included in the national Dutch influenza vaccination program, that encompasses the elderly of 63 years and older. The objective of this study is to estimate the cost and benefits of vaccinating healthy working adults aged 25 to 64 years against influenza.

METHODS: Our cost-benefit analysis includes the direct and indirect costs associated with vaccination as well as the direct and indirect costs avoided by vaccination. The underlying model links influenza incidence to health-care resource use, work absenteeism and productivity loss. Health-care resource use was specified for general practitioner visits, hospitalizations and drugs. Clinical and economical parameter estimates were derived from published literature and Dutch registry data.

RESULTS: Vaccinating healthy working adults aged 25 to 44 years costs €0.39 per person per year. Vaccinating persons aged 45 to 64 years saves €1.51 per person per year. On the population level, vaccinating persons aged 25–44 years costs about €1.4 million per year, vaccinating persons aged 45–64 years saves about €2.3 million per year. On average, vaccinating healthy working adults saves €0.9 million. The indirect costs prevented primarily determine the cost-benefit outcome of vaccination for healthy working adults.

CONCLUSIONS: Influenza vaccination of healthy working adults is cost saving. These findings support routine vaccination for this group, from the employer's perspective.

A COST BENEFIT ANALYSIS OF TWO ALTERNATIVE MASS IMMUNIZATION PROGRAMS WITH A CONJUGATE VACCINE AGAINST MENINGOCOCCAL DISEASE TYPE C

Simons WR1, Rancourt C2, Grégoire JP2, Dostie A2
1Global Health Economics and Outcomes Research Inc, Short Hills, NJ, USA; 2Merck Frosst Canada Ltd, Kirkland, QC, Canada

OBJECTIVE: We conducted a cost-benefit analysis of two approaches to manage a regional outbreak of serogroup C meningococcal disease (MCD): 1. a planned mass immunization program (MIP) of 2,000,000 Quebec residents aged 2 months to 20 years, that would be implemented in September 2001; 2. an emergency MIP implemented at the peak of subsequent outbreaks.

METHODS: As a reference case, we used the scenario that occurred in Quebec in 1991—several targeted regional vaccination programs were implemented in an attempt to ward off a more widespread outbreak of MCD. Unfortunately, at the end of 1992, public-health authorities had to implement a province-wide emergency MIP. We assessed the benefit of the programs using epidemiological data from the previous cycle of MCD in Quebec. Benefits included the number of new MCD cases prevented by the administration of Menjugate™ and their associated hospital and societal costs due to premature mortality and related morbidity. Costs included acquisition and administration cost of the conjugate vaccine, clerical, physician and health-services costs, and those related to lost productivity. We conducted the analysis in a societal perspective assuming Quebec would face a similar epidemiological situation in 2001 as the one that started in 1991. All costs were transformed into 2001 Canadian dollars at an annual inflation rate of 3%.

RESULTS: Over a 12-month period, a planned MIP would prevent 127 new cases (18 deaths, 24 major complications) while saving $15.0 million in direct costs to