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A generalisation of a waiting-time relation is developed by the use of Laplace
transform theory. The generalisation produces an infinite series and it is demon-
strated how it may be summed by representation in closed form. Extensions and
examples of the waiting-time relation are given.  © 1997 Academic Press

1. INTRODUCTION

It seems that the sum, after a rearrangement to suit the following work,

© ; . (t+n)" e bt
ab —

ngo( 1) (abe®”) o 15 b (1.1)

first appeared in the work of Jensen [11]. Jensen’s work was based on an

extension of the binomial theorem due to Abel and an application of

Lagrange’s formula.

In the analysis of the delay in the answering of telephone calls, Erlang
[7] obtains an integro-differential-difference equation from which a similar
result to (1.1) is quoted. Likewise a series similar to (1.1) later appeared in
the works of Bruwier [3, 4] in his analysis of differential-difference equa-
tions. In fact, the result (1.1) arises in a number of areas including the

* E-mail: sofo@matilda.vut.edu.au.

191

0022-247X /97 $25.00

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82206437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

192 SOFO AND CERONE

works of Feller [8] on ruin problems, Hall [10] on coverage processes,
Smith [13] on renewal theory, and Tijms [14] on stochastic modelling, just
to name a few. To date no extension to (1.1) appears to be available. It is
therefore the aim of this paper to give a novel technique for the develop-
ment and generalisation of (1.1). Recurrence relations will be developed
and further extensions to the results indicated.

2. THE DIFFERENTIAL-DIFFERENCE EQUATION

Consider the differential-difference equation

io (=% a)e é('ﬁ)”"'f‘”(f ~(R—n)a) =0, t>Ra,
f} (}f)bR"f<'>(t) =0, 0<t<Ra,
r=0

(2.1)

with f®~1(0) = 1 and all other initial conditions at rest, where a, b, and
¢ are real constants. Erlang [2] considered (2.1) in his work on the delay in
the answering of telephone calls for the case of R = 1 only. For the case
of R servers, Erland derived a differential-difference equation different
from (2.1) and this will be the subject of a forthcoming paper.

It has become commonplace to analyse differential-difference equations
by the use of Laplace transform theory. In this paper Laplace transform
techniques will be used to bring out the essential features that are
required for the results.

Taking the Laplace transform of (2.1) results in

1
SO = com(—a)”

F(p)

v (n+R-1)_ < exp[ —an(p + b)]exp(anb)
n¥0( n )( b (p+b)n+R . (2.2)
The inverse Laplace transform is
f(ry="X (n * 5 B 1)(—1)"c” exp[ —b(t — an)]
n=0
(t _ an)nJerl
mH(f — an), (2.3)

where H(x) is the unit Heaviside step function.
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The solution to (2.1) by Laplace transform theory may be written as

1 y+ie -1
1) = — pt d,
1) =g 7 e s (p)] ™ dp
for an appropriate choice of vy such that all the zeros of the characteristic
equation

g(p) = (p+b+ce )" (2.4)

are contained to the left of the line in the Bromwich contour.
Now, using the residue theorem,

f(t) = Y. Residues of {e”‘[g(p)]fl},

which suggests the solution of f(z) may be written in the form f(z) =

Y, O, exp(p,t) where the sum is over all the characteristic roots p, of
g(p) = 0and Q, is the contribution of the residues in F(p) at p = p,.

The poles of (2.2) depend on the zeros of the characteristic equation

(2.4), the roots of g(p) = 0. The dominant root p, of g(p) = 0 has the

greatest real part and therefore asymptotically

R—-1 R—k-1

t) ~ k! ———eX t

f(1) kgo Qf(Rfk)(R_k_l)! P(pot)

and so from (2.3)

> c" —b(t — an —an)" R
= T (-’ e
~ k;k!Q(Rk)mexp(Pof), (25)

where the contribution Q_ _,, to the residue is

(p—po)~
g(p)

d®
KO- p-ip = lim dp®

}, k=0,1,2,...,R-1,

(2.6)

since the right-hand side of (2.2) has a pole of order R for 1 — ac # 0 at
the dominant root p = p,.

It seems reasonable to suggest that if in (2.5) ¢ is large, more and more
terms in the expression on the left-hand side will be included. Therefore it
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is conjectured that, for all positive integer values of R,

= Lchexp[ —b(t — an)](t — an)" 7
EO(_ nI(R - 1)!
Z K'Q_ r- k)(RfTEXp(Pot) (2.7)

for all real values of ¢, in the region where the infinite series converges.
By the use of the ratio test it can be seen that the series on the left-hand
side of (2.7) converges in the region

lac exp(1 + ab)| < 1.

A proof of (2.7) will now be given for the case of R = 2. An application of
Burmann’s theorem will be utilised.

3. THE CONJECTURE PROVED
Burmann’s theorem [15] essentially allows for the expansion of a func-
tion in positive powers of another function, and can be stated as follows:

BURMANN’S THEOREM. Let ¢ be a simple function in a domain D, zero
at a point B of D, and let

0 B 6 = ;
D=5 "B =gy
If f(2) is analytic in D, then,Vz € D,
f(z) =£(B) + 21@#1 [P0 ]y + Ry

where

o(1) " £1(1)d'(v)
foes = 2#1/ d”fc[ ¢(t)} (0 — (v)

The v-integral is taken along a contour I" in D from B to z, and the
t-integral along a closed contour C in D encircling I" once positively.

APPLICATION OF BURMANN’S THEOREM. Without loss of generality,
choosing b +¢ =0 and 1+ ab > 0 allows the dominant root of the
characteristic equation (2.4) to occur at p, = 0.
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Let t = —ar and so from (2.7)
= (abe*®)"(r+n)"TR!
o0 n!
_1 R—k-1
=e b Z O_(r-p(—1) ( ) P (31)
Putting ab = —p in (3.1) gives
- (T+ )n+R 1 1'R 1 R—k—1
5 (e T — e S 0 (R
(3.2)

In the case of R = 2 and evaluating Q_, _,, for k = 0,1 from (2.6) allows
(3.2) to be written as

> ., n(T-l-n)n+1 o T p
T+ Y (pe )—n! =e [(1—p)2 + (1—p)3}. (3.3)

Equation (3.3) is now shown to be true by applying Burmann’s theorem.
Let

s :e“[a o —z)a}'

e(z>—¢(z) ¢, d(z) =z f(B)po=x

and it may be shown that R, , — 0 as n — . From

[ X . t 3
(1-1) (1-1)
. x? xt+2x+1 3¢

PO Tasy Tasy

f(1) = e

and so

f1(0{6(n)}) = exp[t(r +x)] x(1),
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x? xt+2x+1 3t
s T 2
(1-1) (1-1)

= j+1

5 [2x2 + (2x + 1)(j +2) +j(x +j + 2)]t/

and the coefficients in this last expression are the same as those in a
Taylor series expansion

, i+ 1)!
00 = LV o @iy 4 G 2)]
j=0,1,2....
Now let
— dr71 ! r
B(1) = = [r(n{6())']
drfl

el + )] x(n)] =exple(r + )]
(75 e+ + (7 o0 e
o ) [ P O RRY L] [ SPLa )
[ ROl
Hence

B,(0) = (r+x) Yx+1)°+ (r—1)(r+x) " *2x +3)(x +2)
+3(r = 1)(r—2)(r +x) " *(x + 2)(x +3) + -

N (r—l)(r—l—x)(r—l)![
2

2x> +x(3r—2) +r(r— 1)]

+%![2x2 +x(3r+ 1) +r(r+ 1)]
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Put y = r + x, giving
B,(0) =yt +y[-2(r — 1) +2(r — 1)]
+y(r =1 = (r = )(4r = 7) + 3(r = 1)(r = 2)] +

r—1(r—1)! r!
+y[( -1,

+ ?(—7’4—1)

r!
+y° E(2r2—3r2—r+r2+r)

=yt =(r+x)"

Hence it follows that

Xz X z _ (Zeiz)r r+1
e [(1_2)24-(1_2)3}—)6-{- 21 0 (r+x) .

r=

Using the same technique, (3.1) can be proved for R = 3,4,5... . A proof
of (2.7) for the case R = 1 can be found in the work of Cerone and Sofo

[5].

4. A RECURRENCE RELATION FOR 0,

The following lemma regarding moments of the convolution of the
generator function ¢(x) will be proved and required in the evaluation of a
recurrence relation for the contribution QO_ _,,, to the residues.

LEMMA. The nth moment of the Rth convolution of ¢(x) = —bH(a — x)
is (—ab)*(—1)"a"n'CR.

Proof. Consider the rectangular wave ¢(x) = —bH(a —x) = b(—1 +
H(x — a)), which has a Laplace transform of

b(—1+ e aP)

®(p) = »
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The Rth convolution of ®(p) can be expressed as

—1 4 e 9P\
OR(p) = b* T)
s Z( pyep) (p)
= pR , R=1,2,3....
p
A0 & (p)
== Za=h oo
~ (~ab)" fo(—l)’cﬁa*p'. (a.1)

The convolution constants CR in (4.1) can be evaluated recursively as
follows:

1
Cl=8=—"—, R=1,
rTh (r + 1)!
. (4.2)
Ck= Y B_,CF T, R=23,4....
j=0

Moreover, the convolution constants are polynomials in R of degree r, so
that

C=1, Cf=— CX=R(3R +1)/24, andsoon.

These convolution constants are related to Stirling polynomials and details
may be found in the work of Cerone and Sofo [6].

The nth moment of the Rth convolution can be obtained by differentiat-
ing (4.1) n times with respect to p, so that

n

d * ;
g (2 (P] = (a)" T (=) Clar(r = 1) (r=n + D

Therefore the nth moment of ®*(p) is

n

lim —[@*(p)] = (—ab)"(-1)"a"n!C.

o dp"

The proof of the lemma is complete.
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This result will now be used in the determination of a recurrence
relation for Q,. The contribution Q_ _,,, to the residue can be obtained
from (2.6). However, a recurrence relation for Q _ ., is developed which
is argued to be more computationally efficient than using (2.6) directly and
better allows for an induction-type proof of (3.1).

From (2.6)

10 — lim @ | - ) ~0,1,2,....(R - 1)

e N LT T0 A
| ®(p) \"
_,!Enodpm 1+ 1—CI>(p)) w
_ d” | (R g r
Y 1) "4 —@(p))"}
T & (R) & m) 4"’ ok 1
_;If’nokgo(k)rgo(r)dp A (P)] {(1 ®(p))" }

Now utilising the lemma for the (m — r)th moment of ®*(p) implies that

R m
MO nom = X (R)E (1) (-ab) (=)™ (m=ryich_ro_ .,
k=0 r=0
R m
Q—(R—m) = Z (I]:) Z (_a)m_r(_”b)kCr}:z—rQ—(k—r)-
k=0 r=0

Using the fact that C& = 1 and taking the term at k = R, r = m on the
left-hand side results in

P p— )[ f (f)é(—a)’"'(—ab)"

(1 - (_“b)R k=0
xcrlﬁz—rQ—(k—r) - (_ab)RQ—(R—m) - (43)

Equation (4.3) allows for the recursive evaluation of the contribution to
the residues, Q_ z_,,,, With the initial values C{ =1, 0_,_ = 1.

It is instructive to follow an example through so that the flavour of the
calculations for Q_ _,, can be gleaned.
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Consider (4.3) and let m = 1. Then

R

Y (§)(—a'(-arcto

k=0

1

Q—(R—l) = m

R-1

R k ~k
+ —ab) " Cs0_w_1 |-
Eo(k)( ) C3C- 1)}

Since C{ =0, Q__,, = 0 and from previous recursive calculations Cg =
1, Cf =k/2,

1 B —ka( —ab)
Q,(k 0) (1+ab)k Q*(k—l)_ 2(1_(_ab))k+1-
Then
a1 & (R ﬂ
G = (1 (—ab)") k—l(k) 2(1 - (—ab))"

R R —_ab)t k
+,§1(k)( ) 2(1—(—ab))"”]

_ —a(—ab)R R-1/p )
2(1 = (—ab)")(1 - (—ab))" kzo(k)( ?)

X (1 — (—ab))* "

Using the definition of the Bernstein polynomial [1],

B*(x) = Y (n)xk(l —x)" "
k=0 k
Then Q_ z_;, may be expressed as

a’bR[ BR~1(—ab)]

2(1 — (—ab))"* kX:‘,O(—ab)k

Q—(R—l) =

and so
a’bR

R+1°

o )
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If the value of m is specified at the outset, (4.3) may be simplified to
produce the following recurrence relations on R only, so that for m = 0,

Q—((R+l)—0) = [Q—(l—O)]RJrl

for m =1,

R
O (ren-n=(R+10_4_ [0 a_o] "
for m = 2,

1

O rr-n= (R+D]Q q-0Q a2z + RO a-)][0-a-0]" "

and, for m = 3,
Q—((R+l)—3) = (R + 1)[Q—(2—0)Q—(1—3) + 3RQ—(1—0>Q—(1—1)Q—(1—2)

FRR=1){Q ][00 0]

Table 1 gives for some of the O_ »_,,, the contribution to the residues
from using the recurrence relation (4.3) or those following it.

From (3.1) and using the residue calculations at (4.3), or from Table 1,
the results for the right-hand side of (3.1) are listed in Table 2.

These elegant results, expressing the infinite series in closed form, can
be generated from (3.1) for any positive integer value of R.

The results at (2.7) or (3.1) can be used as a basis for the generation of
other infinite series which may be expressed in closed form. This will be
investigated in the next section.

5. GENERATING FUNCTION

The basic equations at (2.7) or (3.1) can be differentiated and integrated
to produce more identities in closed form.

Integrating the result at (2.7) will yield the same result as when consider-
ing the differential-difference equation (2.1) with an exponential- or poly-
nomial-type forcing term, respectively. The analysis can also be achieved
with a polynomial—exponential-type forcing term.

From (2.7), with b + ¢ = 0,

dj . ) (t_an)nJerl
W[Eob exp[ (¢ — an)] ——————
J

~ar

1 tR—kfl

R_
(R—l)!kgoQ(Rk)ml, 0<j<R-1
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coy(@0 +1)96

[(Lae + 0T — S + 42),q,0 + (H0v — ;407 + ¥9T)eqc? + (LAOVT + ¥9E + 8—) 9,7 + (48T + ¥9)qgr — 9T]q40

p ey (47 + 1)OVT
[(caST + ;408 — ¥S + 2)eqe? — (HOZT + HO¥ + 9T—),9,7 + (4002 + 95)9» — 8v ]9, —

cry(@2 +1)8
[(1 = @)a,0 + yavy — 2]a,vy

2ey(ar + 12T
((1 — ¥e)qv — ¥)qery —

Ley(ar +1)2
.04
L@+ 1)
T

AS\ZTQ

Gv'e ‘210 = w a0y “T¥)=F jo sanfepn
T 31gv.l



WAITING-TIME RELATION 203

TABLE 2
Closed-Form Expression of (3.1) for R = 1,2,3,4

R Right-Hand Side of (3.1)

1
1 —abt

¢ 1+ ab
T ab
2 —abt _
(1 +ab)* (1 +ab)®
3 b 2 3abr ab(1 — 2ab)
e 4vT - -
1 +ab)® (@ +ab) (1L+ab)
. e 8 6abr? ab(4 — 1lab)r  ab(1l — 8ab + 6a?b?)
1 +ab)* (1 +ab)’ (1 + ab)° (1 + ab)’

So that

3 b"(n+R—-1)(n+R—-2)(n+R—))
n=0

([ _ an)n+R7(j+l)

X exp[ —b(t — an)] oy

R-1 (R—k-1

—r dr I
— (R - 1).k§OQ,(R,k)—(R %1 (5.1)

j .
— J bi
(i) g

Differentiation is permissible within the radius of convergence of the
infinite series, which for (5.1) is

| —abexp(l + ab)| < 1. (5.2)
For R=2and j =1,

3 (n+ 1)b"exp[ —b(t — an)]ﬂ
=0

]
n n:

b a’b 1
= t+ + —1.
(1+ab)2 1+ab b
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Integrating (2.7) v times with b + ¢ = 0 results in
i bneabn(t _ an)l’l‘FR*l‘FV
o (n+R-1+1)(n+R-1+2)-(n+R—-1+v)

o fer-ay

) 0
v times
v=12,3,....

1 R-k-1

O g -

This integration is permissible within the radius of convergence (5.2).

ForR=2and v =1,

(I _ an)n+2

i (fl + 1)bn exp[—b(t - an)] W

n=0

1 t a*h*—1—ba exp( —bt)

= -+ .
(1 +ab)? | b b2(1 + ab) (b exp(ab))?

In the case when (2.1) has an impulsive-type forcing term of the form

w(t) = 8(r — n) and all initial conditions at rest, then, by a change of

variable t — u = T, w € R™, the relation (2.7) holds with ¢ replaced by T.
Further results may be obtained by considering a forcing term of the

form

tmfl

(m—1)!

on the right-hand side of the system (2.1).
The following section develops specific functional relationships for (3.1).

w(t) =e "

6. FUNCTIONAL RELATIONS

For the case of R =1, Pyke and Weinstock [12] gave a functional
relationship of (3.1). The following lemma states a functional relationship
for (3.1) in the general case with R — 1 = ».

LEMMA. Given that

* ('r-f-n)nﬂj

f(r) = Z(_l)HV"T, v=20,1,2,...,

n=0

then

f(7) +yf(r+ 1) = 7f,4(7)
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and

v °f (@)
fV(T) :qV(T)eXp[_a—l’ a:1,2,3,... .
(ab)* 'q,()
Proof. From (3.1) let y = abe®. Then

('T+ )n+v

é n!

f.(7)

1
—abr k .
=e ZQ—((rﬂrl)fk)(_l) (/I;)a_kq- k,
k=0

n+v

Ly

() + vf(r+ 1)

n+v

x . (t1+1+n)
R N G R
n=0 "

)n+ v—1

> . (t+mn
TZ(_l) 'ynT
n=0 :

= 7f,_4(7).

From the right-hand side of (3.1)
—abr . k(v 1 v—k
f(rt)=e Z Qf((y+1)—k)(_l) k ;7
k=0

v 1
+ab Y 0 (in (=D V)= +1”"}
a kgo (v+1) k)( ) (k)ak(T )

1
= abT[ Z 0. (v+1)— k)( 1) ( )_k{ Vﬁk*'ab(T+ 1)Vk}}

e g, ()
and it follows, after some algebraic manipulation, that

() = q,(r)exp[ — v L. (@) /(ab)* q,(a)]  fora=1,23,....
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in
th

7. CONCLUSION

A novel technique has been developed and utilised in the summing of
finite series. A host of infinite series can be expressed in closed form by
e use of this procedure. This generalisation of a waiting-time relation

apart from the case of R = 1 does not seem to appear in the literature,
such as the work of Gradshteyn and Ryzhik [9].

In a subsequent paper the authors will extend the techniques developed

here to consider noninteger values of R and other cases in which more

th

an one dominant root of the characteristic equation will affect the

closed-form solution of the infinite series.

10.
11.

12.
13.

14.
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