European Journal of Combinatorics 33 (2012) 33-48

Contents lists available at SciVerse ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

On binary codes from conics in PG(2, q)

Adonus L. Madison, Junhua Wu

Department of Mathematics, Lane College, Jackson, TN, USA

ARTICLE INFO

Article history: Received 4 April 2011 Received in revised form 1 August 2011 Accepted 1 August 2011 Available online 17 September 2011

ABSTRACT

Let **A** be the $\frac{q(q-1)}{2} \times \frac{q(q-1)}{2}$ incidence matrix of passant lines and internal points with respect to a conic in PG(2, q), where q is an odd prime power. In this article, we study both geometric and algebraic properties of the column \mathbb{F}_2 -null space \mathcal{L} of **A**. In particular, using methods from both finite geometry and modular presentation theory, we manage to compute the dimension of \mathcal{L} , which provides a proof for the conjecture on the dimension of the binary code generated by \mathcal{L} .

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let PG(2, q) be the classical projective plane of order q with underlying three-dimensional vector space V over \mathbb{F}_q , the finite field of order q. Throughout this article, PG(2, q) is represented via homogeneous coordinates. Namely, a point is written as a non-zero vector (a_0, a_1, a_2) and a line is written as $[b_0, b_1, b_2]$ where not all b_i (i = 1, 2, 3) are zero. The set of points

$$\mathcal{O} := \{ (1, r, r^2) \mid r \in \mathbb{F}_q \} \cup \{ (0, 0, 1) \}$$
(1.1)

is a *conic* in PG(2, q) [4]. The above set also comprises the projective solutions of the non-degenerate quadratic equation

$$Q(X_0, X_1, X_2) = X_1^2 - X_0 X_2$$
(1.2)

over \mathbb{F}_q . With respect to \mathcal{O} , the lines of PG(2, q) are partitioned into passant lines (*Pa*), tangent lines (*T*), and secant lines (*Se*) accordingly as the sizes of their intersections with \mathcal{O} are 0, 1, or 2. Similarly, points are partitioned into internal points (*I*), conic points (\mathcal{O}), and external points (*E*) accordingly as the numbers of tangent lines on which they lie are 0, 1, or 2.

In [1], one low-density parity-check binary code was constructed using the column \mathbb{F}_2 -null space \mathcal{L} of the incidence matrix **A** of passant lines and internal points with respect to \mathcal{O} . It is apparent that **A**

E-mail addresses: adonus_madison@lanecollege.edu (A.L. Madison), jwu@lanecollege.edu (J. Wu).

^{0195-6698/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejc.2011.08.001

is a $\frac{q(q-1)}{2} \times \frac{q(q-1)}{2}$ square matrix. With the help of the computer software Magma, the authors made a conjecture on the dimension of \mathcal{L} as follows:

Conjecture 1.1 ([1, Conjecture 4.7]). Let \mathcal{L} be the \mathbb{F}_2 -null space of **A**, and let $\dim_{\mathbb{F}_2}(\mathcal{L})$ be the dimension of *L*. Then

$$\dim_{\mathbb{F}_2}(\mathcal{L}) = \frac{(q-1)^2}{4}.$$

The purpose of this article is to confirm Conjecture 1.1. Apart from the above conjecture, the dimensions of the column \mathbb{F}_2 -null spaces of the incidence matrices of external points versus secant lines, external points versus passant lines, and passant lines versus external points were conjectured in the aforementioned paper [1], and have been established in [8,9], respectively. Here we point out that this paper refers to [8] for prerequisites and setting.

To start, we recall that the automorphism group G of \mathcal{O} is isomorphic to PGL(2, q), and that the normal subgroup H of G is isomorphic to PSL(2, q). Let F be an algebraic closure of \mathbb{F}_2 . Our idea of proving Conjecture 1.1 is to first realize \mathcal{L} as an FH-module and then decompose it into a direct sum of its certain submodules whose dimensions are well known. More precisely speaking, we view A as the matrix of the following homomorphism ϕ of free *F*-modules:

$$\phi: F^{l} \to F^{l}$$

which first sends an internal point to the formal sum of all internal points on its polar, and then extends linearly to the whole of F^{I} . Moreover, it can be shown that ϕ is indeed an FH-module homomorphism. Consequently, computing the dimension of the column \mathbb{F}_2 -null space of **A** amounts to finding the F-null space of ϕ . To this end, we investigate the underlying FH-module structure of \mathcal{L} by applying Brauer's theory on the 2-blocks of H and arrive at a convenient decomposition of \mathcal{L} .

This article is organized in the following way. In Section 2, we establish that the matrix A satisfies the relation $A^3 \equiv \overline{A} \pmod{2}$ under certain orderings of its rows and columns; this relation, in turn, reveals a geometric description of $\text{Ker}(\phi)$ as well as yielding a set of generating elements of $\text{Ker}(\phi)$ in terms of the concept of internal neighbors. In Section 3, the parity of intersection sizes of certain subsets of H with the conjugacy classes of H are computed. Combining the results in Section 3 with Brauer's theory on blocks, we are able to decompose $Ker(\phi)$ into a direct sum of all non-isomorphic simple FH-modules or this sum plus a trivial module depending on q. Consequently, the dimension of \mathcal{L} follows as a lemma.

2. Geometry of conics

We refer the reader to [5,4] for basic results related to the geometry of conics in PG(2, q) with qodd. For convenience, we will denote the set of all non-zero squares of \mathbb{F}_q by \Box_q , and the set of non-squares by $\not{\Box}_q$; also, \mathbb{F}_q^* is the set of non-zero elements of \mathbb{F}_q . It is well known [4, p. 181] that the non-degenerate quadratic form $Q(X_0, X_1, X_2) = X_1^2 - X_0 X_2$ induces a polarity σ (or \perp) of PG(2, q).

Lemma 2.1 ([4, p. 181–182]). Assume that q is odd.

- (i) The polarity σ above defines three bijections; that is, $\sigma : I \to Pa, \sigma : E \to Se$, and $\sigma : \mathcal{O} \to T$ are all bijections.
- (ii) A line $[b_0, b_1, b_2]$ of PG(2, q) is a passant, a tangent, or a secant to \mathcal{O} if and only if $b_1^2 4b_0b_2 \in \mathbb{C}$

Let G be the automorphism group of \mathcal{O} in PGL(3, q) (i.e. the subgroup of PGL(3, q) fixing \mathcal{O} setwise).

Lemma 2.2 ([4, p. 158]). $G \cong PGL(2, q)$.

We define

$$H := \left\{ \begin{pmatrix} a^2 & ab & b^2 \\ 2ac & ad + bc & 2bd \\ c^2 & cd & d^2 \end{pmatrix} \middle| a, b, c, d \in \mathbb{F}_q, ad - bc = 1 \right\}.$$
 (2.1)

In the rest of the article, we always use ξ to denote a fixed primitive element of \mathbb{F}_q . For $a, b, c \in \mathbb{F}_q$, we define

$$\mathbf{d}(a, b, c) := \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}, \quad \mathbf{ad}(a, b, c) := \begin{pmatrix} 0 & 0 & a \\ 0 & b & 0 \\ c & 0 & 0 \end{pmatrix}.$$

For the convenience of discussion, we adopt the following special representatives of G from [8]:

$$H \cup \mathbf{d}(1, \xi^{-1}, \xi^{-2}) \cdot H.$$
 (2.2)

Lemma 2.3 ([2]). The group G acts transitively on both I (respectively, Pa) and E (respectively, Se).

Definition 2.4. Let *P* be a point not on \mathcal{O} and ℓ a line. We define E_{ℓ} and I_{ℓ} to be the set of external points and the set of internal points on ℓ , respectively, Pa_P and Se_P the set of passant lines and the set of secant lines through *P*, respectively, and T_P the set of tangent lines through *P*. Also, N(P) is defined to be the set of internal points on the passant lines through *P* including or excluding *P* accordingly as $q \equiv 3 \pmod{4}$ or $q \equiv 1 \pmod{4}$.

Remark 2.5. Using the above notation and Lemma 2.5 in [8], for $P \in I$, we have $|E_{p\perp}| = |Se_P| = \frac{q+1}{2}$; $|I_{p\perp}| = |Pa_P| = \frac{q+1}{2}$; and $|N(P)| = \frac{q^2-1}{4}$ or $\frac{q^2+3}{4}$ accordingly as $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$.

Let $P \in I$, $\ell \in Pa$, $g \in G$, and $W \leq G$. Using standard notation from permutation group theory, we have $I_{\ell}^{g} = I_{\ell g}$, $Pa_{p}^{g} = Pa_{pg}$; $E_{\ell}^{g} = E_{\ell g}$, $Se_{p}^{g} = Se_{pg}$, $H_{p}^{g} = H_{pg}$; $N(P)^{g} = N(P^{g})$, $(W^{g})_{Pg} = W_{p}^{g}$. We will use these results later without further reference. Also, the definition of G yields that $(P^{\perp})^{g} = (P^{g})^{\perp}$, where \perp is the above defined polarity of PG(2, q).

Proposition 2.6. Let $P \in I$ and set $K := G_P$. Then K is transitive on $I_{P^{\perp}}, E_{P^{\perp}}, Pa_P$, and Se_P , respectively.

Proof. Witt's theorem [6] implies that *K* acts transitively on isometry classes of the form *Q* on the points of P^{\perp} . Note that $K = G_{P^{\perp}}$ by the definition of *G*. Dually, we must have that *K* is transitive on both Pa_P and Se_P . \Box

When $P = (1, 0, -\xi)$, using (2.1) and (2.2), we obtain that $K := G_P$

$$= \left\{ \begin{pmatrix} d^{2} & cd\xi & c^{2}\xi^{2} \\ 2cd & d^{2} + c^{2}\xi & 2dc\xi \\ c^{2} & dc & d^{2} \end{pmatrix} \middle| d, c \in \mathbb{F}_{q}, d^{2} - c^{2}\xi = 1 \right\}$$

$$\bigcup \left\{ \begin{pmatrix} d^{2} & -cd\xi & c^{2}\xi^{2} \\ 2cd & -d^{2} - c^{2}\xi & 2dc\xi \\ c^{2} & -dc & d^{2} \end{pmatrix} \middle| d, c \in \mathbb{F}_{q}, -d^{2} + c^{2}\xi = 1 \right\}$$

$$\bigcup \left\{ \begin{pmatrix} d^{2} & cd & c^{2} \\ 2cd\xi^{-1} & d^{2} + c^{2}\xi^{-1} & 2dc \\ c^{2}\xi^{-2} & dc\xi^{-1} & d^{2} \end{pmatrix} \middle| d, c \in \mathbb{F}_{q}, d^{2}\xi - c^{2} = 1 \right\}$$

$$\bigcup \left\{ \begin{pmatrix} d^{2} & -cd & c^{2} \\ 2cd\xi^{-1} & -d^{2} - c^{2}\xi^{-1} & 2dc \\ c^{2}\xi^{-2} & -dc\xi^{-1} & d^{2} \end{pmatrix} \middle| d, c \in \mathbb{F}_{q}, -d^{2}\xi + c^{2} = 1 \right\}.$$
(2.3)

Theorem 2.7. Let $P \in I$ and $\ell \in Pa$. Then $|N(P) \cap I_{\ell}| \equiv 0 \pmod{2}$.

Proof. If $P \in \ell$, it is clear that

$$|N(P) \cap I_{\ell}| = \begin{cases} \frac{q-1}{2}, & \text{if } q \equiv 1 \pmod{4}, \\ \frac{q+1}{2}, & \text{if } q \equiv 3 \pmod{4}, \end{cases}$$

which is even. Therefore, $|N(P) \cap I_{\ell}| \equiv 0 \pmod{2}$ for this case.

If $\ell = P^{\perp}$, by Lemma 2.9(i) in [8], we have

$$|N(P) \cap I_{\ell}| = \begin{cases} 0, & \text{if } q \equiv 1 \pmod{4}, \\ \frac{q+1}{2}, & \text{if } q \equiv 3 \pmod{4}, \end{cases}$$

which is even. Hence, $|N(P) \cap I_{\ell}| \equiv 0 \pmod{2}$ for this case.

Now we assume that we have neither $\ell = P^{\perp}$ nor $P \in \ell$. As *G* is transitive on *Pa* and preserves incidence, we may take $\ell = P_1^{\perp} = [1, 0, -\xi^{-1}]$, where $P_1 = (1, 0, -\xi) \in I$. Since *P* is either on a passant line through P_1 or on a secant line through P_1 , what remains is to show that $|N(P) \cap I_{\ell}|$ is even for any *P* on a line through P_1 with $P \notin \ell$ and $P \neq P_1$.

Case I. *P* is a point on a secant line through P_1 and $P \notin \ell$.

Since $K = G_{P_1}$ acts transitively on Se_{P_1} by Proposition 2.6, it is enough to establish that $|N(P) \cap I_{\ell}|$ is even for an arbitrary internal point on a *special* secant line, ℓ_1 say, through P_1 . To this end, we may take $\ell_1 = [0, 1, 0]$. It is clear that

$$I_{\ell_1} = \{ (1, 0, -\xi^j) \mid 0 \le j \le q - 1, j \text{ odd} \}$$

and

$$I_{\ell} = \{ (1, s, \xi) \mid s \in \mathbb{F}_q, s^2 - \xi \in \not \square_q \}$$

Hence, if $P = (1, 0, -\xi^j) \in I_{\ell_1}$ then

$$D_{j} = \left\{ \left[1, -\frac{\xi^{1-j}+1}{s}, \frac{1}{\xi^{j}} \right] \middle| s \in \mathbb{F}_{q}^{*}, s^{2}-\xi \in \mathbb{Z}_{q} \right\} \cup \{ [0, 1, 0] \}$$

consists of the lines through both *P* and the points on ℓ . Note that the number of passant lines in *D_j* is determined by the number of *s* satisfying both

$$\frac{1}{s^2}(\xi^{1-j}+1)^2 - \frac{4}{\xi^j} \in \not\square_q$$
(2.4)

and

$$s^2 - \xi \in \ \ \square_q. \tag{2.5}$$

Since, $s \neq 0$ and whenever *s* satisfies both (2.4) and (2.5), so does -s, we see that $|N(P) \cap I_{\ell}|$ must be even in this case.

Case II. *P* is an internal point on a passant line through P_1 and $P \notin \ell$.

By Lemma 2.9 [8], we may assume that $P \in P_3^{\perp}$, where $P_3 = (1, x, \xi) \in I_{\ell}$ with $x \in \mathbb{F}_q^*$ and $x^2 - \xi \in \mathbb{Z}_q$. Here $P_3^{\perp} = [1, -\frac{2x}{\xi}, \frac{1}{\xi}]$ is a passant line through P_1 . Let $K = G_{P_1}$ and let $(1, y, \xi)$ be a point on ℓ . Using (2.3), we have that $L := K_{P_3}$ fixes $(1, y, \xi)$ if and only if

$$xy^2 - (x^2 + \xi)y + x\xi = 0;$$

that is, y = x or $y = \frac{\xi}{x}$. Consequently, $P_3 = (1, x, \xi)$ and $\ell \cap P_3^{\perp} = (1, \frac{\xi}{x}, \xi)$ are the only points of the form (1, s, t) on ℓ fixed by *L*. Since $P \in P_3^{\perp}$, $P \neq P_1$ and $P \neq P_3^{\perp} \cap \ell$, $P = (1, \frac{\xi+n}{2x}, n)$ for some $n \neq \xi$. Now if we denote by **V** the set of passant lines through *P* that meet ℓ in an internal point, then it is clear that $|\mathbf{V}| = |N(P) \cap I_\ell|$. Direct computations give us that $L_P \cong \mathbb{Z}_2$. Since P_3 and P are both fixed by

 L_P , it follows that both $\ell_{P_3,P}$ and P_3^{\perp} are fixed by L_P . Note that when $q \equiv 3 \pmod{4}$, both P_3^{\perp} and $\ell_{P_3,P}$ are in **V**; and when $q \equiv 1 \pmod{4}$, neither $\ell_{P_3,P}$ nor P_3^{\perp} is in **V**. If there were another line ℓ' through P which is distinct from both P_3^{\perp} and $\ell_{P_3,P}$ and which is also fixed by L_P , then L_P would fix at least three points on $\ell = P^{\perp}$, namely, $\ell' \cap \ell$, $P_3^{\perp} \cap \ell$, and P_3 . Since no further point of the form (1, s, t) except for P_3 and $\ell \cap P_3^{\perp}$ can be fixed by L due to the above discussion, we must have $\ell' \cap \ell = (0, 1, 0) \in E_\ell$. So $\ell' \notin \mathbf{V}$. Using the fact that L_P preserves incidence, we conclude that when $q \equiv 1 \pmod{4}$, L_P has $\lfloor \frac{|\mathbf{V}|}{2}$ orbits of length 2 on \mathbf{V} ; and when $q \equiv 3 \pmod{4}$, L_P has two orbits of length 1, namely, $\{P_3^{\perp}\}$ and $\{\ell_{P_3,P}\}$, and $\lfloor \frac{|\mathbf{V}|-2}{2}$ orbits of length 2 on \mathbf{V} . Either forces $|\mathbf{V}|$ to be even. Therefore, $|N(P) \cap I_\ell|$ is even.

Recall that **A** is the incidence matrix of Pa and I whose columns are indexed by the internal points P_1, P_2, \ldots, P_N and whose rows are indexed by the passant lines $P_1^{\perp}, P_2^{\perp}, \ldots, P_N^{\perp}$; and **A** is symmetric. For the convenience of discussion, for $P \in I$, we define

$$\widehat{N(P)} = \begin{cases} N(P) \cup \{P\}, & \text{if } q \equiv 1 \pmod{4}, \\ N(P) \setminus \{P\}, & \text{if } q \equiv 3 \pmod{4}. \end{cases}$$

That is, $\widehat{N(P)}$ is the set of the internal points on the passant lines through *P* including *P*. It is clear that for $P \notin \ell$, $|N(P) \cap I_{\ell}| = |\widehat{N(P)} \cap I_{\ell}|$.

Lemma 2.8. Using the above notation, we have $\mathbf{A}^3 \equiv \mathbf{A} \pmod{2}$, where the congruence means entrywise congruence.

Proof. Since the (i, j)-entry of $\mathbf{A}^2 = \mathbf{A}^\top \mathbf{A}$ is the standard dot product of the *i*th row of \mathbf{A}^\top and *j*th column of \mathbf{A} , we have

$$(\mathbf{A}^2)_{i,j} = (\mathbf{A}^\top \mathbf{A})_{i,j} = \begin{cases} \frac{q+1}{2}, & \text{if } i = j, \\ 1, & \text{if } \ell_{P_i,P_j} \in Pa, \\ 0, & \text{otherwise.} \end{cases}$$

Therefore, the *i*th row of $\mathbf{A}^2 \pmod{2}$ indexed by P_i can be viewed as the characteristic row vector of $\widehat{N(P_i)}$.

If $P_i \in P_j^{\perp}$, then $(\mathbf{A}^3)_{i,j} = ((\mathbf{A}^2)\mathbf{A}^{\top})_{i,j} = q$ since $(\mathbf{A}^2)_{i,i} = \frac{q+1}{2}$ and there are $\frac{q-1}{2}$ internal points other than P_i on P_j^{\perp} that are connected with P_i by the passant line P_j^{\perp} . If $P_i \notin P_j^{\perp}$, then $(\mathbf{A}^3)_{i,j} = ((\mathbf{A}^{\top}\mathbf{A})\mathbf{A}^{\top})_{i,j} \equiv |\widehat{N(P_i)} \cap I_{P_i^{\perp}}| = |N(P_i) \cap I_{P_i^{\perp}}| \equiv 0 \pmod{2}$ by Theorem 2.7. Consequently,

$$(\mathbf{A}^3)_{i,j} \equiv \begin{cases} 1 \pmod{2}, & \text{if } P_i \in P_j^{\perp}, \\ 0 \pmod{2}, & \text{if } P_i \notin P_i^{\perp}. \end{cases}$$

The lemma follows immediately. \Box

3. The conjugacy classes and intersection parity

In this section, we present detailed information about the conjugacy classes of H and study their intersections with some special subsets of H.

3.1. Conjugacy classes

The conjugacy classes of *H* can be read off in terms of the map T = tr(g) + 1, where tr(g) is the trace of *g*.

Lemma 3.1 ([8, Lemma 3.2]). The conjugacy classes of H are given as follows.

(i) $D = \{\mathbf{d}(1, 1, 1)\};$ (ii) F^+ and F^- , where $F^+ \cup F^- = \{g \in H \mid T(g) = 4, g \neq \mathbf{d}(1, 1, 1)\};$

- (iii) $[\theta_i] = \{g \in H \mid T(g) = \theta_i\}, 1 \le i \le \frac{q-5}{4} \text{ if } q \equiv 1 \pmod{4}, \text{ or } 1 \le i \le \frac{q-3}{4} \text{ if } q \equiv 3 \pmod{4}, \text{ where } \theta_i \in \Box_q, \theta_i \ne 4, \text{ and } \theta_i 4 \in \Box_q; \}$
- (iv) $[0] = \{g \in H \mid T(g) = 0\};$
- (v) $[\pi_k] = \{g \in H \mid T(g) = \pi_k\}, 1 \le k \le \frac{q-1}{4} \text{ if } q \equiv 1 \pmod{4}, \text{ or } 1 \le k \le \frac{q-3}{4} \text{ if } q \equiv 3 \pmod{4}, \text{ where } \pi_i \in \Box_q, \pi_k \neq 4, \text{ and } \pi_k 4 \in \not\Box_q.$

Remark 3.2. The set $F^+ \cup F^-$ forms one conjugacy class of *G*, and splits into two equal-sized classes F^+ and F^- of *H*. For our purpose, we denote $F^+ \cup F^-$ by [4]. Also, each of *D*, $[\theta_i]$, [0], and $[\pi_k]$ forms a single conjugacy class of *G*. The class [0] consists of all the elements of order 2 in *H*.

In the following, for convenience, we frequently use *C* to denote any one of *D*, [0], [4], $[\theta_i]$, or $[\pi_k]$. That is,

$$C = D, [0], [4], [\theta_i], \text{ or } [\pi_k].$$
(3.1)

3.2. Intersection properties

Definition 3.3. Let $P, Q \in I, W \subseteq I$, and $\ell \in Pa$. We define $\mathcal{H}_{P,Q} = \{h \in H \mid (P^{\perp})^h \in Pa_Q\}$, $\mathcal{S}_{P,\ell} = \{h \in H \mid (P^{\perp})^h = \ell\}$, and $\mathcal{U}_{P,W} = \{h \in H \mid P^h \in W\}$. That is, $\mathcal{H}_{P,Q}$ consists of all the elements of H that map the passant line P^{\perp} to a passant line through $Q, \mathcal{S}_{P,\ell}$ is the set of elements of H that map P^{\perp} to the passant line ℓ , and $\mathcal{U}_{P,W}$ is the set of elements of H that map P to a point in W.

Using the above notation, we have that $\mathcal{H}_{P,Q}^{g} = \mathcal{H}_{P^{g},Q^{g}}$, $\mathcal{S}_{P,\ell}^{g} = \mathcal{S}_{P^{g},\ell^{g}}$, and $\mathcal{U}_{P,W}^{g} = \mathcal{U}_{P^{g},W^{g}}$, where $\mathcal{H}_{P,Q}^{g} = \{g^{-1}hg \mid h \in \mathcal{H}_{P,Q}\}$, $\mathcal{S}_{P,\ell}^{g} = \{g^{-1}hg \mid h \in \mathcal{S}_{P,Q}\}$, and $\mathcal{U}_{P,W}^{g} = \{h^{g} \mid h \in \mathcal{U}_{P,W}\}$. Moreover, it is true that $(C \cap \mathcal{H}_{P,Q})^{g} = C \cap \mathcal{H}_{P^{g},Q^{g}}$ and $(C \cap \mathcal{U}_{P,W})^{g} = C \cap \mathcal{U}_{P^{g},W^{g}}$. In the following discussion, we will use these results without further reference.

Corollary 3.4. Let $P \in I$ and $K = H_P$. Then we have:

(i) $|K \cap D| = 1$; (ii) $|K \cap [4]| = 0$; (iii) $|K \cap [\pi_k]| = 2$; (iv) $|K \cap [\theta_i]| = 0$; (v) $|K \cap [0]| = \frac{q+1}{2}$ or $\frac{q-1}{2}$ accordingly as $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$.

Proof. The proof is almost identical to the one of Lemma 3.7 in [8]. We omit the detail. \Box

In the following lemmas, we investigate the parity of $|\mathcal{H}_{P,Q} \cap C|$ for $C \neq [0]$ and $P, Q \in I$. Recall that $\ell_{P,Q}$ is the line through P and Q.

Lemma 3.5. Let $P, Q \in I$. Suppose that C = D, [4], $[\pi_k] (1 \le k \le \frac{q-1}{4})$, or $[\theta_i] (1 \le i \le \frac{q-5}{4})$. *First assume that* $q \equiv 1 \pmod{4}$.

- (i) If $\ell_{P,Q} \in Pa_P$, then $|\mathcal{H}_{P,Q} \cap C|$ is always even.
- (ii) If $\ell_{P,Q} \in Se_P$, $Q \notin P^{\perp}$, and $|\mathcal{H}_{P,Q} \cap C|$ is odd, then $C = [\theta_{i_1}]$ or $[\theta_{i_2}]$.
- (iii) If $Q \in \ell_{P,Q} \cap P^{\perp}$ and $|\mathcal{H}_{P,Q} \cap C|$ is odd, then C = D.

Now assume that $q \equiv 3 \pmod{4}$ *.*

- (iv) If $\ell_{P,O} \in Se_P$, then $|\mathcal{H}_{P,O} \cap C|$ is always even.
- (v) If $\ell_{P,Q} \in Pa_P$, $Q \notin P^{\perp}$, and $|\mathcal{H}_{P,Q} \cap C|$ is odd, then $C = [\pi_{i_1}]$ or $[\pi_{i_2}]$.
- (vi) If $Q \in \ell_{P,Q} \cap P^{\perp}$ and $|\mathcal{H}_{P,Q} \cap C|$ is odd, then C = D.

Proof. We only provide the detailed proof for the case when $q \equiv 1 \pmod{4}$. Since *G* acts transitively on *I* and preserves incidence, without loss of generality, we may assume that $P = (1, 0, -\xi)$ and let $K = G_P$.

Since *K* is transitive on both Pa_P and Se_P by Proposition 2.6 and $|\mathcal{H}_{P,Q} \cap C| = |(\mathcal{H}_{P,Q} \cap C)^g| = |\mathcal{H}_{P,Q^g} \cap C|$, we may assume that *Q* is on either ℓ_1 or ℓ_2 , where $\ell_1 = [1, 0, \xi^{-1}] \in Pa_P$ and $\ell_2 = [0, 1, 0] \in Se_P$.

Case I. $Q \in \ell_1$. In this case, $Q = (1, x, -\xi)$ for some $x \in \mathbb{F}_a^*$ and $x^2 + \xi \in \mathbb{Z}_q$, and

$$Pa_{Q} = \{ [1, s, (1 + sx)\xi^{-1}] \mid s \in \mathbb{F}_{q}, s^{2} - 4(1 + sx)\xi^{-1} \in \mathbb{Z}_{q} \}.$$

Using (2.3), we obtain that

$$K_{Q} = \{ \mathbf{d}(1, 1, 1), \mathbf{ad}(1, -\xi^{-1}, \xi^{-2}) \}.$$

It is obvious that $\mathbf{d}(1, 1, 1)$ fixes each line in Pa_0 . From

$$\mathbf{ad}(1,-\xi^{-1},\xi^{-2})^{-1}(1,s,(1+sx)\xi^{-1})^{\top} = ((1+sx)\xi,-s\xi,1)^{\top},$$

it follows that a line of the form $[1, s, (1 + sx)\xi^{-1}]$ is fixed by K_Q if and only if s = 0 or $s = -2x^{-1}$. Further, since $[1, -2x^{-1}, -\xi^{-1}]$ is a secant line, we obtain that K_Q on Pa_Q has one orbit of length 1, i.e. $\{\ell_1 = [1, 0, \xi^{-1}]\}$, and all other orbits, whose representatives are \mathcal{R}_1 , have length 2. From

$$|\mathcal{H}_{P,Q} \cap C| = |\delta_{P,\ell_1} \cap C| + 2\sum_{\ell \in \mathcal{R}_1} |\delta_{P,\ell} \cap C|,$$

it follows that the parity of $|\mathcal{H}_{P,Q} \cap C|$ is determined by that of $|\mathscr{S}_{P,\ell_1} \cap C|$. Here we used the fact that $|\mathscr{S}_{P,\ell} \cap C| = |\mathscr{S}_{P,\ell'} \cap C|$ if $\{\ell, \ell'\}$ is an orbit of K_P on Pa_Q . Meanwhile, it is clear that $|\mathscr{S}_{P,\ell_1} \cap D| = 0$.

Note that the quadruples (a, b, c, d) that determine group elements in $\mathscr{S}_{P,\ell_1} \cap C$ are the solutions to the following equations:

$$\begin{aligned} -2cd + 2ab\xi^{-1} &= 0\\ c^2 - a^2\xi^{-1} &= (d^2 - b^2\xi^{-1})\xi^{-1}\\ a + d &= s\\ ad - bc &= 1, \end{aligned} \tag{3.2}$$

where $s^2 = 4$, π_k , θ_i , and that if one of *b* and *c* is zero, so is the other. If b = c = 0 and $2 \in \Box_q$ then the above (3.2) gives four group elements in [2] and no elements in any other class. If neither *b* nor *c* is zero, then the first two equations in (3.2) yield $b = \pm \sqrt{-1\xi c}$. Combining with the last two equations in (3.2), we obtain zero, four or eight quadruples (*a*, *b*, *c*, *d*) satisfying the above equations, among which both (*a*, *b*, *c*, *d*) and (-a, -b, -c, -d) appear at the same time. Since (*a*, *b*, *c*, *d*) and (-a, -b, -c, -d) give rise to the same group element, we conclude that $|\delta_{P,\ell_1} \cap C|$ is 0, 2, or 4.

Case II. $Q \in \ell_2$, $Q \notin P^{\perp}$, and $Q \neq P$.

In this case, Q = (1, 0, -y) for some $y \in \mathbb{Z}_q$ and $y \neq \pm \xi$. Using (2.3), we obtain that

$$K_0 = \{ \mathbf{d}(1, 1, 1), \mathbf{d}(-1, 1, -1) \}.$$

Moreover, K_Q on $Pa_Q = \{[1, s, y^{-1}] | s \in \mathbb{F}_q, s^2 - 4y^{-1} \in \emptyset_q\}$ has one orbit of length 1, that is, $\{\ell_4 = [1, 0, y^{-1}]\}$, and all other orbits are of length 2. Arguments similar to those above show that the parity of $|\mathcal{H}_{P,Q} \cap C|$ is the same as that of $|\mathscr{S}_{P,\ell_4} \cap C|$. So what remains is to find the parity of $|\mathscr{S}_{P,\ell_4} \cap C|$. The group elements in $\mathscr{S}_{P,\ell_4} \cap C$ are determined by the quadruples (a, b, c, d) satisfying the following equations:

$$-2cd + 2ab\xi^{-1} = 0$$

$$c^{2} - a^{2}\xi^{-1} = (d^{2} - b^{2}\xi^{-1})y^{-1}$$

$$a + d = s$$

$$ad - bc = 1.$$
(3.3)

Note that if one of *b* and *c* is zero, so is the other. If neither *b* nor *c* is zero, then the first two equations in (3.3) yield $b = \pm \sqrt{-\xi yc}$ and $a = \pm \sqrt{-\xi y^{-1}}d$. Combining with the last two, the above quadruples (a, b, c, d) yield zero, two, or four group elements in $[s^2]$. If b = c = 0, then ad = 1, $d^2 = \pm \sqrt{-\xi y^{-1}}$ and $a^2 = \pm \sqrt{-\xi y^{-1}}$; and so

$$s^{2} = \sqrt{-\xi y^{-1}} + \sqrt{-y\xi^{-1}} + 2$$
 or $s^{2} = -\sqrt{-\xi y^{-1}} - \sqrt{-y\xi^{-1}} + 2.$

Since $(\sqrt{-\xi y^{-1}} + \sqrt{-y\xi^{-1}} + 2)(-\sqrt{-\xi y^{-1}} - \sqrt{-y\xi^{-1}} + 2) = (\sqrt{\xi y^{-1}} + \sqrt{y\xi^{-1}})^2$, the above quadruples (a, b, c, d) yield no or one group element in two classes $[\theta_{i_1}]$ and $[\theta_{i_2}]$ where $\theta_{i_1} = \sqrt{-\xi y^{-1}} + \sqrt{-y\xi^{-1}} + 2$ and $\theta_{i_2} = -\sqrt{-\xi y^{-1}} - \sqrt{-y\xi^{-1}} + 2$. The above analysis shows that if $|\mathcal{H}_{P,Q} \cap C|$ is odd then $C = [\theta_{i_1}]$ or $[\theta_{i_2}]$ in this case.

Case III. $Q = \ell_2 \cap P^{\perp}$.

In this case, $Q = (1, 0, \xi)$ and the set of passant lines through Q is

 $Pa_Q = \{[1, u, -\xi^{-1}] \mid u \in \mathbb{F}_q, u^2 + \xi \in \square_q\}.$

Using (2.3), we obtain that

$$K_Q = \{ \mathbf{d}(1, 1, 1), \mathbf{d}(-1, 1, -1), \mathbf{ad}(-1, -\xi^{-1}, -\xi^{-2}), \mathbf{ad}(1, -\xi^{-1}, \xi^{-2}) \}.$$

Therefore, among the orbits of K_Q on Pa_Q , {[1, 0, $-\xi^{-1}$]} is the only one of length 1 and all others are of length 2. Hence, the parity of $|\mathcal{H}_{P,Q} \cap C|$ is the same as that of $|\mathcal{S}_{P,P} \cap C|$ which is the same as that of $|\mathcal{K} \cap C|$; by Corollary 3.4, it follows that $|\mathcal{K} \cap C|$ is odd if and only if C = D. \Box

For $Q \in I$, we denote by $\overline{N(Q)}$ the complement of N(Q) in I, that is, $\overline{N(Q)} = I \setminus N(Q)$.

Lemma 3.6. Let P and Q be two distinct internal points.

Assume that $q \equiv 1 \pmod{4}$.

(i) If $\ell_{P,Q} \in Pa_P$ and $|\mathcal{U}_{P,N(Q)} \cap C|$ is odd, then $C = [\pi_k]$ for one k or C = D.

(ii) If $\ell_{P,Q} \in Se_P$, then $|\mathcal{U}_{P,N(Q)} \cap C|$ is even.

Assume that $q \equiv 3 \pmod{4}$.

(iii) If $\ell_{P,Q} \in Pa_P$, then $|\mathcal{U}_{P,\overline{N(Q)}} \cap C|$ is even.

(iv) If $\ell_{P,Q} \in Se_P$ and $|\mathcal{U}_P \xrightarrow{\mu(Q)} \cap C|$ is odd, then $C = [\theta_i]$ for one i or C = D.

Proof. Without loss of generality, we can choose $P = (1, 0, -\xi)$. Since $K = G_P$ acts transitively on both Pa_P and Se_P , we may assume that $Q \neq P$ is on either a special passant line $\ell_1 = [1, 0, \xi^{-1}]$ or a special secant line $\ell_2 = [0, 1, 0]$ through Q.

Case I. $\ell_1 = \ell_{P,Q} \in Pa_P$.

In this case, $Q = (1, x, -\xi)$ for some $x \in \mathbb{F}_q$ with $u^2 + \xi \in \mathbb{Z}_q$ and its internal neighbor is $N(Q) = \{(1, u, -\xi) \mid u^2 + \xi \in \mathbb{Z}_q\} \setminus \{(1, x, -\xi)\}$ by definition. As $P \in N(Q)$, it is obvious that $|\mathcal{U}_{P,N(Q)} \cap D| = 1$. Since the action of K_Q on Pa_Q has one orbit of length 1, i.e. ℓ_1 , and all others are of length 2, whose representatives form the set \mathcal{R}_1 , we obtain that

$$|\mathcal{U}_{P,N(Q)} \cap C| = \sum_{\ell \in Pa_Q} \sum_{P_1 \in I_\ell \setminus \{Q\}} |\mathcal{U}_{P,P_1} \cap C|$$

=
$$\sum_{P_1 \in I_{\ell_1} \setminus \{Q\}} |\mathcal{U}_{P,P_1} \cap C| + 2 \sum_{\ell \in \mathcal{R}} \sum_{P_1 \in I_\ell \setminus \{Q\}} |\mathcal{U}_{P,P_1} \cap C|.$$
 (3.4)

Now let $P_1 = (1, u, -\xi) \in I_{\ell_1} \setminus \{Q\}$. Then the number of group elements that map *P* to P_1 is determined by the quadruples (a, b, c, d) which are the solutions to the following system of equations:

$$ab - cd\xi = u(a^{2} - c^{2}\xi)$$

$$b^{2} - d^{2}\xi = -\xi(a^{2} - c^{2}\xi)$$

$$a + d = s$$

$$ad - bc = 1.$$

(3.5)

The first two equations in (3.5) yield $a^2 - c^2 \xi = A$ (or -A) where $A = \sqrt{\xi (u^2 + \xi^{-1})}$. Now using $b^2 - d^2 \xi = \pm \xi A$, we obtain

$$(b+c\xi)^2 = s^2\xi - (2+A)\xi$$
 (or $s^2\xi - (2-A)\xi$).

If both $s^2\xi - (2 + A)\xi$ and $s^2\xi - (2 - A)\xi$ are squares, we set $B_+ = \sqrt{s^2\xi - (2 + A)\xi}$ and $B_{-} = \sqrt{s^{2}\xi - (2 - A)\xi}$; then

$$a = \frac{1}{2s\xi} [s^2\xi - (B_{\pm} - 2B_{\pm}\xi c)] \quad \left(\text{or } \frac{1}{2s\xi} [s^2\xi - (B_{\pm} + 2B_{\pm}\xi c)] \right)$$

and

$$d = \frac{1}{2s\xi} [s^2\xi + (B_{\pm} - 2B_{\pm}\xi c)] \quad \left(\text{or } \frac{1}{2s\xi} [s^2\xi + (B_{\pm} + 2B_{\pm}\xi c)] \right);$$

combining with the last two equations of (3.5), we have

$$\left(\xi - \frac{B_{\pm}^2}{s^2}\right)c^2 + \left(\frac{B_{\pm}^3}{s^2\xi} - B_{\pm}\right)c + \left(\frac{s^2}{4} - \frac{B_{\pm}^4}{4s^2\xi^2} - 1\right) = 0$$
(3.6)

or

$$\left(\xi - \frac{B_{\pm}^2}{s^2}\right)c^2 - \left(\frac{B_{\pm}^3}{s^2\xi} - B_{\pm}\right)c + \left(\frac{s^2}{4} - \frac{B_{\pm}^4}{4s^2\xi^2} - 1\right) = 0.$$
(3.7)

The discriminant of (3.6) or (3.7) is

$$\Delta = \left(1 - \frac{B_{\pm}^2}{s^2 \xi}\right) \left(B_{\pm}^2 - s^2 \xi + 4\xi\right) = \frac{4\xi u^2}{s^2 (u^2 + \xi)} \in \Box_q.$$

Consequently, the equations in (3.5) have eight solutions and yield four different group elements.

If one of $s^2\xi - (2 + A)\xi$ and $s^2\xi - (2 - A)\xi$ is a square and the other is non-square, arguments similar to those above give that the equations in (3.5) have four solutions and produce two different group elements.

If one of $s^2\xi - (2+A)\xi$ and $s^2\xi - (2-A)\xi$ is zero, then s^2 is one of 2+A and 2-A; and moreover it is one of π_k for $1 \le k \le \frac{q-1}{4}$ since $(2+A)(2-A) = \frac{4u^2}{u^2+\xi} \in \square_q$ and $-1 \in \square_q$. Consequently, the equations in (3.5) yield either one or three group elements in $[s^2]$.

Therefore, if $|\mathcal{U}_{P,N(Q)} \cap C|$ is odd, then C = D or $[\pi_k]$ for one k.

Case II. $\ell_2 = \ell_{P,0} \in Se_P$ and $Q \notin P^{\perp}$.

Then Q = (1, 0, -y) for $y \notin \overline{y}_q$ and $y \neq \pm \xi$. From the proof of Case II in Lemma 3.5, we have that $K_0 = \{\mathbf{d}(1, 1, 1), \mathbf{ad}(-1, 1, -1)\}$, and among the orbits of K_Q on Pa_P , K_Q has only one orbit of length 1, that is, $\ell_4 = [1, 0, y^{-1}]$; and all other orbits are of length 2 whose representatives form the set \mathcal{R} . Since $|\mathcal{U}_{P,l_{\ell_i}} \cap C| = |\mathcal{U}_{P,l_{\ell_i}} \cap C|$ where $\ell_i, \ell_j \in Pa_P$ and $\ell_j = \ell_i^g$ for $g \in K_Q$, we obtain that

$$|\mathcal{U}_{P,N(Q)} \cap C| = \sum_{\ell \in Pa_Q} \sum_{P_1 \in I_\ell \setminus \{Q\}} |\mathcal{U}_{P,P_1} \cap C|$$

$$= \sum_{P_1 \in I_{\ell_4} \setminus \{Q\}} |\mathcal{U}_{P,P_1} \cap C| + 2 \sum_{\ell \in \mathcal{R}} \sum_{P_1 \in I_\ell \setminus \{Q\}} |\mathcal{U}_{P,P_1} \cap C|.$$
(3.8)

Moreover, since the orbits of K_Q on $I_{\ell_4} \setminus \{Q\}$, whose representatives form the set \mathcal{R}_1 , are of length 2 and $|\mathcal{U}_{P,P_1} \cap C| = |\mathcal{U}_{P,P_2} \cap C|$ for $P_2 = P_1^g$, the first term of the last expression in (3.8) can be rewritten as

$$2\sum_{P_1\in\mathcal{R}_1}|\mathcal{U}_{P,P_1}\cap C|.$$

So $|\mathcal{U}_{P,N(Q)} \cap C|$ is even in this case.

Case III. $P = \ell_2 \cap P^{\perp}$.

In this case, we have $Q = (1, 0, \xi)$. Among the orbits of K_Q on Pa_P , only one has length 1, i.e. P^{\perp} . Moreover, all the orbits of K_Q on $I_{P^{\perp}} \setminus \{Q\}$ are of length 2. Hence $|\mathcal{U}_{P,N(Q)} \cap C|$ is even.

The case when $q \equiv 3 \pmod{4}$ can be established in the same way and we omit the details. \Box

4. Linear maps

Let *F* be the algebraic closure of \mathbb{F}_2 defined in Section 4. Recall that for $P \in I$, N(P) is the set of external points on the passant lines through *P* with *P* included if and only if $q \equiv 3 \pmod{4}$. We define **D** to be the incidence matrix of N(P) ($P \in I$) and *I*. That is, the rows of **D** can be viewed as the characteristic vectors of N(P) with respect to *I*. In the following, we always regard both **D** and **A** as matrices over *F*. Moreover, it is apparent that $\mathbf{D} = \mathbf{A}^2 + \mathbf{I}$, where **I** is the identity matrix of proper size.

Definition 4.1. For $W \subseteq I$, we define C_W to be the row characteristic vector of W with respect to I, namely C_W is a 0–1 row vector of length |I| with entries indexed by internal points and the entry of C_W is 1 if and only if the point indexing the entry is in W. If $W = \{P\}$, as a convention, we write C_W as C_P .

Let *k* be the complex field \mathbb{C} , the algebraic closure *F* of \mathbb{F}_2 , or the ring **S** in (4.1) of [8]. Let k^l be the free *k*-module with the base $\{\mathcal{C}_P \mid P \in I\}$. If we extend the action of *H* on the basis elements of k^l , which is defined by $\mathcal{C}_Q \cdot h = \mathcal{C}_{Q^h}$ for $P \in I$ and $h \in H$, linearly to k^l , then k^l is a *kH*-permutation module. Since *H* is transitive on *I*, we have

$$k^{I} = \operatorname{Ind}_{\kappa}^{H}(1_{k}),$$

where K is the stabilizer of an internal point in H and $Ind_{K}^{H}(1_{k})$ is the kH-module induced from 1_{k} .

The decomposition of $1\uparrow_{K}^{H}$, the character of $\text{Ind}_{K}^{H}(1_{k})$, into a sum of the irreducible ordinary characters of *H* is given as follows.

Lemma 4.2. Let K be the stabilizer of an internal point in H.

Assume that $q \equiv 1 \pmod{4}$. Let $\chi_s, 1 \leq s \leq \frac{q-1}{4}$, be the irreducible characters of degree $q-1, \phi_r, 1 \leq r \leq \frac{q-5}{4}$, the irreducible characters of degree $q+1, \gamma$ the irreducible character of degree q, and $\beta_j, 1 \leq j \leq 2$, the irreducible characters of degree $\frac{q+1}{2}$.

(i) If $q \equiv 1 \pmod{8}$, then

$$1_{K}\uparrow_{K}^{H} = 1_{H} + \sum_{s=1}^{(q-1)/4} \chi_{s} + \gamma + \beta_{1} + \beta_{2} + \sum_{j=1}^{(q-9)/4} \phi_{r_{j}},$$

where ϕ_{r_j} , $1 \le j \le \frac{q-9}{4}$, may not be distinct. (ii) If $q \equiv 5 \pmod{8}$, then

$$1_{K}\uparrow_{K}^{H} = 1_{H} + \sum_{s=1}^{(q-1)/4} \chi_{s} + \gamma + \sum_{j=1}^{(q-5)/4} \phi_{r_{j}}$$

where ϕ_{r_j} , $1 \leq j \leq \frac{q-5}{4}$, may not be distinct.

Next assume that $q \equiv 3 \pmod{4}$. Let $\chi_s, 1 \leq s \leq \frac{q-3}{4}$, be the irreducible characters of degree $q - 1, \phi_r, 1 \leq r \leq \frac{q-3}{4}$, the irreducible characters of degree $q + 1, \gamma$ the irreducible character of degree q, and $\eta_j, 1 \leq j \leq 2$, the irreducible characters of degree $\frac{q-1}{2}$. (iii) If $q \equiv 3 \pmod{8}$, then

$$1_{K}\uparrow_{K}^{H} = 1_{H} + \sum_{r=1}^{(q-3)/4} \phi_{r} + \eta_{1} + \eta_{2} + \sum_{j=1}^{(q-3)/4} \chi_{s_{j}},$$

where χ_{s_j} , $1 \le j \le \frac{q-3}{4}$, may not be distinct.

(iv) If $q \equiv 7 \pmod{8}$, then

$$1_{K} \uparrow_{K}^{H} = 1_{H} + \sum_{r=1}^{(q-3)/4} \phi_{r} + \sum_{j=1}^{(q+1)/4} \chi_{s_{j}},$$

where χ_{s_j} , $1 \le j \le \frac{q+1}{4}$, may not be distinct.

Proof. We provide the proof for the case when $q \equiv 1 \pmod{4}$ and we use the character tables of PSL(2, *q*) in the appendix of [8].

Let 1_H be the trivial character of *H*. By the Frobenius reciprocity [3],

 $\langle \mathbf{1}_{K}\uparrow_{K}^{H}, \mathbf{1}_{H}\rangle_{H} = \langle \mathbf{1}_{K}, \mathbf{1}_{H}\downarrow_{K}^{H}\rangle_{K} = \mathbf{1}.$

Let χ_s be an irreducible character of degree q - 1 of H, where $1 \le s \le \frac{q-1}{4}$. We denote the number of elements of K lying in the class $[\pi_k]$ by d_k . Then $d_k = 2$ by Lemma 3.4(iii), and so

$$\begin{split} \langle \mathbf{1}_{K} \uparrow_{K}^{H}, \chi_{s} \rangle_{H} &= \langle \mathbf{1}_{K}, \chi_{s} \downarrow_{K}^{H} \rangle_{K} = \frac{1}{|K|} \sum_{g \in K} \chi_{s} \downarrow_{K}^{H} (g) \\ &= \frac{1}{q+1} \left[(1)(q-1) + 2 \sum_{k=1}^{(q-1)/4} (-\delta^{(2k)s} - \delta^{-(2k)s}) \right] \\ &= 1, \end{split}$$

where

$$\sum_{k=1}^{(q-1)/4} (-\delta^{(2k)s} - \delta^{-(2k)s}) = -(1 + \delta^{2s} + (\delta^{2s})^2 + \dots + (\delta^{2s})^{(q-1)/2} - 1)$$
$$= -\frac{1 - \delta^{(q+1)s}}{1 - \delta^{2s}} + 1$$
$$= 1$$

since $\delta^{q+1} = 1$.

Let γ be the irreducible character of degree q of H. Then

$$\begin{split} \left\langle \mathbf{1}_{K}\uparrow_{K}^{H},\gamma\right\rangle_{H} &= \left\langle \mathbf{1}_{K},\gamma\downarrow_{K}^{H}\right\rangle_{K} = \frac{1}{|K|}\sum_{g\in K}\gamma\downarrow_{K}^{H}(g) \\ &= \frac{1}{q+1}\left[(1)(q) + (2)(-1)\left(\frac{q-1}{4}\right) + (1)\left(\frac{q+1}{2}\right)\right] \\ &= 1. \end{split}$$

Let β_i be any irreducible character of degree $\frac{q+1}{2}$ of *H*. Then

$$\langle 1_{K} \uparrow_{K}^{H}, \beta_{j} \rangle_{H} = \frac{1}{|K|} \sum_{g \in K} \beta_{j} \downarrow_{K}^{H} (g)$$

$$= \frac{1}{q+1} \left[(1) \left(\frac{q+1}{2} \right) + (2) \left(\frac{q-1}{4} \right) (0) + \left(\frac{q+1}{2} \right) (-1)^{(q-1)/4} \right].$$
(4.1)

Consequently, if $q \equiv 1 \pmod{8}$, then $(-1)^{\frac{q-1}{4}} = 1$, and so $\langle 1_K \uparrow_K^H, \beta_j \rangle_H = 1$; otherwise, $(-1)^{\frac{q-1}{4}} = -1$, and so $\langle 1_K \uparrow_K^H, \beta_j \rangle_H = 0$.

Since the sum of the degrees of 1, χ_s , γ , and β_j is less than the degree of $1\uparrow_K^H$ and only the irreducible characters of degree q + 1 of H have not been taken into account yet, we see that all the irreducible constituents of

$$1_{K}\uparrow_{K}^{H} - 1_{H} - \sum_{s=1}^{(q-1)/4} \chi_{s} - \gamma - \beta_{1} - \beta_{2}$$
 or $1_{K}\uparrow_{K}^{H} - 1_{H} - \sum_{s=1}^{(q-1)/4} \chi_{s} - \gamma$

must have degree q + 1. \Box

Since *H* preserves incidence, it is obvious that, for $P \in I$ and $h \in H$,

 $h \cdot \mathcal{C}_{N(P)} = \mathcal{C}_{N(P^h)}.$

In the rest of the article, we always view C_P as a vector over F. Consider the maps ϕ and μ from F^I to F^I defined by extending

$$\mathcal{C}_P \mapsto \mathcal{C}_{P^{\perp}}, \mathcal{C}_P \mapsto \mathcal{C}_{N(P)}$$

linearly to F^l , respectively. Then it is clear that as F-linear maps, the matrices of ϕ and μ , are **A** and **D**, respectively, and for $\mathbf{x} \in F^l$, $\phi(\mathbf{x}) = \mathbf{x}\mathbf{A}$ and $\mu(\mathbf{x}) = \mathbf{x}\mathbf{D}$. Moreover, we have the following result since H is transitive on I and preserves incidence:

Lemma 4.3. The maps ϕ and μ are both FH-module homomorphisms from F^{I} to F^{I} .

We will always use **0** and $\hat{\mathbf{0}}$ to denote the all-zero row vector of length |I| and the all-zero matrix of size $|I| \times |I|$, respectively; and we denote by $\hat{\mathbf{J}}$ and \mathbf{J} the all-one row vector of length |I| and the all-one matrix of size $|I| \times |I|$. The following proposition can be easily verified using the fact that $\mathbf{A}^3 \equiv \mathbf{A} \pmod{2}$.

Proposition 4.4. As FH-modules, $F^{l} = \text{Im}(\phi) \oplus \text{Ker}(\phi)$, where $\text{Im}(\phi)$ and $\text{Ker}(\phi)$ are the image and kernel of ϕ , respectively.

Proof. It is clear that $\text{Ker}(\phi) \subseteq \text{Ker}(\phi^2)$. If $\mathbf{x} \in \text{Ker}(\phi^2)$, then $\mathbf{x} \in \text{Ker}(\phi)$ since

$$\phi(\mathbf{x}) = \phi^3(\mathbf{x}) = \phi(\phi^2(\mathbf{x})) = \mathbf{0}.$$

Therefore, $\operatorname{Ker}(\phi^2) = \operatorname{Ker}(\phi)$. Furthermore, since $\operatorname{Ker}(\phi) \subseteq \operatorname{Ker}(\phi^2) \subseteq \operatorname{Ker}(\phi^3) \subseteq \cdots$, we have $\operatorname{Ker}(\phi^i) = \operatorname{Ker}(\phi)$ for $i \ge 2$. Applying the Fitting decomposition theorem [7, p. 285] to the operator ϕ , we can find an i such that $F^1 = \operatorname{Ker}(\phi^i) \oplus \operatorname{Im}(\phi^i)$. From the above discussions, we must have $F^1 = \operatorname{Ker}(\phi) \oplus \operatorname{Im}(\phi)$. \Box

Corollary 4.5. As FH-modules, $\operatorname{Ind}_{K}^{H}(1_{F}) \cong \operatorname{Ker}(\phi) \oplus \operatorname{Im}(\phi)$.

Proof. The conclusion follows immediately from Proposition 4.4 and the fact that $Ind_{K}^{H}(1_{F}) \cong F^{E}$. \Box

Using the above notation, we set $\mathbf{C} = \mathbf{D} + \mathbf{J}$, where \mathbf{J} is the all-one matrix of proper size. Then the matrix \mathbf{C} can be viewed as the incidence matrix of $\overline{N(P)}$ ($P \in I$) and I, and so $\mathcal{C}_P \mathbf{C} = \mathcal{C}_{\overline{N(P)}}$.

Let μ_2 be the *FH*-homomorphism from F^l to F^l whose matrix with respect to the natural basis is **C**. The following proposition is clear.

Proposition 4.6. Using the above notation, we have $\text{Ker}(\phi) = \text{Im}(\mu)$.

Furthermore, we have the following decomposition of $\text{Ker}(\phi)$.

Lemma 4.7. Assume that $q \equiv 3 \pmod{4}$. Then we have, as FH-modules, $\text{Ker}(\phi) = \langle \hat{\mathbf{J}} \rangle \oplus \text{Im}(\mu_2)$, where $\langle \hat{\mathbf{J}} \rangle$ is the trivial FH-module generated by $\hat{\mathbf{J}}$.

Proof. Let $\mathbf{y} \in \langle \hat{\mathbf{J}} \rangle \cap \operatorname{Im}(\mu_2)$. Then $\mathbf{y} = \mu_2(\mathbf{x}) = \lambda \hat{\mathbf{J}}$ for some $\lambda \in F$ and $\mathbf{x} \in F^I$. Or equivalently, we have $\mu_2(\mathbf{x}) = \mathbf{x}\mathbf{C} = \mathbf{x}(\mathbf{A}^2 + \mathbf{I} + \mathbf{J}) = \lambda \hat{\mathbf{J}}$. Note that $\mathbf{J}^2 = \mathbf{J}$ and $\hat{\mathbf{J}}\mathbf{J} = \hat{\mathbf{J}}$ since $2 \nmid |I|$ when $q \equiv 3 \pmod{4}$. Moreover, $\mathbf{A}^2 \mathbf{J} = \hat{\mathbf{0}}$ as each row of \mathbf{A}^2 , viewed as the characteristic vector of $\widehat{N(P)}$, has an even number of 1s. Consequently,

$$\lambda \hat{\mathbf{J}} = \lambda \hat{\mathbf{J}} \mathbf{J} = \mathbf{x} (\mathbf{A}^2 + \mathbf{I} + \mathbf{J}) \mathbf{J} = \mathbf{x} (\mathbf{A}^2 \mathbf{J} + \mathbf{I} \mathbf{J} + \mathbf{J}^2) = \mathbf{x} (\hat{\mathbf{0}} + \mathbf{J} + \mathbf{J}) = \mathbf{0}$$

It follows that $\lambda = 0$. Therefore, we must have $\langle \hat{\mathbf{J}} \rangle \cap \text{Im}(\mu_2) = \mathbf{0}$.

It is obvious that $\langle \hat{\mathbf{j}} \rangle + \operatorname{Im}(\mu_2) \subseteq \operatorname{Ker}(\phi)$. Let $\mathbf{x} \in \operatorname{Ker}(\phi)$. Then $\mathbf{x} = \mathbf{y}(\mathbf{A}^2 + \mathbf{I})$ for some $\mathbf{y} \in F^I$. Since $\mathbf{y}\mathbf{J} = \langle \mathbf{y}, \hat{\mathbf{j}} \rangle \hat{\mathbf{j}}$, we obtain that $\mathbf{x} = \mathbf{y}(\mathbf{A}^2 + \mathbf{I} + \mathbf{J}) + \langle \mathbf{y}, \hat{\mathbf{j}} \rangle \hat{\mathbf{j}}$, where $\langle \mathbf{y}, \hat{\mathbf{j}} \rangle$ is the standard inner product of the vectors \mathbf{y} and $\hat{\mathbf{j}}$. Hence $\mathbf{x} \in \langle \hat{\mathbf{j}} \rangle + \operatorname{Im}(\mu_2)$ and so $\operatorname{Ker}(\phi) = \langle \hat{\mathbf{j}} \rangle \oplus \operatorname{Im}(\mu_2)$. \Box

5. Statement and proof of the main theorem

The main theorem is stated as follows.

Theorem 5.1. Let $Ker(\phi)$ be defined as above. As FH-modules,

(i) if $q \equiv 1 \pmod{4}$, then

$$\operatorname{Ker}(\phi) = \bigoplus_{s=1}^{(q-1)/4} M_s,$$

where M_s for $1 \le s \le \frac{q-1}{4}$ are pairwise non-isomorphic simple FH-modules of dimension q - 1; (ii) if $q \equiv 3 \pmod{4}$, then

$$\operatorname{Ker}(\phi) = \langle \hat{\mathbf{J}} \rangle \oplus \left(\bigoplus_{r=1}^{(q-3)/4} M_r \right),$$

where M_r for $1 \le s \le \frac{q-3}{4}$ are pairwise non-isomorphic simple FH-modules of dimension q + 1 and $\langle \hat{\mathbf{J}} \rangle$ is the trivial FH-module generated by the all-one column vector of length |I|.

In what follows, we refer the reader to Section 4 and Lemma 7.1 in [8] for the discussions of the block idempotents of H and their corresponding standard notation.

Lemma 5.2. The following two statements are true.

- (i) If $q \equiv 1 \pmod{4}$, then the character of $f_{B_s} \cdot \operatorname{Ind}_{K}^{H}(1_{\mathbb{C}})$ is χ_s for each block B_s of defect 0.
- (ii) If $q \equiv 3 \pmod{4}$, then the character of $f_{B_r} \cdot \operatorname{Ind}_{\mathcal{K}}^{\mathcal{H}}(1_{\mathbb{C}})$ is ϕ_r for each block B_r of defect 0.

Proof. The corollary follows from Lemma 4.1 in [8] and Lemma 4.2.

Lemma 5.3. Let $q-1 = 2^n m$ or $q+1 = 2^n m$ with $2 \nmid m$ accordingly as $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$. Using the above notation,

- (i) if $q \equiv 1 \pmod{4}$, then $e_{B_0} \cdot \text{Ker}(\phi) = \mathbf{0}$, $e_{B_s} \cdot \text{Im}(\phi) = \mathbf{0}$ for $1 \le s \le \frac{q-1}{4}$, and $e_{B'_t} \cdot \text{Ker}(\phi) = \mathbf{0}$ for $m \ge 3$ and $1 \le t \le \frac{m-1}{2}$;
- (ii) if $q \equiv 3 \pmod{4}$, then $e_{B_0} \cdot \operatorname{Im}(\mu_2) = \mathbf{0}$, $e_{B_r} \cdot \operatorname{Im}(\phi) = \mathbf{0}$ for $1 \le r \le \frac{q-3}{4}$, and $e_{B'_t} \cdot \operatorname{Im}(\mu_2) = \mathbf{0}$ for $m \ge 3$ and $1 \le t \le \frac{m-1}{2}$.

Proof. It is clear that $Im(\phi)$, $Ker(\phi)$, and $Im(\mu_2)$ are generated by

 $\{\mathcal{C}_{P^{\perp}} \mid P \in I\}, \{\mathcal{C}_{N(P)} \mid P \in I\}, \text{ and } \{\mathcal{C}_{\overline{N(P)}} \mid P \in I\}$

over *F*, respectively. Now let $B \in Bl(H)$. Since

$$e_{B} \cdot \mathcal{C}_{P^{\perp}} = \sum_{C \in Cl(H)} e_{B}(\widehat{C}) \sum_{h \in C} h \cdot \mathcal{C}_{P^{\perp}}$$
$$= \sum_{C \in Cl(H)} e_{B}(\widehat{C}) \sum_{h \in C} \mathcal{C}_{(P^{\perp})^{h}},$$
$$= \sum_{C \in Cl(H)} e_{B}(\widehat{C}) \sum_{h \in C} \sum_{Q \in (P^{\perp})^{h} \cap I} \mathcal{C}_{Q},$$

we have

$$e_B \cdot \mathcal{C}_{P^{\perp}} = \sum_{Q \in I} \mathscr{S}_1(B, P, Q) \mathcal{C}_Q,$$

where

$$\mathscr{S}_1(B, P, Q) := \sum_{C \in Cl(H)} |\mathscr{H}_{P,Q} \cap C| e_B(\widehat{C}).$$

Similarly $e_B \cdot \mathcal{C}_{N(P)} = \sum_{Q \in I} \mathscr{S}_2(B, P, Q) \mathcal{C}_Q$ and $e_B \cdot \mathcal{C}_{\overline{N(P)}} = \sum_{Q \in I} \mathscr{S}_3(B, P, Q) \mathcal{C}_Q$, where

$$\mathscr{S}_{2}(B, P, Q) = \sum_{C \in Cl(H)} |\mathcal{U}_{P,N(Q)} \cap C| e_{B}(\widehat{C})$$

and

$$\mathscr{S}_{3}(B, P, Q) = \sum_{C \in Cl(H)} |\mathcal{U}_{P,\overline{N(Q)}} \cap C| e_{B}(\widehat{C}).$$

Assume first that $q \equiv 1 \pmod{4}$. If $\ell_{P,Q} \in Pa_P$, then $S_1(B_s, P, Q) = 0$ for each *s* since $|\mathcal{H}_{P,Q} \cap C| = 0$ in *F* for each $C \neq [0]$ by Lemma 3.6(i), and $e_{B_s}(\widehat{[0]}) = 0$ by Lemma 4.5 2(c) in [8]; and by Lemma 3.6(i), and Lemma 4.5 1(a), (c), (d), (a), (c), (d) in [8], we obtain

$$S_2(B_0, P, Q) = e_{B_0}(\widehat{[0]}) + e_{B_0}(\widehat{[\pi_k]}) + e_{B_0}(\widehat{D}) = 0 + 1 + 1 = 0$$

and

$$S_2(B'_t, P, Q) = e_{B'_t}(\widehat{[0]}) + e_{B'_t}(\widehat{[\pi_k]}) + e_{B'_t}(\widehat{D}) = 0 + 0 + 0 = 0.$$

If $\ell_{P,Q} \in Se_P$ and $Q \notin P^{\perp}$, then by Lemma 3.5(ii), and Lemma 4.5 2(c) in [8] we obtain

$$S_1(B_s, P, Q) = e_{B_s}(\widehat{[0]}) + e_{B_s}(\widehat{[\theta_{i_1}]}) + e_{B_s}(\widehat{[\theta_{i_1}]}) = 0 + 0 + 0 = 0;$$

and by Lemma 4.5 1(c), 3(c) in [8], and Lemma 3.6(ii), $S_2(B_0, P, Q) = e_{B_0}(\widehat{[0]}) = 0$ and $S_2(B'_t, P, Q) = e_{B'_t}(\widehat{[0]}) = 0$.

If $\ell_{P,Q} \in Se_P$ and $Q \in P^{\perp}$, then by Lemma 3.5(iii), and Lemma 4.5 2(a) and (c) in [8] we obtain $S_1(B_s, P, Q) = e_{B_s}(\widehat{[0]}) + e_{B_s}(\widehat{D}) = 0 + 0 = 0$; and from Lemma 3.6(ii), and Lemmas 4.5 1(c) and 3(c) in [8], it follows that $S_2(B_0, P, Q) = e_{B_0}(\widehat{[0]}) = 0$ and $S_2(B'_t, P, Q) = e_{B'_t}(\widehat{[0]}) = 0$.

Next we assume that $q \equiv 3 \pmod{4}$. If $\ell_{P,Q} \in Pa_P$ and $Q \notin P^{\perp}$, then by Lemma 3.5(v), and Lemma 4.5 5(c) in [8], we have

$$S_1(B_r, P, Q) = e_{B_r}(\widehat{[0]}) + e_{B_r}(\widehat{[\pi_{k_1}]}) + e_{B_r}(\widehat{[\pi_{k_2}]}) = 0 + 0 + 0 = 0$$

and by Lemma 3.6(iii), and Lemma 4.5 4(d) and 6(d) in [8], we obtain $S_3(B_0, P, Q) = e_{B_0}(\widehat{[0]}) = 0$ and $S_3(B'_t, P, Q) = e_{B'_t}(\widehat{[0]}) = 0$.

If $Q = \ell_{P,Q} \cap P^{\perp}$, then by Lemma 3.6(iii) and 3.5(iii), and 4(d), 5(a), (c), 6(d) of Lemma 4.5 in [8], $S_3(B_0, P, Q) = e_{B_0}(\widehat{[0]}) = 0, S_1(B_r, P, Q) = e_{B_r}(\widehat{[0]}) + e_{B_r}(\widehat{D}) = 0 + 0 = 0$, and $S_3(B'_t, P, Q) = e_{B'_t}(\widehat{[0]}) = 0$. If $\ell_{P,Q} \in Se_P$, then by Lemma 3.6(iv) and 3.5(iv), and 4(a), 4(c), 4(d), 5(c), 6(a), 6(c), 6(d) of Lemma 4.5 in [8],

$$S_3(B_0, P, Q) = e_{B_0}(\widehat{[0]}) + e_{B_0}(\widehat{D}) + e_{B_0}(\widehat{[\theta_i]}) = 0 + 1 + 1 = 0,$$

 $S_1(B_r, P, Q) = e_{B_r}(\widehat{[0]}) = 0$, and

$$S_3(B'_t, P, Q) = e_{B'_t}(\widehat{[0]}) + e_{B'_t}(\widehat{D}) + e_{B'_t}(\widehat{[\theta_i]}) = 0 + 0 + 0 = 0.$$

Proof of Theorem 5.1. Let *B* be a 2-block of defect 0 of *H*. Then by Lemma 4.6 in [8], we have

$$e_B \cdot F^I = \overline{f_B \cdot \mathbf{S}^I}.$$

Therefore, by Lemma 5.2, $F^{I} \cdot e_{B} = N$, where N is the simple FH-module of dimension q - 1 or q + 1 lying in B accordingly as $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$.

Assume that $q \equiv 1 \pmod{4}$ and $q - 1 = m2^n \text{ with } 2 \nmid m$. Since

$$1 = e_{B_0} + \sum_{s=1}^{(q-1)/4} e_{B_s} + \sum_{t=1}^{(m-1)/2} e_{B'_t}$$

 $e_{B_0} \cdot \text{Ker}(\phi) = \mathbf{0}$ and $e_{B'_t} \cdot \text{Ker}(\phi) = \mathbf{0}$, then

$$\operatorname{Ker}(\phi) = \bigoplus_{B \in Bl(H)} e_B \cdot \operatorname{Ker}(\phi) = \bigoplus_{s=1}^{(q-1)/4} e_{B_s} \cdot \operatorname{Ker}(\phi) = \bigoplus_{s=1}^{(q-1)/4} N_s,$$

where N_s is the simple module of dimension q - 1 lying in B_s for each s by the discussion in the first paragraph.

Now assume that $q \equiv 3 \pmod{4}$. Lemma 4.7 yields $\operatorname{Ker}(\phi) = \langle \hat{\mathbf{J}} \rangle \oplus \operatorname{Im}(\mu_2)$. Since $e_{B_0} \cdot \operatorname{Im}(\mu_2) = \mathbf{0}$ and $e_{B'_t} \cdot \operatorname{Im}(\mu_2) = \mathbf{0}$, applying the same argument as above, we have

$$\operatorname{Im}(\mu_2) = \bigoplus_{r=1}^{(q-3)/4} M_r,$$

where each M_r is a simple *FH*-module of dimension q + 1. Consequently,

$$\operatorname{Ker}(\phi) = \langle \hat{\mathbf{J}} \rangle \oplus \left(\bigoplus_{r=1}^{(q-3)/4} M_r \right). \quad \Box$$

Now Conjecture 1.1 follows as a corollary.

Corollary 5.4. Let \mathcal{L} be the \mathbb{F}_2 -null space of **A**. Then

$$\dim_{\mathbb{F}_2}(\mathcal{L}) = \frac{(q-1)^2}{4}.$$

Proof. By Theorem 5.1 and the fact that $\dim_{\mathbb{F}_2}(\mathcal{L}) = \dim_{\mathbb{F}_2}(\operatorname{Ker}(\phi))$, when $q \equiv 1 \pmod{4}$, we have

$$\dim_{\mathbb{F}_2}(\mathcal{L}) = \sum_{i=1}^{(q-1)/4} (q-1),$$

and when $q \equiv 3 \pmod{4}$, we have

$$\dim_{\mathbb{F}_2}(\mathcal{L}) = 1 + \sum_{i=1}^{(q-3)/4} (q+1)$$

both of which are equal to $\frac{(q-1)^2}{4}$.

Acknowledgment

The second author's research was supported in part by NSF HBCU-UP Grant Award #0929257 at Lane College.

References

- S. Droms, K.E. Mellinger, C. Meyer, LDPC codes generated by conics in the classical projective plane, Des. Codes Cryptogr. 40 (2006) 343–356.
- [2] R.H. Dye, Hexagons, conics, A₅ and PSL₂ (K), J. Lond. Math. Soc. 44 (2) (1991) 270–286.
- [3] G. Frobenius, Über relationen zwischen den Charakteren einer Gruppe und denen ihrer untergruppen, S'ber. Akad. Wiss. Berlin (1898) 501–515; Ges. Abh. (III) 104–118.
- [4] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, second ed., Oxford University Press, Oxford, 1998.
- [5] D.R. Hughes, F.C. Piper, Projective Planes, Graduate Texts in Mathematics, vol. 6, Springer-Verlag, New York Inc., 1983.
- [6] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1976.
- [7] T.-Y. Lam, A First Course in Noncommutative Rings, in: Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York Inc., 1991.
- [8] P. Sin, J. Wu, Q. Xiang, Dimensions of some binary codes arising from a conic in PG(2, q), J. Combin. Theory A 118 (2011) 853–878.
- [9] J. Wu, Proofs of two conjectures on the dimensions of binary codes (under review).