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Abstract In this study, a reliable and computationally efficient beam-column model is proposed

for seismic analysis of Reinforced Concrete (RC) frames. The model is a simplified version of the

Flexibility-Based Fiber Models (FBFMs), which rely on dividing the element length into small seg-

ments and dividing the cross section of each segment into concrete and steel fibers. In the proposed

model, only the two end sections are subdivided into fibers and uniaxial material models that con-

sider the various behavioral characteristics of steel and concrete under cyclic loading conditions are

assigned for the cross section fibers.

The proposed model is simpler than the FBFMs as it does not require monitoring the responses

of many segments along the element length, which results in a significant reduction in computations.

The inelastic lengths at the ends of the proposed model are divided into two inelastic zones; cracking

and yielding. The inelastic lengths vary according to the loading history and are calculated in every

load increment. The overall response of the RC member is estimated using preset flexibility distri-

bution functions along the element length. A flexibility factor g is utilized to facilitate selecting the

proper flexibility distribution shape. The proposed model is implemented into the computer pro-

gram DRAIN-2DX.
ª 2012 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.
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1. Introduction

Intense research has been dedicated in the last few decades to the
development of beam-column models to predict the inelastic
seismic response of RC frame structures with a reasonable bal-

ance between accuracy and efficiency. Improving the accuracy
of beam-columnmodels often increases their computational de-
mands and may reduce their efficiency. Seismic evaluation of

frame structures often requires repeated solutions of the re-
sponse of multi-degrees of freedom systems. The computations
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Figure 1 The fiber beam-column model.
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involved in such evaluation can become excessive and simplicity
of the modeling approach may be an important issue to accom-
plish the analysis in a reasonable time.

Beam-column models can be represented using two main
modeling approaches in accordance with the increasing level
of complexity. The first is global modeling, where each RC

member is modeled as one element and the second is micro-
scopic modeling, where the members are divided into a large
number of finite elements.

Microscopic modeling is suitable only for studying critical
regions, since it is computationally expensive for the seismic
analysis of multi-story frames. Global modeling, on the other
hand, represents the best compromise between simplicity and

accuracy as it provides a considerable information on the seis-
mic inelastic response of frame structures in a reasonable time.

Global beam-column models, which are the focus of this

study, can be divided into two types: (a) Lumped Plasticity
Models (LPMs), and (b) Distributed PlasticityModels (DPMs).
LPMs rely on the fact that the inelasticity of the RC frames un-

der seismic excitation often concentrates at the member ends.
Thus, an early approach to model this behavior was by means
of zero length plastic hinges in the form of non-linear springs lo-

cated at the member ends. The hysteretic force–deformation
relations of these end springs are usually based on phenomeno-
logical rules. Examples of the LPMs include the two-component
model of Clough et al. [1] and the one-componentmodel of Gib-

erson [2].
The two-component model consists of two components act-

ing in parallel. The first component is linear elastic to represent

strain-hardening, while the second component is elastic per-
fectly plastic to represent the plastic deformations concentrated
in plastic hinges at the element ends. The one-component mod-

el, on the other hand, consists of two non-linear rotational
springs attached in series at the ends of an elastic element. This
model is more popular than the two-component model because

of its simplicity as well as its ability of describing more complex
hysteretic behavior by the selection of proper moment–rotation
relations for the end springs.

Several hysteretic rules with empirical control parameters

are proposed to describe the moment–rotation relationships
of the non-linear springs. Examples of these rules include Tak-
eda et al. [3], Park et al. [4] and Otani [5]. Typically, these hys-

teretic rules are based on experimental data obtained by testing
of RC sub-assemblages.

A third type of LPMs is the fiber hinge model [6,7], which re-

lies on using inelastic zero-length hinge element at each end of
theRCmember. The hinge element consists of a number of axial
springs that represent the force–displacement relations of the
reinforcing steel and the concrete. This approach is capable of

simulating the axial–flexural interaction in RC members in a
more rational way than the one- and the two componentmodels.

The basic advantage of the LPMs is their simplicity that

reduces computations and storage requirements along with
improving the numerical stability. However, most LPMs over-
simplify certain important aspects of the cyclic behavior of

RC members such as the post-yield response and the
axial–flexural interaction which could produce inaccurate re-
sults. Moreover, the use empirical control parameters in the

LPMs limits their generality as the values of these parameters
are usually selected by trail and error to producemodel response
that fit with experimental results of a limited number of RC
components.
In the DPMs, material non-linearity can take place at any
section along the length of the RC member and the element
behavior is derived by integrating the section responses. This

results in a more accurate description of the inelastic behavior
of RC members. DPMs can be classified into two types,
namely, curvature spring models and fiber models.

Curvature spring models include the model proposed by
Meyer et al. [8] and later modified by Roufaiel and Meyer
[9]. In this model, two springs are considered at the member

ends to represent the moment–curvature relations of the end
sections. The monotonic moment–curvature relation is derived
with ignoring the concrete tensile strength. The hysteretic re-
sponse is based on phenomenological rules that account for

the behavioral characteristics of RC members under cyclic
loading. The inelastic lengths at member ends are calculated
in every load increment based on the assumption of linear dis-

tribution of bending moments along the element length. The
element response is determined by assuming a uniform distri-
bution of flexibility along the lengths of the plastic zones.

Another example of the curvature spring models is the
model proposed by Park et al. [10]. In this model, the mono-
tonic moment–curvature relationship is derived with consider-

ing the concrete tensile strength, while the element response is
determined by assuming a linear distribution of flexibility
along the lengths of the inelastic zones. The main limitations
of the curvature spring models are in oversimplifying the ax-

ial–flexural interaction and the flexibility distribution along
the plastic hinge regions.

Fig. 1 shows a member idealization in the fiber models,

where the element is subdivided into segments distributed along
the member length, and the cross section of each segment is sub-
divided into steel and concrete fibers. The section response is

determined by integrating the uniaxial stress–strain relations
of the fibers. In practice, only the behavior of a limited number
of segments at each end of the member is monitored. Two types

formulations are used in the fiber models, the first is displace-
ment-based (stiffness-based) and requires a predefined displace-
ment shape-function to interpolate the displacements along the
element length with respect to the nodal displacements and the

second is force-based (flexibility-based) and requires using
interpolation functions to estimate the forces along the element
length with respect to the nodal forces.

Taucer et al. [11] stated that the most promising models for
non-linear analysis of RC members are the flexibility based fi-
ber models. Several Flexibility-Based Fiber Models are pro-

posed for seismic analysis of RC members. Examples of
theses models include, Kaba and Mahin [12] and Taucer
et al. [11]. The only limitation associated with the fiber ap-

proach when used for modeling of RC frame members is the

substantial amount of computations required for monitoring
the responses of several cross sections along the element length
and the responses of several fibers over each cross section. On
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the other hand, the fiber approach has many advantages,
which include: (a) accounting rationally for the moment–
flexural interaction, (b) providing the strains of the fibers as

an output during seismic response which can be used for in
seismic damage evaluation of RC members, and (c) accounting
for the spread of plasticity both over the cross sections and

along the member length.
This study proposes a simplified FBFM that requires

monitoring only the fiber responses of the end sections of the

RC member. The proposed model eliminates the need for
monitoring the responses of many segments distributed along
the member length which results in a significant reduction in
computations. In the proposed model, yielding and cracking

lengths at each end are calculated every load increment. The
member overall response is estimated using a preset flexibility
distribution functions along the element length. A flexibility

factor (g) is utilized to facilitate selecting the proper flexibility
distribution shape. The proposed model is implemented into
the computer program DRAIN-2DX [13].
Yielding zones 
2. Derivation of the beam-column model

The proposed RC beam-column model is flexibility-based and

relies on using force interpolation functions that satisfy equi-
librium of moment and axial forces along the element length.
A uniform distribution of axial forces and a linear distribution

of bending moments are considered in the current study. The
assumption of linear distribution of moments along the RC
member is correct in case of frames subjected to lateral loads
only. The presence of gravity loads will alter the distribution,

and in cases of significant gravity loads, the members should
be subdivided to capture the moment variation. Also, in this
study, the member deformations are assumed small and plane

sections are assumed to remain plane and normal to the mem-
ber longitudinal-axis after deformation. The effect of bond-
slip, shear deformation, and the difference in material proper-

ties between concrete core and cover are ignored.
The end sections are divided into concrete and steel fibers

and a uniaxial stress–strain relation is assigned for each fiber.

The tangent section stiffness matrix is derived from the fiber
responses which are updated at each load increment based
on the applied strain increments. The tangent section flexibility
matrix is calculated by inverting of the tangent stiffness matrix.

The member flexibility matrix is calculated based on the end
section flexibility coefficients and the preset flexibility distribu-
tion functions along inelastic zones. The preset flexibility

distribution functions are selected to fit the actual flexibility
distributions. The inelastic zones at the member ends are di-
vided into cracking and yielding zones with their lengths are

updated in every load increment. The member tangent–
stiffness matrix is calculated by inverting of the member tan-
gent–flexibility matrix. A more detailed description of the
model derivation is presented in the following sections.
Cracking zones 

Elastic zone 

Figure 2 Deformed RC member.
3. Inelastic lengths

Under the effect of lateral loading, the inelastic deformations of
the beam-column element are distributed along increasing
inelastic zones at the member two ends as shown in Fig. 2.
Cracking and yielding lengths at the inelastic zones are calcu-
lated based on the distribution of the applied moment and the
levels of cracking and yielding moments of the cross section.

The cracking stage arises when the acting moments at the

member two ends exceed the section cracking-moment as
shown in Fig. 3a. The flexural flexibility of the cracked sections
increases with the increase of number of cracked fibers. The

cracking length Xcj (j= 1 for the left end and 2 for the right
end) specifies the portion of the element length where the act-
ing moment is greater than the cross section cracking moment

Mc but less than the cross section yielding moment My. The
cracking length Xcj is first calculated for the current moment
distribution, and then checked with the previous maximum
cracking length, where the current cracking length cannot be

smaller than the previous maximum value regardless of the
current moment distribution. The cracking length Xcj of the
plastic region at node j is calculated in terms of the applied

end moments (M1 and M2), the cross section cracking moment
Mc and the member length L, as follow:

Xcj ¼
Mj �Mc

M1 þM2

L ð1Þ

The yielding stage initiates when the appliedmoment exceeds

the cross section yielding-moment as shown in Fig. 3b. The
yielding length Xyj specifies the portion of the element length
where the actingmoment is greater than the section yieldingmo-
ment My. The procedure applied for the calculation of Xyj is

based on the approach proposed by Abou-Elfath [14]. The cal-
culation approach is illustrated in Fig. 4, which shows a frame
member subjected to cyclic loading withM1 andM2 are the ap-

plied endmoments.My is themoment that causes initial yielding
of the end section in the first loading cycle. In any subsequent
loading cycle, the existing of residual fiber strains often causes

the formation of a subsequent yield moment Ms different from
the initial yield moment My. Xp is the maximum plastic length
occurred in the previous loading cycle. The yielding length is cal-

culated by defining the intersection point between the applied
moment diagram and the yield surface as:

Xyj ¼
Mj �My

ðM1 þM2ÞXp þMy �Ms

L; Xyj � Xp

Xyj ¼
Mj �My

M1 þM2

L; Xyj � Xp

ð2Þ
4. Flexibility distribution model

The tangent stiffness and flexibility matrices of the two end

sections are denoted Sj, Dj, respectively. The subscript j is
equal 1 for the left end section and 2 for the right end section.
The two matrices are defined as:
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Sj ¼
s1;j s2;j

s2;j s3;j

� �
; Dj ¼

d1;j d2;j

d2;j d3;j

� �
; j ¼ 1; 2ð Þ ð3Þ

The two matrices relate the jth cross section incremental
deformation vector {dej, d/j} with the jth cross section incre-
mental force vector {dpj, dmj}. Where, dej is the axial strain
increment at the center of the cross section, d/j is the cross sec-

tion curvature increment, dpj is the axial force increment and
dmj is the moment increment. The stiffness coefficients s1,j,
s2,j, s3,j are calculated as:

s1;j ¼
XNfib

k¼1
Ek;jAk;j s2;j ¼

XNfib

k¼1
Ek;jAk;jYk;j

s3;j ¼
XNfib

k¼1
Ek;jAk;jY

2
k;j; ðj ¼ 1; 2Þ ð4Þ
di,0

di,1- d
c
i,1

FYi,1(x) 

x Flexibility c
of the elasti

Xy1 L-Xy1-Xy2-X

Inelastic part 
of the 1st end 

Elastic par

FCi,1(x) 

Xc1

dc
i,1-di,0

Figure 5 Flexibility distribution functio
where Ak,j, Ek,j and Yk,j are the area, the tangent modulus of

elasticity and the Y-coordinate of the kth fiber at the jth end
section. Nfib is the total number of fibers over the end section.
The tangent flexibility matrix Dj is obtained by inverting the
tangent stiffness matrix Sj. The coefficients d1,j, d2,j and d3,j
are the axial, the combined and the flexural flexibility coeffi-
cients, respectively, at the jth end section of the element.

Cross sections along the element length exhibit different lev-

els of flexibilities, depending on the extent of the experienced
inelasticity. The distributions of the flexibility coefficients along
the element length are defined using six yielding flexibility dis-

tribution functions FYi,j and other six cracking flexibility distri-
bution functions FCi,j as shown in Fig. 5. The subscript i is
equal to 1 for the axial flexibility, 2 for the combined flexibility
and 3 for the flexural flexibility. The distribution functions re-

late the values of the flexibility coefficients (the function output)
with the distance variable x or x’’ (the function input). The
lengths of the flexibility distribution shapes are the cracking

and the yielding lengths (Xcj and Xyj), as shown in Fig. 5.
The heights of the flexibility distribution functions FYi,j are

defined by ðdi;j � dci;jÞ as shown in Fig. 5. The flexibility coeffi-

cients dci;j are the flexibility coefficients of the end sections at the
end of the cracking stage and just before yielding of the rein-
forcement. The heights of the flexibility distribution functions

FCi,j are defined by ðdci;j � di;0Þ. di,0 represents the ith flexibility
coefficient of the elastic part of the beam-column member
(d1,0 = 1/EAo and d3,0 = 1/EIo), where, E is the member mod-
ulus of elasticity, Ao is the member cross section area and Io is

the moment of inertia of the member cross section. The com-
bined flexibility coefficient d2,0 is equal to zero for elastic cross
FYi,2(x") 

x" 

di,2-d
c
i,0

oefficient  
c part 

Xy2c1-Xc2   

t Inelastic part  
of the 2nd end 

FCi,2(x")

Xc2

dc
i,2-di,0

ns along the beam-column element.
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sections. Also, it is equal to zero in case of using a variable ref-

erence axis that coincides with the neutral axis of the cross sec-
tion. In the current study, the reference axis is kept constant
during the analysis which results in nonzero values of the com-

bined flexibility coefficient during the inelastic stage.
Abou-Elfath [15] reported that all the information related

to a general flexibility shape that is required for deriving the

member flexibility matrix are the length, the height and three
shape constants C1, C2 and C3. The constants C1, C2 and C3

are related to the area of the flexibility distribution shape (Ai,j),
the distance between the center of the flexibility shape and the

nearest member end (Ri,j) as shown in Fig. 6a, and the inertia
of the flexibility shape about a central axis perpendicular to the
beam-column element (Ii,j). Assuming that all the flexibility

functions of the beam-column element have identical shape
constants then the shape constants can be estimated as:

C1 ¼
Ai;j

Xjðdi;j � di;0Þ
; C2 ¼

Ri;j

Xj

; C3 ¼
Ii;j

Ai;jXj

ð5Þ

Abou-Elfath [15] proposed the bilinear flexibility diagram
shown in Fig. 6b to represent the flexibility distributions of

beam-column elements. The proposed bilinear shape is defined
by the broken line I–M–L using the flexibility factor g. The
flexibility factor g defines the position of the middle point

M. The pointM coincides with the point J when g = 1.0, while
Table 1 Shape constants corresponding to some levels of g.

g C1 C2 C3

0.10 0.10 0.2000 0.0533

0.20 0.20 0.2333 0.0522

0.30 0.30 0.2667 0.0522

0.40 0.40 0.3000 0.0533

0.50 0.50 0.3333 0.0555
it coincides with the point K when g = 0. The value of the flex-
ibility factor g ranges from zero to one. The value of one cor-
responds to uniform flexibility distribution shape, the value of

zero corresponds to zero flexibility distribution shape, while
the value of 0.5 corresponds to linear flexibility distribution
shape. The flexibility constants can be calculated as:

C1 ¼ g; C2 ¼ ð1þ 2gÞ=6; C3 ¼ ð2� gþ 2g2Þ=36 ð6Þ

The flexibility factor g provides tremendous number of flex-
ibility distribution selections that are expected to approxi-

mately fit any actual flexibility distribution shape. Table 1
summarizes the values of the shape constants corresponding
to some levels of the flexibility factor g.
5. Material models

The most commonly used non-linear stress–strain relation-

ship of concrete in tension comprises of a linearly elastic rela-
tionship before cracking and a linear descending branch
beyond cracking to represent the tension stiffening as shown
in Fig. 7a. In this figure, fcr and ecr are the cracking stress and

strain, respectively. The concrete cracking stress is calculated
using the equation proposed by Balakrishnan and Murray
[16], while the initial tangent modulus, E1, is considered equal

to the initial tangent modulus in compression. The maximum
tensile strain eut at which the concrete tensile stress is as-
sumed to be zero is assumed equal to aecr, where a is consid-

ered equal to 10 as proposed by Lee and Mosalam [17]. It is
assumed that a fiber with its tensile strain P10ecr is fully
cracked and has completely lost its tensile strength.

The stress–strain relationship of confined concrete in com-

pression (Fig. 7b) is represented using the tri-linear approxi-
mation of Elmorsi [18], which is based on the stress–strain
relation proposed by Saenz [19]. In this figure, e0c and f0c are

the peak strain and stress of the unconfined concrete. The va-
lue of f0c is usually known while the value of e0c is estimated
using the formula proposed by Al Sulayfani and Lamirault

[20]. The initial tangent stiffness E1 is equal to 2f0c=e
0
c. K is

the factor that accounts for the strength increase due to con-
finement. The factor K and the slope of the strain softening

branch of the compression stress–strain relationship are depen-
dent on the amount of steel stirrups and are calculated using
the model of Kent and Park [21].

The rules that govern the cyclic behavior of concrete in

compression are considered as those presented by Taucer
et al. [11]. Unloading from a point on the envelope curve
takes place along a straight line connecting the point er at

which unloading starts to a point ep on the strain axis. The
value of ep is given by the equations proposed by Karasan
and Jirsa [22] and modified by Taucer et al. [11].
g C1 C2 C3

0.60 0.60 0.3667 0.0589

0.70 0.70 0.4000 0.0633

0.80 0.80 0.4333 0.0689

0.90 0.90 0.4667 0.0756

1.00 1.00 0.5000 0.0833
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The monotonic response of reinforcing steel is represented
using a bilinear elastic-strain hardening model which is widely

used for its simplicity. A kinematic hardening rule is consid-
ered for modeling the cyclic stress–strain relation of the rein-
forcing steel.
6. Member flexibility matrix

The beam-column model has three local degrees of freedom {u,

h1, h2} and three local force components {N,M1,M2}, as shown
in Fig. 8. h1 and h2 represent the nodal rotations, u represents
the axial displacement, M1 and M2 represent the member end

moments and N represents the axial force. The incremental dis-
placement vector and the incremental force vector of the ele-
ment are related by a symmetric tangent flexibility matrix in
local coordinates according to:

du

dh1

dh2

8><
>:

9>=
>; ¼

F11 F12 F13

F21 F22 F23

F31 F32 F33

2
64

3
75

dN

dM1

dM2

8><
>:

9>=
>; ð7Þ

Or in general form : fddg ¼ ½F�fdPg ð8Þ

The data required for determining the tangent flexibility ma-
trix [F] are the tangent flexibility coefficients of the end sections
di,j, the tangent flexibility coefficients of the end sections at the

end of the cracking stage dci;j, the yielding and the cracking
lengths (Xc1, Xy1, Xc2 and Xy2), the flexibility distribution func-
tions considered along the inelastic lengths, and the member

elastic properties (EAo, EIo and L). The shape constants
assigned for the yielding flexibility functions are denoted Cy1,
Cy2, and Cy3, while the shape constants considered for the
cracking zones are denoted Cc1, Cc2, and Cc3.
The flexibility coefficients Fij are calculated using the elastic
weight method. In the elastic weight method, the flexibility coef-

ficients Fij are the local reactions of the beam-column element
when loaded with elastic loads which obtained by integrating
the flexibility distribution diagrams shown in Fig. 5 with the

internal force diagrams shown in Fig. 9. The flexibility coeffi-
cients Fij are calculated as follows:

F11 ¼L=EA0þA11þB11þC11þA12þB12þC12

F12 ¼A21ð1�Zy1ÞþB21ð1�Xy1=2LÞþC21ð1�Zc1�Xy1=LÞþA22Zy2

þB22Xy2=2LþC22ðXy2=LþZc2Þ
F13 ¼�A21Zy1�B21ðXy1=2LÞ�C21ðXy1=LþZc1Þ�A22ð1�Zy2Þ

�B22ð1�Xy2=2LÞ�C22ð1�Xy2=L�Zc2Þ

F22 ¼L=3EIþA32Zy2Wy2þB32ðXy2=LÞ2=3þC32ððXy2=LÞ2

þZc2ð2Xy2=LþWc2ÞÞþA31ð1�Zy1ð2�Wy1ÞÞ

þB31ð1�Xy1=LþðXy1=LÞ2=3ÞþC31ðð1�Xy1=LÞ2þZc1ð�2þ2Xy1=LþWc1ÞÞ

F23 ¼�L=6EI�A32Zy2ð1�Wy2Þ�B32ðXy2=2L�ðXy2=LÞ2=3Þ�C32ðXy2=L�ðXy2=2Þ2

þZc2ð1�2Xy2=L�Wc2ÞÞ�A31Zy1ð1�Wy1Þ�B31ðXy1=2L�ð1=3ÞðXy1=LÞ2Þ

�C31ðXy1=L�ðXy1=LÞ2ÞþZc1ð1�2Xy1=L�Wc1ÞÞ

F33 ¼L=3EIþA31Zy1Wy1þB31ðXy1=LÞ2=3

þC31ððXy1=LÞ2þZc1ð2Xy1=LþWc1ÞÞA32ð1�Zy2ð2�Wy2ÞÞ
þB32ð1�Xy2=LþðXy1=LÞ2=3ÞþC32ðð1�Xy2=LÞ2

þZc2ð�2þ2Xy2=LþWc2ÞÞ

ð9Þ
where

A;ij¼Cy1Xyjðdij�dcijÞ; Bij¼Xyjðdcij�di0Þ; Cij¼Cc1Xcjðdcij�di0Þ
Zyj¼Cy2Xyj=L; Zcj¼Cc2Xcj=L; Wcj¼ðCc2þCc3=Cc2ÞXcj=L;

Wyj¼ðCy2þCy3=Cy2ÞXyj=L

ð10Þ

Eqs. (9) and (10) indicate that the flexibility shapes are repre-
sented in the element tangent flexibility matrix only by the

inelastic lengths (Xy1, Xy2, Xc1, and Xc2), flexibility coefficients
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Figure 9 Diagrams of unit force increments.
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of the end sections ðdi;j and dci;jÞ, the flexibility constants of the
yielding and the cracking shapes (Cy1, Cy2, Cy3, Cc1, Cc2, and

Cc3). In case of neglecting the concrete tensile strength for the
purpose of simplicity, the flexibility coefficients can be calcu-
lated as:
F11 ¼ L=EAcr þ A11 þ A12F12 ¼ A21ð1� Z1Þ þ A22Z2

F13 ¼ �A21Z1 � A22ð1� Z2Þ
F22 ¼ L=3EIcr þ A31ð1� 2Z1 þ Z1W1Þ þ A32Z2W2

F23 ¼ �L=6EIcr þ A31Z1ðW1 � 1Þ þ A32Z2ð1�W2Þ
F33 ¼ L=3EIcr þ A31Z1W1 þ A32ð1� 2Z2 þ Z2W2Þ

ð11Þ

where Acr and Icr are the area and the moment of inertia of the
cracked cross section and:
Aij ¼ Cy1Xyjðdij � di0Þ; Zj ¼ Cy2Xyj=L;

Wj ¼ ðCy2 þ Cy3=Cy2ÞXyj=L ð12Þ

Eqs. (11) and (12) indicate that the flexibility shapes are repre-
sented in the element inelastic flexibility matrix by only the
yielding lengths (Xy1 and Xy2), the flexibility values of the
end sections (di,j � di,0) and the shape constants (Cy1, Cy2

and Cy3). The equations also indicate that the proper estima-
tion of the shape constants is a crucial issue for accurately
determining the inelastic response of the RC members.
7. Conclusions

The proposed RC beam-column model formulated in this

study strikes a good balance between accuracy and simplicity.
The simplicity of the proposed model is achieved by monitor-
ing only the responses of the end sections and eliminating the

need for considering many segments along the element
length.

The response of the end sections is calculated by dividing

them into concrete and steel fibers. The material model used
for concrete is simple for programming and takes into ac-
count the main behavioral characteristics of concrete under
the effect of cyclic loading. The inelastic zones at the member

ends are divided into cracking and yielding zones with their
lengths are updated every load increment. The overall re-
sponse of the member is estimated using a preset flexibility

distribution functions along the element length. The preset
flexibility distribution functions are selected to fit the actual
flexibility distributions.

The proposed model accounts rationally for the axial–flex-
ural interaction and provides the fiber strains as an output
which can be used for in seismic damage evaluation of RC

members. Moreover, the model accounts for the spread of
plasticity and is capable of producing the gradual change of
the stiffness in the post-yield range. The proposed beam-col-
umn element is implemented in the general purpose computer

program DRAIN-2DX.
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