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a b s t r a c t

Let A be the q(q−1)
2 ×

q(q−1)
2 incidence matrix of passant lines

and internal points with respect to a conic in PG(2, q), where q
is an odd prime power. In this article, we study both geometric
and algebraic properties of the column F2-null space L of A. In
particular, using methods from both finite geometry and modular
presentation theory, we manage to compute the dimension of L,
which provides a proof for the conjecture on the dimension of the
binary code generated by L.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let PG(2, q) be the classical projective plane of order q with underlying three-dimensional vector
space V over Fq, the finite field of order q. Throughout this article, PG(2, q) is represented via
homogeneous coordinates. Namely, a point is written as a non-zero vector (a0, a1, a2) and a line is
written as [b0, b1, b2] where not all bi (i = 1, 2, 3) are zero. The set of points

O := {(1, r, r2) | r ∈ Fq} ∪ {(0, 0, 1)} (1.1)

is a conic in PG(2, q) [4]. The above set also comprises the projective solutions of the non-degenerate
quadratic equation

Q (X0, X1, X2) = X2
1 − X0X2 (1.2)

over Fq. With respect to O, the lines of PG(2, q) are partitioned into passant lines (Pa), tangent lines
(T ), and secant lines (Se) accordingly as the sizes of their intersections with O are 0, 1, or 2. Similarly,
points are partitioned into internal points (I), conic points (O), and external points (E) accordingly as
the numbers of tangent lines on which they lie are 0, 1, or 2.

In [1], one low-density parity-check binary code was constructed using the column F2-null space
L of the incidencematrix A of passant lines and internal points with respect toO. It is apparent that A
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is a q(q−1)
2 ×

q(q−1)
2 square matrix. With the help of the computer software Magma, the authors made

a conjecture on the dimension of L as follows:

Conjecture 1.1 ([1, Conjecture 4.7]). Let L be the F2-null space of A, and let dimF2(L) be the dimension
of L. Then

dimF2(L) =
(q − 1)2

4
.

The purpose of this article is to confirm Conjecture 1.1. Apart from the above conjecture, the
dimensions of the column F2-null spaces of the incidence matrices of external points versus secant
lines, external points versus passant lines, and passant lines versus external points were conjectured
in the aforementioned paper [1], and have been established in [8,9], respectively. Here we point out
that this paper refers to [8] for prerequisites and setting.

To start, we recall that the automorphism group G of O is isomorphic to PGL(2, q), and that the
normal subgroup H of G isisomorphic to PSL(2, q). Let F be an algebraic closure of F2. Our idea of
proving Conjecture 1.1 is to first realize L as an FH-module and then decompose it into a direct sum
of its certain submodules whose dimensions are well known. More precisely speaking, we view A as
the matrix of the following homomorphism φ of free F-modules:

φ : F I
→ F I

which first sends an internal point to the formal sumof all internal points on its polar, and then extends
linearly to the whole of F I . Moreover, it can be shown that φ is indeed an FH-module homomorphism.
Consequently, computing the dimension of the column F2-null space of A amounts to finding the
F-null space of φ. To this end, we investigate the underlying FH-module structure of L by applying
Brauer’s theory on the 2-blocks of H and arrive at a convenient decomposition of L.

This article is organized in the following way. In Section 2, we establish that the matrix A satisfies
the relation A3

≡ A (mod 2) under certain orderings of its rows and columns; this relation, in turn,
reveals a geometric description of Ker(φ) as well as yielding a set of generating elements of Ker(φ)
in terms of the concept of internal neighbors. In Section 3, the parity of intersection sizes of certain
subsets of H with the conjugacy classes of H are computed. Combining the results in Section 3 with
Brauer’s theory on blocks, we are able to decompose Ker(φ) into a direct sum of all non-isomorphic
simple FH-modules or this sum plus a trivial module depending on q. Consequently, the dimension of
L follows as a lemma.

2. Geometry of conics

We refer the reader to [5,4] for basic results related to the geometry of conics in PG(2, q) with q
odd. For convenience, we will denote the set of all non-zero squares of Fq by �q, and the set of non-
squares by �̸q; also, F∗

q is the set of non-zero elements of Fq. It is well known [4, p. 181] that the
non-degenerate quadratic form Q (X0, X1, X2) = X2

1 − X0X2 induces a polarity σ (or ⊥) of PG(2, q).

Lemma 2.1 ([4, p. 181–182]). Assume that q is odd.

(i) The polarity σ above defines three bijections; that is, σ : I → Pa, σ : E → Se, and σ : O → T
are all bijections.

(ii) A line [b0, b1, b2] of PG(2, q) is a passant, a tangent, or a secant to O if and only if b21 − 4b0b2 ∈

�̸q, b21 − 4b0b2 = 0, or b21 − 4b0b2 ∈ �q, respectively.
(iii) A point (a0, a1, a2) of PG(2, q) is internal, absolute, or external if and only if a21 − a0a2 ∈ �̸q,

a21 − a0a2 = 0, or a21 − a0a2 ∈ �q, respectively.

LetG be the automorphism group ofO in PGL(3, q) (i.e. the subgroup of PGL(3, q) fixingO setwise).

Lemma 2.2 ([4, p. 158]). G ∼= PGL(2, q).
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We define

H :=


 a2 ab b2

2ac ad + bc 2bd
c2 cd d2

 a, b, c, d ∈ Fq, ad − bc = 1

 . (2.1)

In the rest of the article, we always use ξ to denote a fixed primitive element of Fq. For a, b, c ∈ Fq,
we define

d(a, b, c) :=

a 0 0
0 b 0
0 0 c


, ad(a, b, c) :=

0 0 a
0 b 0
c 0 0


.

For the convenience of discussion, we adopt the following special representatives of G from [8]:

H ∪ d(1, ξ−1, ξ−2) · H. (2.2)

Lemma 2.3 ([2]). The group G acts transitively on both I (respectively, Pa) and E (respectively, Se).

Definition 2.4. Let P be a point not on O and ℓ a line. We define Eℓ and Iℓ to be the set of external
points and the set of internal points on ℓ, respectively, PaP and SeP the set of passant lines and the set
of secant lines through P , respectively, and TP the set of tangent lines through P . Also, N(P) is defined
to be the set of internal points on the passant lines through P including or excluding P accordingly as
q ≡ 3 (mod 4) or q ≡ 1 (mod 4).

Remark 2.5. Using the above notation and Lemma 2.5 in [8], for P ∈ I , we have |EP⊥ | = |SeP | =
q+1
2 ;

|IP⊥ | = |PaP | =
q+1
2 ; and |N(P)| =

q2−1
4 or q2+3

4 accordingly as q ≡ 1 (mod 4) or q ≡ 3 (mod 4).

Let P ∈ I, ℓ ∈ Pa, g ∈ G, andW ≤ G. Using standard notation from permutation group theory, we
have Igℓ = Iℓg , Pa

g
P = PaPg ; E

g
ℓ = Eℓg , Se

g
P = SePg Hg

P = HPg ;N(P)g = N(Pg), (W g)Pg = W g
P . We will

use these results later without further reference. Also, the definition of G yields that (P⊥)g = (Pg)⊥,
where ⊥ is the above defined polarity of PG(2, q).

Proposition 2.6. Let P ∈ I and set K := GP . Then K is transitive on IP⊥ , EP⊥ , PaP , and SeP , respectively.

Proof. Witt’s theorem [6] implies that K acts transitively on isometry classes of the form Q on the
points of P⊥. Note that K = GP⊥ by the definition of G. Dually, we must have that K is transitive on
both PaP and SeP . �

When P = (1, 0, −ξ), using (2.1) and (2.2), we obtain that K := GP

=


 d2 cdξ c2ξ 2

2cd d2 + c2ξ 2dcξ
c2 dc d2

 d, c ∈ Fq, d2 − c2ξ = 1




 d2 −cdξ c2ξ 2

2cd −d2 − c2ξ 2dcξ
c2 −dc d2

 d, c ∈ Fq, −d2 + c2ξ = 1




 d2 cd c2

2cdξ−1 d2 + c2ξ−1 2dc
c2ξ−2 dcξ−1 d2

 d, c ∈ Fq, d2ξ − c2 = 1




 d2 −cd c2

2cdξ−1
−d2 − c2ξ−1 2dc

c2ξ−2
−dcξ−1 d2

 d, c ∈ Fq, −d2ξ + c2 = 1

 . (2.3)
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Theorem 2.7. Let P ∈ I and ℓ ∈ Pa. Then |N(P) ∩ Iℓ| ≡ 0 (mod 2).

Proof. If P ∈ ℓ, it is clear that

|N(P) ∩ Iℓ| =


q − 1
2

, if q ≡ 1 (mod 4),
q + 1
2

, if q ≡ 3 (mod 4),

which is even. Therefore, |N(P) ∩ Iℓ| ≡ 0 (mod 2) for this case.
If ℓ = P⊥, by Lemma 2.9(i) in [8], we have

|N(P) ∩ Iℓ| =


0, if q ≡ 1 (mod 4),
q + 1
2

, if q ≡ 3 (mod 4),

which is even. Hence, |N(P) ∩ Iℓ| ≡ 0 (mod 2) for this case.
Now we assume that we have neither ℓ = P⊥ nor P ∈ ℓ. As G is transitive on Pa and preserves

incidence, we may take ℓ = P⊥

1 = [1, 0, −ξ−1
], where P1 = (1, 0, −ξ) ∈ I . Since P is either on a

passant line through P1 or on a secant line through P1, what remains is to show that |N(P)∩ Iℓ| is even
for any P on a line through P1 with P ∉ ℓ and P ≠ P1.

Case I. P is a point on a secant line through P1 and P ∉ ℓ.
Since K = GP1 acts transitively on SeP1 by Proposition 2.6, it is enough to establish that |N(P) ∩ Iℓ|

is even for an arbitrary internal point on a special secant line, ℓ1 say, through P1. To this end, we may
take ℓ1 = [0, 1, 0]. It is clear that

Iℓ1 = {(1, 0, −ξ j) | 0 ≤ j ≤ q − 1, j odd}

and

Iℓ = {(1, s, ξ) | s ∈ Fq, s2 − ξ ∈ ̸�q}.

Hence, if P = (1, 0, −ξ j) ∈ Iℓ1 then

Dj =

[
1, −

ξ 1−j
+ 1
s

,
1
ξ j

] s ∈ F∗

q, s
2
− ξ ∈ ̸�q


∪ {[0, 1, 0]}

consists of the lines through both P and the points on ℓ. Note that the number of passant lines in Dj is
determined by the number of s satisfying both

1
s2

(ξ 1−j
+ 1)2 −

4
ξ j

∈ ̸�q (2.4)

and

s2 − ξ ∈ ̸�q. (2.5)

Since, s ≠ 0 and whenever s satisfies both (2.4) and (2.5), so does −s, we see that |N(P) ∩ Iℓ| must be
even in this case.

Case II. P is an internal point on a passant line through P1 and P ∉ ℓ.
By Lemma 2.9 [8], we may assume that P ∈ P⊥

3 , where P3 = (1, x, ξ) ∈ Iℓ with x ∈ F∗
q and

x2 − ξ ∈ ̸�q. Here P⊥

3 = [1, − 2x
ξ
, 1

ξ
] is a passant line through P1. Let K = GP1 and let (1, y, ξ) be a

point on ℓ. Using (2.3), we have that L := KP3 fixes (1, y, ξ) if and only if

xy2 − (x2 + ξ)y + xξ = 0;

that is, y = x or y =
ξ

x . Consequently, P3 = (1, x, ξ) and ℓ ∩ P⊥

3 = (1, ξ

x , ξ) are the only points of the
form (1, s, t) on ℓ fixed by L. Since P ∈ P⊥

3 , P ≠ P1 and P ≠ P⊥

3 ∩ ℓ, P = (1, ξ+n
2x , n) for some n ≠ ξ .

Now if we denote by V the set of passant lines through P that meet ℓ in an internal point, then it is
clear that |V| = |N(P)∩ Iℓ|. Direct computations give us that LP ∼= Z2. Since P3 and P are both fixed by
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LP , it follows that both ℓP3,P and P⊥

3 are fixed by LP . Note that when q ≡ 3 (mod 4), both P⊥

3 and ℓP3,P

are in V; and when q ≡ 1 (mod 4), neither ℓP3,P nor P⊥

3 is in V. If there were another line ℓ′ through P
which is distinct from both P⊥

3 and ℓP3,P and which is also fixed by LP , then LP would fix at least three
points on ℓ = P⊥, namely, ℓ′

∩ ℓ, P⊥

3 ∩ ℓ, and P3. Since no further point of the form (1, s, t) except
for P3 and ℓ ∩ P⊥

3 can be fixed by L due to the above discussion, we must have ℓ′
∩ ℓ = (0, 1, 0) ∈ Eℓ.

So ℓ′
∉ V. Using the fact that LP preserves incidence, we conclude that when q ≡ 1 (mod 4), LP has

|V|

2 orbits of length 2 on V; and when q ≡ 3 (mod 4), LP has two orbits of length 1, namely, {P⊥

3 } and
{ℓP3,P}, and

|V|−2
2 orbits of length 2 on V. Either forces |V| to be even. Therefore, |N(P)∩ Iℓ| is even. �

Recall that A is the incidence matrix of Pa and I whose columns are indexed by the internal points
P1, P2, . . . , PN and whose rows are indexed by the passant lines P⊥

1 , P⊥

2 , . . . , P⊥

N ; and A is symmetric.
For the convenience of discussion, for P ∈ I , we define

N(P) =


N(P) ∪ {P}, if q ≡ 1 (mod 4),
N(P) \ {P}, if q ≡ 3 (mod 4).

That is, N(P) is the set of the internal points on the passant lines through P including P . It is clear that
for P ∉ ℓ, |N(P) ∩ Iℓ| = |N(P) ∩ Iℓ|.

Lemma 2.8. Using the above notation, we have A3
≡ A (mod 2), where the congruence means entrywise

congruence.

Proof. Since the (i, j)-entry of A2
= A⊤A is the standard dot product of the ith row of A⊤ and jth

column of A, we have

(A2)i,j = (A⊤A)i,j =


q + 1
2

, if i = j,
1, if ℓPi,Pj ∈ Pa,
0, otherwise.

Therefore, the ith row of A2 (mod 2) indexed by Pi can be viewed as the characteristic row vector of
N(Pi).

If Pi ∈ P⊥

j , then (A3)i,j = ((A2)A⊤)i,j = q since (A2)i,i =
q+1
2 and there are q−1

2 internal
points other than Pi on P⊥

j that are connected with Pi by the passant line P⊥

j . If Pi ∉ P⊥

j , then

(A3)i,j = ((A⊤A)A⊤)i,j ≡ |N(Pi) ∩ IP⊥
j
| = |N(Pi) ∩ IP⊥

j
| ≡ 0 (mod 2) by Theorem 2.7. Consequently,

(A3)i,j ≡


1 (mod 2), if Pi ∈ P⊥

j ,

0 (mod 2), if Pi ∉ P⊥

j .

The lemma follows immediately. �

3. The conjugacy classes and intersection parity

In this section, we present detailed information about the conjugacy classes of H and study their
intersections with some special subsets of H .

3.1. Conjugacy classes

The conjugacy classes of H can be read off in terms of the map T = tr(g) + 1, where tr(g) is the
trace of g .

Lemma 3.1 ([8, Lemma 3.2]). The conjugacy classes of H are given as follows.

(i) D = {d(1, 1, 1)};
(ii) F+ and F−, where F+

∪ F−
= {g ∈ H | T (g) = 4, g ≠ d(1, 1, 1)};
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(iii) [θi] = {g ∈ H | T (g) = θi}, 1 ≤ i ≤
q−5
4 if q ≡ 1 (mod 4), or 1 ≤ i ≤

q−3
4 if q ≡ 3 (mod 4),

where θi ∈ �q, θi ≠ 4, and θi − 4 ∈ �q;
(iv) [0] = {g ∈ H | T (g) = 0};
(v) [πk] = {g ∈ H | T (g) = πk}, 1 ≤ k ≤

q−1
4 if q ≡ 1 (mod 4), or 1 ≤ k ≤

q−3
4 if q ≡ 3 (mod 4),

where πi ∈ �q, πk ≠ 4, and πk − 4 ∈ ̸�q.

Remark 3.2. The set F+
∪ F− forms one conjugacy class of G, and splits into two equal-sized classes

F+ and F− of H . For our purpose, we denote F+
∪ F− by [4]. Also, each of D, [θi], [0], and [πk] forms a

single conjugacy class of G. The class [0] consists of all the elements of order 2 in H .

In the following, for convenience, we frequently use C to denote any one of D, [0], [4], [θi], or [πk].
That is,

C = D, [0], [4], [θi], or [πk]. (3.1)

3.2. Intersection properties

Definition 3.3. Let P,Q ∈ I,W ⊆ I , and ℓ ∈ Pa. We define HP,Q = {h ∈ H | (P⊥)h ∈ PaQ },
SP,ℓ = {h ∈ H | (P⊥)h = ℓ}, and UP,W = {h ∈ H | Ph

∈ W }. That is, HP,Q consists of all the elements
ofH that map the passant line P⊥ to a passant line through Q , SP,ℓ is the set of elements ofH that map
P⊥ to the passant line ℓ, and UP,W is the set of elements of H that map P to a point in W .

Using the above notation, we have that H
g
P,Q = HPg ,Q g , Sg

P,ℓ = SPg ,ℓg , and U
g
P,W = UPg ,W g , where

H
g
P,Q = {g−1hg | h ∈ HP,Q }, Sg

P,ℓ = {g−1hg | h ∈ SP,Q }, and U
g
P,W = {hg

| h ∈ UP,W }. Moreover, it is
true that (C ∩ HP,Q )g = C ∩ HPg ,Q g and (C ∩ UP,W )g = C ∩ UPg ,W g . In the following discussion, we
will use these results without further reference.

Corollary 3.4. Let P ∈ I and K = HP . Then we have:

(i) |K ∩ D| = 1;
(ii) |K ∩ [4]| = 0;
(iii) |K ∩ [πk]| = 2;
(iv) |K ∩ [θi]| = 0;
(v) |K ∩ [0]| =

q+1
2 or q−1

2 accordingly as q ≡ 1 (mod 4) or q ≡ 3 (mod 4).

Proof. The proof is almost identical to the one of Lemma 3.7 in [8]. We omit the detail. �

In the following lemmas, we investigate the parity of |HP,Q ∩ C | for C ≠ [0] and P,Q ∈ I . Recall
that ℓP,Q is the line through P and Q .

Lemma 3.5. Let P,Q ∈ I . Suppose that C = D, [4], [πk] (1 ≤ k ≤
q−1
4 ), or [θi] (1 ≤ i ≤

q−5
4 ).

First assume that q ≡ 1 (mod 4).

(i) If ℓP,Q ∈ PaP , then |HP,Q ∩ C | is always even.
(ii) If ℓP,Q ∈ SeP ,Q ∉ P⊥, and |HP,Q ∩ C | is odd, then C = [θi1 ] or [θi2 ].
(iii) If Q ∈ ℓP,Q ∩ P⊥ and |HP,Q ∩ C | is odd, then C = D.

Now assume that q ≡ 3 (mod 4).

(iv) If ℓP,Q ∈ SeP , then |HP,Q ∩ C | is always even.
(v) If ℓP,Q ∈ PaP ,Q ∉ P⊥, and |HP,Q ∩ C | is odd, then C = [πi1 ] or [πi2 ].
(vi) If Q ∈ ℓP,Q ∩ P⊥ and |HP,Q ∩ C | is odd, then C = D.
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Proof. We only provide the detailed proof for the case when q ≡ 1 (mod 4). Since G acts transitively
on I and preserves incidence, without loss of generality, we may assume that P = (1, 0, −ξ) and let
K = GP .

Since K is transitive on both PaP and SeP by Proposition 2.6 and |HP,Q ∩ C | = |(HP,Q ∩ C)g | =

|HP,Q g ∩ C |, we may assume that Q is on either ℓ1 or ℓ2, where ℓ1 = [1, 0, ξ−1
] ∈ PaP and

ℓ2 = [0, 1, 0] ∈ SeP .
Case I. Q ∈ ℓ1.
In this case, Q = (1, x, −ξ) for some x ∈ F∗

q and x2 + ξ ∈ ̸�q, and

PaQ = {[1, s, (1 + sx)ξ−1
] | s ∈ Fq, s2 − 4(1 + sx)ξ−1

∈ ̸�q}.

Using (2.3), we obtain that

KQ = {d(1, 1, 1), ad(1, −ξ−1, ξ−2)}.

It is obvious that d(1, 1, 1) fixes each line in PaQ . From

ad(1, −ξ−1, ξ−2)−1(1, s, (1 + sx)ξ−1)⊤ = ((1 + sx)ξ , −sξ, 1)⊤,

it follows that a line of the form [1, s, (1 + sx)ξ−1
] is fixed by KQ if and only if s = 0 or s = −2x−1.

Further, since [1, −2x−1, −ξ−1
] is a secant line, we obtain that KQ on PaQ has one orbit of length 1,

i.e. {ℓ1 = [1, 0, ξ−1
]}, and all other orbits, whose representatives are R1, have length 2. From

|HP,Q ∩ C | = |SP,ℓ1 ∩ C | + 2
−
ℓ∈R1

|SP,ℓ ∩ C |,

it follows that the parity of |HP,Q ∩ C | is determined by that of |SP,ℓ1 ∩ C |. Here we used the fact that
|SP,ℓ ∩ C | = |SP,ℓ′ ∩ C | if {ℓ, ℓ′

} is an orbit of KP on PaQ . Meanwhile, it is clear that |SP,ℓ1 ∩ D| = 0.
Note that the quadruples (a, b, c, d) that determine group elements in SP,ℓ1 ∩ C are the solutions

to the following equations:

−2cd + 2abξ−1
= 0

c2 − a2ξ−1
= (d2 − b2ξ−1)ξ−1

a + d = s
ad − bc = 1,

(3.2)

where s2 = 4, πk, θi, and that if one of b and c is zero, so is the other. If b = c = 0 and 2 ∈ �q
then the above (3.2) gives four group elements in [2] and no elements in any other class. If neither b
nor c is zero, then the first two equations in (3.2) yield b = ±

√
−1ξc. Combining with the last two

equations in (3.2), we obtain zero, four or eight quadruples (a, b, c, d) satisfying the above equations,
among which both (a, b, c, d) and (−a, −b, −c, −d) appear at the same time. Since (a, b, c, d) and
(−a, −b, −c, −d) give rise to the same group element, we conclude that |SP,ℓ1 ∩ C | is 0, 2, or 4.

Case II. Q ∈ ℓ2,Q ∉ P⊥, and Q ≠ P .
In this case, Q = (1, 0, −y) for some y ∈ ̸�q and y ≠ ±ξ . Using (2.3), we obtain that

KQ = {d(1, 1, 1), d(−1, 1, −1)}.

Moreover, KQ on PaQ = {[1, s, y−1
] | s ∈ Fq, s2 − 4y−1

∈ ̸�q} has one orbit of length 1, that is,
{ℓ4 = [1, 0, y−1

]}, and all other orbits are of length 2. Arguments similar to those above show that the
parity of |HP,Q ∩C | is the same as that of |SP,ℓ4 ∩C |. So what remains is to find the parity of |SP,ℓ4 ∩C |.
The group elements in SP,ℓ4 ∩ C are determined by the quadruples (a, b, c, d) satisfying the following
equations:

−2cd + 2abξ−1
= 0

c2 − a2ξ−1
= (d2 − b2ξ−1)y−1

a + d = s
ad − bc = 1.

(3.3)
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Note that if one of b and c is zero, so is the other. If neither b nor c is zero, then the first two equations
in (3.3) yield b = ±

√
−ξyc and a = ±


−ξy−1d. Combining with the last two, the above quadruples

(a, b, c, d) yield zero, two, or four group elements in [s2]. If b = c = 0, then ad = 1, d2 = ±


−yξ−1

and a2 = ±


−ξy−1; and so

s2 =


−ξy−1 +


−yξ−1 + 2 or s2 = −


−ξy−1 −


−yξ−1 + 2.

Since (


−ξy−1 +


−yξ−1 + 2)(−


−ξy−1 −


−yξ−1 + 2) = (


ξy−1 +

yξ−1)2, the above

quadruples (a, b, c, d) yield no or one group element in two classes [θi1 ] and [θi2 ] where θi1 =
−ξy−1 +


−yξ−1 + 2 and θi2 = −


−ξy−1 −


−yξ−1 + 2. The above analysis shows that if

|HP,Q ∩ C | is odd then C = [θi1 ] or [θi2 ] in this case.
Case III. Q = ℓ2 ∩ P⊥.
In this case, Q = (1, 0, ξ) and the set of passant lines through Q is

PaQ = {[1, u, −ξ−1
] | u ∈ Fq, u2

+ ξ ∈ ̸�q}.

Using (2.3), we obtain that

KQ = {d(1, 1, 1), d(−1, 1, −1), ad(−1, −ξ−1, −ξ−2), ad(1, −ξ−1, ξ−2)}.

Therefore, among the orbits of KQ on PaQ , {[1, 0, −ξ−1
]} is the only one of length 1 and all others are

of length 2. Hence, the parity of |HP,Q ∩ C | is the same as that of |SP,P ∩ C | which is the same as that
of |K ∩ C |; by Corollary 3.4, it follows that |K ∩ C | is odd if and only if C = D. �

For Q ∈ I , we denote by N(Q ) the complement of N(Q ) in I , that is, N(Q ) = I \ N(Q ).

Lemma 3.6. Let P and Q be two distinct internal points.
Assume that q ≡ 1 (mod 4).

(i) If ℓP,Q ∈ PaP and |UP,N(Q ) ∩ C | is odd, then C = [πk] for one k or C = D.
(ii) If ℓP,Q ∈ SeP , then |UP,N(Q ) ∩ C | is even.

Assume that q ≡ 3 (mod 4).
(iii) If ℓP,Q ∈ PaP , then |UP,N(Q ) ∩ C | is even.
(iv) If ℓP,Q ∈ SeP and |UP,N(Q ) ∩ C | is odd, then C = [θi] for one i or C = D.

Proof. Without loss of generality, we can choose P = (1, 0, −ξ). Since K = GP acts transitively on
both PaP and SeP , we may assume that Q ≠ P is on either a special passant line ℓ1 = [1, 0, ξ−1

] or a
special secant line ℓ2 = [0, 1, 0] through Q .

Case I. ℓ1 = ℓP,Q ∈ PaP .
In this case, Q = (1, x, −ξ) for some x ∈ Fq with u2

+ ξ ∈ ̸�q and its internal neighbor is
N(Q ) = {(1, u, −ξ) | u2

+ ξ ∈ �̸q} \ {(1, x, −ξ)} by definition. As P ∈ N(Q ), it is obvious that
|UP,N(Q ) ∩ D| = 1. Since the action of KQ on PaQ has one orbit of length 1, i.e. ℓ1, and all others are of
length 2, whose representatives form the set R1, we obtain that

|UP,N(Q ) ∩ C | =

−
ℓ∈PaQ

−
P1∈Iℓ\{Q }

|UP,P1 ∩ C |

=

−
P1∈Iℓ1 \{Q }

|UP,P1 ∩ C | + 2
−
ℓ∈R

−
P1∈Iℓ\{Q }

|UP,P1 ∩ C |. (3.4)

Now let P1 = (1, u, −ξ) ∈ Iℓ1\{Q }. Then the number of group elements thatmap P to P1 is determined
by the quadruples (a, b, c, d) which are the solutions to the following system of equations:

ab − cdξ = u(a2 − c2ξ)

b2 − d2ξ = −ξ(a2 − c2ξ)

a + d = s
ad − bc = 1.

(3.5)
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The first two equations in (3.5) yield a2 − c2ξ = A (or −A) where A =


ξ(u2 + ξ

−1
).

Now using b2 − d2ξ = ∓ξA, we obtain

(b + cξ)2 = s2ξ − (2 + A)ξ (or s2ξ − (2 − A)ξ).

If both s2ξ − (2 + A)ξ and s2ξ − (2 − A)ξ are squares, we set B+ =

s2ξ − (2 + A)ξ and

B− =

s2ξ − (2 − A)ξ ; then

a =
1

2sξ
[s2ξ − (B± − 2B±ξc)]


or

1
2sξ

[s2ξ − (B± + 2B±ξc)]


and

d =
1

2sξ
[s2ξ + (B± − 2B±ξc)]


or

1
2sξ

[s2ξ + (B± + 2B±ξc)]


;

combining with the last two equations of (3.5), we have
ξ −

B2
±

s2


c2 +


B3

±

s2ξ
− B±


c +


s2

4
−

B4
±

4s2ξ 2
− 1


= 0 (3.6)

or 
ξ −

B2
±

s2


c2 −


B3

±

s2ξ
− B±


c +


s2

4
−

B4
±

4s2ξ 2
− 1


= 0. (3.7)

The discriminant of (3.6) or (3.7) is

∆ =


1 −

B2
±

s2ξ

 
B2

±
− s2ξ + 4ξ


=

4ξu2

s2(u2 + ξ)
∈ �q.

Consequently, the equations in (3.5) have eight solutions and yield four different group elements.
If one of s2ξ − (2 + A)ξ and s2ξ − (2 − A)ξ is a square and the other is non-square, arguments

similar to those above give that the equations in (3.5) have four solutions and produce two different
group elements.

If one of s2ξ − (2+ A)ξ and s2ξ − (2− A)ξ is zero, then s2 is one of 2+ A and 2− A; and moreover
it is one of πk for 1 ≤ k ≤

q−1
4 since (2 + A)(2 − A) =

4u2

u2+ξ
∈ �̸q and −1 ∈ �q. Consequently, the

equations in (3.5) yield either one or three group elements in [s2].
Therefore, if |UP,N(Q ) ∩ C | is odd, then C = D or [πk] for one k.
Case II. ℓ2 = ℓP,Q ∈ SeP and Q ∉ P⊥.
Then Q = (1, 0, −y) for y ∉ ̸�q and y ≠ ±ξ . From the proof of Case II in Lemma 3.5, we have that

KQ = {d(1, 1, 1), ad(−1, 1, −1)}, and among the orbits of KQ on PaP , KQ has only one orbit of length
1, that is, ℓ4 = [1, 0, y−1

]; and all other orbits are of length 2 whose representatives form the set R.
Since |UP,Iℓi

∩ C | = |UP,Iℓj
∩ C | where ℓi, ℓj ∈ PaP and ℓj = ℓ

g
i for g ∈ KQ , we obtain that

|UP,N(Q ) ∩ C | =

−
ℓ∈PaQ

−
P1∈Iℓ\{Q }

|UP,P1 ∩ C |

=

−
P1∈Iℓ4 \{Q }

|UP,P1 ∩ C | + 2
−
ℓ∈R

−
P1∈Iℓ\{Q }

|UP,P1 ∩ C |. (3.8)

Moreover, since the orbits of KQ on Iℓ4 \ {Q }, whose representatives form the set R1, are of length
2 and |UP,P1 ∩ C | = |UP,P2 ∩ C | for P2 = Pg

1 , the first term of the last expression in (3.8) can be
rewritten as

2
−

P1∈R1

|UP,P1 ∩ C |.

So |UP,N(Q ) ∩ C | is even in this case.
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Case III. P = ℓ2 ∩ P⊥.
In this case, we have Q = (1, 0, ξ). Among the orbits of KQ on PaP , only one has length 1, i.e. P⊥.

Moreover, all the orbits of KQ on IP⊥ \ {Q } are of length 2. Hence |UP,N(Q ) ∩ C | is even.
The case when q ≡ 3 (mod 4) can be established in the same way and we omit the details. �

4. Linear maps

Let F be the algebraic closure of F2 defined in Section 4. Recall that for P ∈ I,N(P) is the set of
external points on the passant lines through P with P included if and only if q ≡ 3 (mod 4). We
define D to be the incidence matrix of N(P) (P ∈ I) and I . That is, the rows of D can be viewed as the
characteristic vectors of N(P) with respect to I . In the following, we always regard both D and A as
matrices over F . Moreover, it is apparent thatD = A2

+ I, where I is the identity matrix of proper size.

Definition 4.1. For W ⊆ I , we define CW to be the row characteristic vector of W with respect to I ,
namely CW is a 0–1 row vector of length |I| with entries indexed by internal points and the entry of
CW is 1 if and only if the point indexing the entry is in W . If W = {P}, as a convention, we write CW
as CP .

Let k be the complex field C, the algebraic closure F of F2, or the ring S in (4.1) of [8]. Let kI be the
free k-module with the base {CP | P ∈ I}. If we extend the action of H on the basis elements of kI ,
which is defined by CQ · h = CQ h for P ∈ I and h ∈ H , linearly to kI , then kI is a kH-permutation
module. Since H is transitive on I , we have

kI = IndH
K (1k),

where K is the stabilizer of an internal point in H and IndH
K (1k) is the kH-module induced from 1k.

The decomposition of 1↑H
K , the character of IndH

K (1k), into a sum of the irreducible ordinary
characters of H is given as follows.

Lemma 4.2. Let K be the stabilizer of an internal point in H.
Assume that q ≡ 1 (mod 4). Let χs, 1 ≤ s ≤

q−1
4 , be the irreducible characters of degree

q − 1, φr , 1 ≤ r ≤
q−5
4 , the irreducible characters of degree q + 1, γ the irreducible character of degree

q, and βj, 1 ≤ j ≤ 2, the irreducible characters of degree q+1
2 .

(i) If q ≡ 1 (mod 8), then

1K↑
H
K = 1H +

(q−1)/4−
s=1

χs + γ + β1 + β2 +

(q−9)/4−
j=1

φrj ,

where φrj , 1 ≤ j ≤
q−9
4 , may not be distinct.

(ii) If q ≡ 5 (mod 8), then

1K↑
H
K = 1H +

(q−1)/4−
s=1

χs + γ +

(q−5)/4−
j=1

φrj ,

where φrj , 1 ≤ j ≤
q−5
4 , may not be distinct.

Next assume that q ≡ 3 (mod 4). Let χs, 1 ≤ s ≤
q−3
4 , be the irreducible characters of degree

q − 1, φr , 1 ≤ r ≤
q−3
4 , the irreducible characters of degree q + 1, γ the irreducible character of degree

q, and ηj, 1 ≤ j ≤ 2, the irreducible characters of degree q−1
2 .

(iii) If q ≡ 3 (mod 8), then

1K↑
H
K = 1H +

(q−3)/4−
r=1

φr + η1 + η2 +

(q−3)/4−
j=1

χsj ,

where χsj , 1 ≤ j ≤
q−3
4 , may not be distinct.
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(iv) If q ≡ 7 (mod 8), then

1K↑
H
K = 1H +

(q−3)/4−
r=1

φr +

(q+1)/4−
j=1

χsj ,

where χsj , 1 ≤ j ≤
q+1
4 , may not be distinct.

Proof. We provide the proof for the case when q ≡ 1 (mod 4) and we use the character tables of
PSL(2, q) in the appendix of [8].

Let 1H be the trivial character of H . By the Frobenius reciprocity [3],
1K↑

H
K , 1H


H =


1K , 1H↓

H
K


K = 1.

Let χs be an irreducible character of degree q− 1 of H , where 1 ≤ s ≤
q−1
4 . We denote the number

of elements of K lying in the class [πk] by dk. Then dk = 2 by Lemma 3.4(iii), and so
1K↑

H
K , χs


H =


1K , χs↓

H
K


K =

1
|K |

−
g∈K

χs ↓
H
K (g)

=
1

q + 1


(1)(q − 1) + 2

(q−1)/4−
k=1

(−δ(2k)s
− δ−(2k)s)


= 1,

where
(q−1)/4−
k=1

(−δ(2k)s
− δ−(2k)s) = −(1 + δ2s

+ (δ2s)2 + · · · + (δ2s)(q−1)/2
− 1)

= −
1 − δ(q+1)s

1 − δ2s
+ 1

= 1

since δq+1
= 1.

Let γ be the irreducible character of degree q of H . Then
1K↑

H
K , γ


H =


1K , γ↓

H
K


K =

1
|K |

−
g∈K

γ ↓
H
K (g)

=
1

q + 1

[
(1)(q) + (2)(−1)


q − 1
4


+ (1)


q + 1
2

]
= 1.

Let βj be any irreducible character of degree q+1
2 of H . Then

1K↑
H
K , βj


H =

1
|K |

−
g∈K

βj ↓
H
K (g)

=
1

q + 1

[
(1)


q + 1
2


+ (2)


q − 1
4


(0) +


q + 1
2


(−1)(q−1)/4

]
. (4.1)

Consequently, if q ≡ 1 (mod 8), then (−1)
q−1
4 = 1, and so


1K↑

H
K , βj


H = 1; otherwise, (−1)

q−1
4 =

−1, and so

1K↑

H
K , βj


H = 0.

Since the sumof the degrees of 1,χs, γ , andβj is less than the degree of 1↑H
K and only the irreducible

characters of degree q + 1 of H have not been taken into account yet, we see that all the irreducible
constituents of
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1K↑
H
K − 1H −

(q−1)/4−
s=1

χs − γ − β1 − β2 or 1K↑
H
K − 1H −

(q−1)/4−
s=1

χs − γ

must have degree q + 1. �

Since H preserves incidence, it is obvious that, for P ∈ I and h ∈ H ,

h · CN(P) = CN(Ph).

In the rest of the article, we always view CP as a vector over F . Consider the maps φ and µ from F I

to F I defined by extending

CP → CP⊥ , CP → CN(P)

linearly to F I , respectively. Then it is clear that as F-linear maps, the matrices of φ and µ, are A and D,
respectively, and for x ∈ F I , φ(x) = xA and µ(x) = xD. Moreover, we have the following result since
H is transitive on I and preserves incidence:

Lemma 4.3. The maps φ and µ are both FH-module homomorphisms from F I to F I .

We will always use 0 and 0̂ to denote the all-zero row vector of length |I| and the all-zero matrix
of size |I| × |I|, respectively; and we denote by Ĵ and J the all-one row vector of length |I| and the
all-one matrix of size |I| × |I|. The following proposition can be easily verified using the fact that
A3

≡ A (mod 2).

Proposition 4.4. As FH-modules, F I
= Im(φ) ⊕ Ker(φ), where Im(φ) and Ker(φ) are the image and

kernel of φ, respectively.

Proof. It is clear that Ker(φ) ⊆ Ker(φ2). If x ∈ Ker(φ2), then x ∈ Ker(φ) since

φ(x) = φ3(x) = φ(φ2(x)) = 0.

Therefore, Ker(φ2) = Ker(φ). Furthermore, since Ker(φ) ⊆ Ker(φ2) ⊆ Ker(φ3) ⊆ · · ·, we have
Ker(φi) = Ker(φ) for i ≥ 2. Applying the Fitting decomposition theorem [7, p. 285] to the operator
φ, we can find an i such that F I

= Ker(φi) ⊕ Im(φi). From the above discussions, we must have
F I

= Ker(φ) ⊕ Im(φ). �

Corollary 4.5. As FH-modules, IndH
K (1F ) ∼= Ker(φ) ⊕ Im(φ).

Proof. The conclusion follows immediately from Proposition 4.4 and the fact that IndH
K (1F ) ∼= F E . �

Using the above notation, we set C = D + J, where J is the all-one matrix of proper size. Then the
matrix C can be viewed as the incidence matrix of N(P) (P ∈ I) and I , and so CPC = CN(P).

Let µ2 be the FH-homomorphism from F I to F I whose matrix with respect to the natural basis is
C. The following proposition is clear.

Proposition 4.6. Using the above notation, we have Ker(φ) = Im(µ).

Furthermore, we have the following decomposition of Ker(φ).

Lemma 4.7. Assume that q ≡ 3 (mod 4). Then we have, as FH-modules, Ker(φ) = ⟨Ĵ⟩ ⊕ Im(µ2), where
⟨Ĵ⟩ is the trivial FH-module generated by Ĵ.
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Proof. Let y ∈ ⟨Ĵ⟩ ∩ Im(µ2). Then y = µ2(x) = λĴ for some λ ∈ F and x ∈ F I . Or equivalently, we
have µ2(x) = xC = x(A2

+ I + J) = λĴ. Note that J2 = J and ĴJ = Ĵ since 2 - |I| when q ≡ 3 (mod 4).
Moreover, A2J = 0̂ as each row of A2, viewed as the characteristic vector of N(P), has an even number
of 1s. Consequently,

λĴ = λĴJ = x(A2
+ I + J)J = x(A2J + IJ + J2) = x(0̂ + J + J) = 0.

It follows that λ = 0. Therefore, we must have ⟨Ĵ⟩ ∩ Im(µ2) = 0.
It is obvious that ⟨Ĵ⟩+ Im(µ2) ⊆ Ker(φ). Let x ∈ Ker(φ). Then x = y(A2

+ I) for some y ∈ F I . Since
yJ = ⟨y, Ĵ⟩Ĵ, we obtain that x = y(A2

+ I + J) + ⟨y, Ĵ⟩Ĵ, where ⟨y, Ĵ⟩ is the standard inner product of
the vectors y and Ĵ. Hence x ∈ ⟨Ĵ⟩ + Im(µ2) and so Ker(φ) = ⟨Ĵ⟩ ⊕ Im(µ2). �

5. Statement and proof of the main theorem

The main theorem is stated as follows.

Theorem 5.1. Let Ker(φ) be defined as above. As FH-modules,

(i) if q ≡ 1 (mod 4), then

Ker(φ) =

(q−1)/4
s=1

Ms,

where Ms for 1 ≤ s ≤
q−1
4 are pairwise non-isomorphic simple FH-modules of dimension q − 1;

(ii) if q ≡ 3 (mod 4), then

Ker(φ) = ⟨Ĵ⟩ ⊕


(q−3)/4

r=1

Mr


,

where Mr for 1 ≤ s ≤
q−3
4 are pairwise non-isomorphic simple FH-modules of dimension q + 1 and

⟨Ĵ⟩ is the trivial FH-module generated by the all-one column vector of length |I|.

In what follows, we refer the reader to Section 4 and Lemma 7.1 in [8] for the discussions of the
block idempotents of H and their corresponding standard notation.

Lemma 5.2. The following two statements are true.

(i) If q ≡ 1 (mod 4), then the character of fBs · IndH
K (1C) is χs for each block Bs of defect 0.

(ii) If q ≡ 3 (mod 4), then the character of fBr · IndH
K (1C) is φr for each block Br of defect 0.

Proof. The corollary follows from Lemma 4.1 in [8] and Lemma 4.2. �

Lemma 5.3. Let q−1 = 2nmor q+1 = 2nmwith2 - maccordingly as q ≡ 1 (mod 4) or q ≡ 3 (mod 4).
Using the above notation,

(i) if q ≡ 1 (mod 4), then eB0 · Ker(φ) = 0, eBs · Im(φ) = 0 for 1 ≤ s ≤
q−1
4 , and eB′

t
· Ker(φ) = 0 for

m ≥ 3 and 1 ≤ t ≤
m−1
2 ;

(ii) if q ≡ 3 (mod 4), then eB0 · Im(µ2) = 0, eBr · Im(φ) = 0 for 1 ≤ r ≤
q−3
4 , and eB′

t
· Im(µ2) = 0 for

m ≥ 3 and 1 ≤ t ≤
m−1
2 .

Proof. It is clear that Im(φ),Ker(φ), and Im(µ2) are generated by

{CP⊥ | P ∈ I}, {CN(P) | P ∈ I}, and {CN(P) | P ∈ I}
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over F , respectively. Now let B ∈ Bl(H). Since

eB · CP⊥ =

−
C∈Cl(H)

eB(C)
−
h∈C

h · CP⊥

=

−
C∈Cl(H)

eB(C)
−
h∈C

C(P⊥)h ,

=

−
C∈Cl(H)

eB(C)
−
h∈C

−
Q∈(P⊥)h∩I

CQ ,

we have

eB · CP⊥ =

−
Q∈I

S1(B, P,Q )CQ ,

where

S1(B, P,Q ) :=

−
C∈Cl(H)

|HP,Q ∩ C |eB(C).

Similarly eB · CN(P) =
∑

Q∈I S2(B, P,Q )CQ and eB · CN(P) =
∑

Q∈I S3(B, P,Q )CQ , where

S2(B, P,Q ) =

−
C∈Cl(H)

|UP,N(Q ) ∩ C |eB(C)

and

S3(B, P,Q ) =

−
C∈Cl(H)

|UP,N(Q ) ∩ C |eB(C).

Assume first that q ≡ 1 (mod 4). If ℓP,Q ∈ PaP , then S1(Bs, P,Q ) = 0 for each s since |HP,Q ∩C | = 0
in F for each C ≠ [0] by Lemma 3.6(i), and eBs([0]) = 0 by Lemma 4.5 2(c) in [8]; and by Lemma 3.6(i),
and Lemma 4.5 1(a), (c), (d), (a), (c), (d) in [8], we obtain

S2(B0, P,Q ) = eB0([0]) + eB0([πk]) + eB0(D) = 0 + 1 + 1 = 0

and

S2(B′

t , P,Q ) = eB′
t
([0]) + eB′

t
([πk]) + eB′

t
(D) = 0 + 0 + 0 = 0.

If ℓP,Q ∈ SeP and Q ∉ P⊥, then by Lemma 3.5(ii), and Lemma 4.5 2(c) in [8] we obtain

S1(Bs, P,Q ) = eBs([0]) + eBs([θi1 ]) + eBs([θi1 ]) = 0 + 0 + 0 = 0;

and by Lemma 4.5 1(c), 3(c) in [8], and Lemma 3.6(ii), S2(B0, P,Q ) = eB0([0]) = 0 and S2(B′
t , P,Q ) =

eB′
t
([0]) = 0.
If ℓP,Q ∈ SeP and Q ∈ P⊥, then by Lemma 3.5(iii), and Lemma 4.5 2(a) and (c) in [8] we obtain

S1(Bs, P,Q ) = eBs([0]) + eBs(D) = 0 + 0 = 0; and from Lemma 3.6(ii), and Lemmas 4.5 1(c) and 3(c)
in [8], it follows that S2(B0, P,Q ) = eB0([0]) = 0 and S2(B′

t , P,Q ) = eB′
t
([0]) = 0.

Next we assume that q ≡ 3 (mod 4). If ℓP,Q ∈ PaP and Q ∉ P⊥, then by Lemma 3.5(v), and Lemma
4.5 5(c) in [8], we have

S1(Br , P,Q ) = eBr ([0]) + eBr ([πk1 ]) + eBr ([πk2 ]) = 0 + 0 + 0 = 0;

and by Lemma 3.6(iii), and Lemma 4.5 4(d) and 6(d) in [8], we obtain S3(B0, P,Q ) = eB0([0]) = 0 and
S3(B′

t , P,Q ) = eB′
t
([0]) = 0.

If Q = ℓP,Q ∩ P⊥, then by Lemma 3.6(iii) and 3.5(iii), and 4(d), 5(a), (c), 6(d) of Lemma 4.5 in [8],
S3(B0, P,Q ) = eB0([0]) = 0, S1(Br , P,Q ) = eBr ([0]) + eBr (D) = 0 + 0 = 0, and S3(B′

t , P,Q ) =

eB′
t
([0]) = 0.
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If ℓP,Q ∈ SeP , then by Lemma 3.6(iv) and 3.5(iv), and 4(a), 4(c), 4(d), 5(c), 6(a), 6(c), 6(d) of Lemma
4.5 in [8],

S3(B0, P,Q ) = eB0([0]) + eB0(D) + eB0([θi]) = 0 + 1 + 1 = 0,

S1(Br , P,Q ) = eBr ([0]) = 0, and

S3(B′

t , P,Q ) = eB′
t
([0]) + eB′

t
(D) + eB′

t
([θi]) = 0 + 0 + 0 = 0. �

Proof of Theorem 5.1. Let B be a 2-block of defect 0 of H . Then by Lemma 4.6 in [8], we have

eB · F I
= fB · SI .

Therefore, by Lemma 5.2, F I
· eB = N , where N is the simple FH-module of dimension q − 1 or q + 1

lying in B accordingly as q ≡ 1 (mod 4) or q ≡ 3 (mod 4).
Assume that q ≡ 1 (mod 4) and q − 1 = m2n with 2 - m. Since

1 = eB0 +

(q−1)/4−
s=1

eBs +

(m−1)/2−
t=1

eB′
t
,

eB0 · Ker(φ) = 0 and eB′
t
· Ker(φ) = 0, then

Ker(φ) =


B∈Bl(H)

eB · Ker(φ) =

(q−1)/4
s=1

eBs · Ker(φ) =

(q−1)/4
s=1

Ns,

where Ns is the simple module of dimension q − 1 lying in Bs for each s by the discussion in the first
paragraph.

Now assume that q ≡ 3 (mod 4). Lemma 4.7 yields Ker(φ) = ⟨Ĵ⟩ ⊕ Im(µ2). Since eB0 · Im(µ2) = 0
and eB′

t
· Im(µ2) = 0, applying the same argument as above, we have

Im(µ2) =

(q−3)/4
r=1

Mr ,

where eachMr is a simple FH-module of dimension q + 1. Consequently,

Ker(φ) = ⟨Ĵ⟩ ⊕


(q−3)/4

r=1

Mr


. �

Now Conjecture 1.1 follows as a corollary.

Corollary 5.4. Let L be the F2-null space of A. Then

dimF2(L) =
(q − 1)2

4
.

Proof. By Theorem 5.1 and the fact that dimF2(L) = dimF2(Ker(φ)), when q ≡ 1 (mod 4), we have

dimF2(L) =

(q−1)/4−
i=1

(q − 1),

and when q ≡ 3 (mod 4), we have

dimF2(L) = 1 +

(q−3)/4−
i=1

(q + 1),

both of which are equal to (q−1)2

4 . �
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