findings further suggest that additional histone demeth- products during an amine oxidase-mediated demethyl-
ation reaction. In this oxidation reaction, the cofactorylases are yet to be identified that would catalyze de-

methylation reactions at other lysine and/or arginine res- FAD is likely to be reduced to FADH2 and then reoxidized
to FAD by oxygen with the generation of H2O2. It will beidues that are associated with either activation or

repression of transcription. important in the future to determine the fate of formalde-
hyde and H2O2, which could have potentially deleteriousKinetic analysis of LSD1 provided further support that

LSD1 is a histone demethylase. The apparent Km for effects when present near promoters. Recently, a signifi-
cant number of metabolic enzymes and coenzymesthe diMeK4H3 substrates is approximately 30 �M, which

is comparable to other histone-modifying enzymes, have been found to play central roles in regulating gene
transcription (Shi and Shi, 2004). Further investigation ofsuch as the NAD-dependent histone deacetylase Sir2

(Borra et al., 2004). The actual Km for the demethylation proteins such as LSD1 will provide insight into a possible
direct link between metabolism and transcription.reaction in mammalian cells is likely to be lower since

not all purified HIS-LSD1 proteins are expected to be Our finding that LSD1 regulates H3-K4 methylation at
its target promoters (Figure 7) but not global K4 demeth-fully active. Possible posttranslational modifications of

LSD1 as well as interacting proteins of LSD1 may further ylation (unpublished data) suggests that LSD1 is a locus-
specific histone demethylase. However, since LSD1 hasenhance its activity in mammalian cells. The fact that

the physiological substrates of LSD1 in vivo are nucleo- been identified in numerous repressor complexes (Ha-
kimi et al., 2002, 2003; Humphrey et al., 2001; Shi et al.,somes may also influence the activity of LSD1, as could

other posttranslational modifications on histones. Re- 2003; Tong et al., 1998; You et al., 2001), we expect
LSD1, much like the HDACs, to play a widespread andgardless, these findings provide important kinetic infor-

mation that substantiates the idea that LSD1 is a his- central role in establishing repressive chromatin envi-
ronment as a histone demethylase. We have previouslytone demethylase.

Another crucial piece of information that supports the shown that the CtBP repressor complex contains a num-
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ber of potential enzymatic activities, including HDACs port the hypothesis that H3-K4 methylation regulation
and HMTases that function coordinately to induce may play a crucial role in tumorigenesis. With the identifi-
H3-K9 methylation, which is linked to transcriptional cation of LSD1 as a H3-K4 demethylase, we are now
repression (Shi et al., 2003). We now show that another poised to investigate if LSD1 or related histone demeth-
component of the CtBP complex, i.e., LSD1/nPAO, de- ylases play a role in cancer, and if so, whether the de-
methylates diMek4H3 that is linked to active transcrip- methylase activity is essential for this regulation.
tion. Taken together, these findings suggest that the

Experimental Proceduresestablishment of a repressive environment mediated by
the CtBP complex is likely to involve not only the process

Peptides, Histones, Antibodies, and Chemical Reagentsthat confers the repressive modifications (HDACs and
Synthetic histone peptides with specific modifications as well as

HMTases) but also events that erase histone modifica- antibodies (Ab) that recognize different histone modifications were
tions (LSD1) associated with active transcription. This purchased from either Upstate Group, INC (Lake Placid, New York)
level of complexity is consistent with the histone code (UP) or Abcam Ltd (Cambridge, United Kingdom) (Ab). They are

diMeK4H3(1–21 aa) (UP12-460), diMeK9H3 (1–21 aa) (UP12-430), H3hypothesis (Jenuwein and Allis, 2001) and is likely to
(1–21 aa) (UP12-403), PanH3Ac (1-21 aa) (UP12-402), anti-diMeK4H3represent a general principle underlying transcriptional
Ab (UP07-030), anti-diMeK9H3 Ab (UP05-768), anti-panH3Ac (UP06-regulation in eukaryotes. Lastly, in addition to H3-K9
599), anti-monoMeK4H3 Ab (UP07-436), anti-H3 Ab (UP06-755),methylation, H3-K4 hypomethylation has also been cor-
anti-diMeR2H3 Ab (Ab8046), anti-diMeR3H4 (UP07-213), anti-

related with heterochromatin formation in S. pombe diMeK79H3 Ab (UP07-366), anti-diMeR17H3 (UP07-214), anti-
(Noma et al., 2001). It would be interesting to determine diMeR26H3 (UP07-215), and triMeK4H3 (Ab1342). Anti-diMeK36H3
whether LSD1 homologs play a role in heterochromatin and Anti-diMeK20H4 antibodies were gifts from Y. Zhang. Bulk his-

tones were either purchased from Sigma (catalog # H9250) or iso-silencing as well as in euchromatic gene repression.
lated from HeLa cells according to the protocol provided by Upstate.As with any fundamental biological processes, his-
Formaldehyde dehydrogenase (EC1.2.1.46) purified from Pseudo-tone demethylation is expected to be conserved through
monas putida was purchased from Sigma (F1879). Purified recombi-

evolution. In support of this hypothesis, we have identi- nant yeast polyamine oxidase FMS1 was a kind gift from Dr. Rolf
fied LSD1 orthologs and homologs throughout the Sternglanz.
eukaryotic kingdom, ranging from S. pombe to human
(Figure 1). Curiously, LSD1-like proteins appear to be Protein Expression and Purification

Full-length (1–851 aa) and C-terminal deleted (1–427 aa) humanabsent in S. cerevisiae where histone methylation also
LSD1 cDNAs were cloned into N-terminal 6	 HIS-tag bacterial ex-plays an important role in chromatin structure and tran-
pression vector pET15b. The plasmids were transformed into bacte-scriptional regulation. Thus, it is possible that S. cerevis-
ria and expression of the recombinant proteins was induced byiae may have evolved a different strategy to remove
0.2 mM IPTG at 37�C for 6 hr. The HIS-tagged proteins were purified

methyl groups from histones. Alternatively, different by Ni-NTA affinity column (Qiagen, Valencia, California). After wash-
types of enzymes yet to be identified may be involved ing the column, the bound proteins were eluted from the column
in demethylating histones in S. cerevisiae. In this regard, by 200 mM imidazole. The eluate was then extensively dialyzed in

PBS with changes three times at 4�C. The homogeneity and concen-it is interesting to note that the S. cerevisiae genome,
tration of the protein were estimated on SDS-PAGE by Coomassieas do all the other eukaryotic genomes, has a large
blue staining using BSA as standard.number of genes predicted to encode amine oxidases.

It is possible that in addition to LSD1 family members,
Demethylase Assay

amine oxidases with a different architecture may also Bulk histones or histone peptides were incubated with purified HIS-
function as histone demethylases in S. cerevisiae and LSD1 or HIS-LSD1�C in the histone demethylase activity (HDM)
other organisms. Importantly, our findings documenting assay buffer 1 (50 mM Tris pH 8.5, 50 mM KCl, 5 mM MgCl, 0.5%
an amine oxidase functioning as a histone demethylase BSA, and 5% glycerol) from 30 min up to 4 hr at 37�C. For a typical

reaction, the volume of the reaction is 100 �l, in which either 20 �glay the foundation for investigation of other amine oxi-
of purified bulk histones or 3 �g of modified histone peptides weredases as candidates for histone demethylases. It will
used as substrates. Different amounts of HIS-LSD1 ranging frombe exciting to determine if LSD1-related proteins and
1–20 �g were used in the reaction. The reaction mixture was ana-

other types of oxidases function as histone demethyl- lyzed by SDS-PAGE/Western blotting using methyl-specific anti-
ases with different substrate specificities to impact bodies, or by formaldehyde formation assay to examine the removal
chromatin structure and gene transcription. Given our and conversion of the methyl group to formaldehyde, or by mass

spectrometry to identify the demethylated peptide.finding that histone demethylases exist, it will also be
exciting to explore other types of enzymes that are also

MALDI Mass Spectrometry (Matrix-Assisted Laserpredicted to convert methylated peptides (such as his-
Desorption/Ionization Mass Spectroscopy)tones) to unmethylated products (Chinenov, 2002).
Two microliters of the 100 �l demethylation reaction mixture wasFinally, recent studies provided a potential important
desalted by passing through a C18 ZipTip (Millipore). Prior to de-

connection between methylation at H3-K4 and cancer. salting, the ZipTips were activated and equilibrated using 10 �l of
The trithorax group protein MLL, which methylates H3- 50% acetonitrile/0.1% TFA (2	), followed by 10 �l of 0.1% trifluoro-
K4, is found to be frequently involved in chromosomal acetic acid (TFA) (3	). The reaction mixture was then loaded onto
translocation in both acute lymphoid and myeloid leuke- the activated ZipTips. The ZipTips were washed with 10 �l of 0.1%

TFA (5	), and the bound material was eluted from the ZipTip usingmia (Ayton and Cleary, 2001). Another H3-K4 histone
2 �l of 70% acetonitrile containing 1 mg/ml �-cyano-4-hydroxycin-methylase, SMYD3, has been shown to be upregulated
namic acid MALDI matrix and 0.1% TFA. The eluates were spottedin colorectal and hepatocarcinoma cells (Hamamoto et
onto a circle of open MALDI target areas to allow solvent evaporation

al., 2004). Overproduction of SMYD3 increases cell pro- and peptide/matrix cocrystallization. The samples were analyzed by
liferation dependent on the histone methylase activity, a MALDI-TOF/TOF mass spectrometer (Ultraflex, Bruker Daltonics,
consistent with the possibility that SMYD3 is a candidate Billerica, Massachusetts) at the PFPC core facility of Department

of Pathology, Harvard Medical School.oncogene (Hamamoto et al., 2004). These findings sup-
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Formaldehyde Dehydrogenase Assay further purified by QIAquick PCR Purification Kit (Qiagen) and eluted
in 100 �l TE buffer. Four microliters of eluted DNA sample was usedFormaldehyde formation was continuously monitored by a coupled

spectrophotometric assay (Lizcano et al., 2000) using FDH. HIS- for each PCR reaction. Thirty-six PCR cycles were used for LSD1
ChIP and 32 PCR cycles for H3K4diMe ChIP. Primers used for ampli-LSD1 was first incubated in buffer containing 50 mM potassium

phosphate, pH 7.2, 2 mM NAD�, and 0.1 U FDH (100 �l reaction fications were as follows: M4 AchR forward (5
-gaacagaacacctccct
cca-3
), reverse (5
-gagtcagaaggcaggacagg-3
); SCN1A forward (5
-volume) at 37�C for 5 min without substrates. The demethylation-

FDH-coupled reaction was initiated by the addition of the sub- taaagcccagtcaagacagc-3
), reverse (5
-gacacacccagaagatggag-3
);
SCN2A forward (5
-cgtgtttcaaggctacagca-3
), reverse (5
-ctctagcctstrates. The absorbance at 340 nm (�340 � 6.22 mM�1cm�1 for NADH)

was measured at each time point in a 0.5 min interval using Beckman cccaaccttcc-3
); SCN3A forward (5
-ctctgtcacagggaggaaag-3
), re-
verse (5
-agactagagcaggccacaag-3
); p57KIP2 forward (5
-ccgtggtgDU640 spectrophotometer. The OD 340 nm absorbance at the mo-

ment of the substrate addition was considered as 0 and this was ttgttgaaactg-3
), reverse (5
-tgtccggtggtggactcttc-3
); GAPDH for-
ward (5
-tcctcctgtttcatccaagc-3
), reverse (5
-tagtagccgggccctaused as the 0 min time point. Over a 10 min period, a kinetic software

program automatically recorded the absorbance at each time point. cttt-3
).
The data were analyzed using the Excel program. Standard curves
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