A non-hamiltonian cyclically 4-edge connected bicubic graph with 50 vertices is constructed. This is the smallest non-hamiltonian 3-connected bicubic graph known. © 1989 Academic Press, Inc.

A graph is bicubic if it is bipartite and 3-regular. A graph is hamiltonian if it contains a circuit that includes every vertex. A graph is cyclically 4-edge connected if any set of edges whose removal separates the graph into two parts both containing circuits, contains at least 4 edges.

In 1971 Tutte [5] published a conjecture that no non-hamiltonian 3-connected bicubic graph existed. Horton found the first such graph on 96 vertices (see [1, p. 240]). Horton [4] later published another one on 92 vertices. Ellingham [2] constructed an infinite family of these graphs, the smallest on 78 vertices. He noted that up to that point no cyclically 4-edge connected bicubic graph had been found. Ellingham and Horton [3] constructed an infinite family of cyclically 4-edge connected such graphs with the smallest on 54 vertices. In this note we construct another infinite family of cyclically 4-edge connected bicubic graphs whose smallest member has 50 vertices.

Let uv be an edge in a graph. Let w be a vertex not in the graph. We say that w is inserted along uv if w is added to the vertex set and edge uv is replaced by edges uw and wv. If vertices a_1 and a_2 are inserted along uv, then a_1 and a_2 are added to the vertex set and uv is replaced by edges ua_1, a_1a_2, and a_2v.

Let T be the trivalent tree on 6 vertices, as shown in Fig. 1.

Let A be a cyclically 4-edge connected bicubic graph with the property that no hamiltonian circuit passes through both of two particular non-adjacent edges. Let ab and cd be the specified edges. Such a graph on 18 vertices is shown in Fig. 2. This graph was used by Ellingham and Horton in their constructions.
Let B be the graph obtained by inserting two vertices along each of the specified edges in A. Let e, f, g, h be inserted along ab and cd, respectively. We note that B is bipartite and non-hamiltonian with four vertices of degree 2, namely e, f, g, h.

Let B_1 and B_2 be copies of B. For $i = 1$ and 2, let e_i, f_i, g_i, h_i be the vertices of degree 2 in B_i. We join with edges these vertices of degree 2 and the vertices of degree 1 in a copy of T, as indicated in Fig. 3.

It can be easily shown that the resulting graph G is bicubic and cyclically 4-edge connected. To show that G is non-hamiltonian, we assume to the contrary that G does have a hamiltonian circuit H. Consequently, for each i, either 2 or 4 of the edges joining B_i and T are included in H. We will consider each of the four cases separately.

Case 1. H includes 2 edges joining B_1 and T and 2 edges joining B_2 and T. For each i, the restriction of H to B_i is a hamiltonian path. Since B_i
is non-hamiltonian, bipartite, and has an even number of vertices e_i and h_i or f_i and g_i are the endpoints of this path. If e_1 and h_1 are the endpoints for the restriction of H to B_1, and e_2 and h_2 are the endpoints for the restriction of H to B_2, the edges e_1s, h_1q, e_2s, and h_2p are included in H. These edges, however, make it impossible for H to include vertices y and r. Similar results occur when e_1 and h_1 and f_2 and g_2, f_1 and g_1 and e_2 and h_2, f_1 and g_1 and f_2 and g_2, are the endpoints for the restriction of H to B_1 and B_2, respectively. Since H must include every vertex in G, we conclude that H cannot include 2 edges joining B_1 and T and 2 edges joining B_2 and T.

Case 2. H includes 2 edges joining B_1 and T and 4 edges joining B_2 and T. H includes edges e_2s, f_2q, g_2r, and h_2p. The restriction of H to B_2 forms two disjoint paths which include every vertex in B_2 and have endpoints e_2, f_2, g_2, and h_2. One path has endpoints e_2 and f_2, and the other path has endpoints g_2 and h_2, for, otherwise, these paths and edges e_2f_2 and g_2h_2 would form a hamiltonian circuit in B_2, which is impossible. Let P_1 and P_2 denote these paths, respectively.

The restriction of H to B_1 has endpoints e_1 and h_1 or f_1 and g_1. If e_1 and h_1 are its endpoints, then e_1s and h_1q are in H. The restriction of H to B_1, path P_1, and edges e_1s, h_1q, e_2s, and f_2q form a circuit that misses vertices x and y. Similarly, if f_1 and g_1 are the endpoints for the restriction of H to B_1, H contains the circuit formed by this restriction, path P_2, and edges f_1p, g_1r, and h_2p, which misses vertices x and y. Thus, H cannot include 2 edges joining B_1 and T and 4 edges joining B_2 and T.

Case 3. H includes 4 edges joining B_1 and T and 2 edges joining B_2 and T. By using arguments similar to those found in Case 2, we determine that H contains a circuit which does not include vertices x and y, and so H cannot occur in this case.

Case 4. H includes 4 edges joining B_1 and T and 4 edges joining B_2 and T. Since e_1s and e_2s are in H, ys cannot be in H. Similar arguments
show that edges px, qx, and ry cannot be in H. As a result, H cannot include vertices x and y, a contradiction.

The smallest non-hamiltonian cyclically 4-edge connected bicubic graph obtained by using this technique has 50 vertices and appears in Fig. 4. Replacing the subgraph induced by vertices x and y with a suitable graph in the general construction also produces such a graph. As a result, we can obtain a non-hamiltonian cyclically 4-edge connected bicubic graph on $2n$ vertices, $2n > 50$.

REFERENCES