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Abstract

In this paper, we explicitly obtain the coefficient matrix arising from a linearization of
Niederreiter’s factorization algorithm and analyze the complexity of setting it up. It turns out
that its setup cost is linear both in the degree of a polynomial to be factored and in the size
of the base field.
© 2004 Published by Elsevier Inc.
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1. Introduction

In 1992, Niederreiter[10,11] proposed a new deterministic algorithm for factoring
univariate polynomials over finite fields, which is based on suitable differential equations
defined by the Hasse–Teichmüller derivatives over the rational function field. As in the
classical algorithm of Berlekamp, Niederreiter’s method reduces the factorization of a
polynomial f ∈ Fq [x] to the calculation of the null space of a certain matrix, which
will be called a coefficient matrix. Indeed, Niederreiter obtained a formula of the
coefficient matrix in terms of the Berlekamp matrix and the Hankel matrices associated
to a polynomialf to be factored and used this formula to give an estimate of its setup
cost. We refer to[12,15] for arithmetic complexity of the whole algorithm including

∗ Corresponding author. Fax: +82-32-874-5615.
E-mail addresses:stj@math.inha.ac.kr(S. Jeong),youngho@cybersejong.ac.kr(Y.-H. Park).
1 Supported by KOSEF R05-2003-000-10160-0-2004.

1071-5797/$ - see front matter © 2004 Published by Elsevier Inc.
doi:10.1016/j.ffa.2004.08.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82206316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/ffa
mailto:stj@math.inha.ac.kr
mailto:youngho@cybersejong.ac.kr


270 S. Jeong, Y.-H. Park / Finite Fields and Their Applications 11 (2005) 269–277

the setup cost. On the other hand, several authors in[3,4,15] recently reported on
implementation results of Niederreiter’s algorithm, which show that it is well suited
for factoring polynomials over small finite fields.
Since the coefficient matrix is closely related to the Berlekamp matrix, it is very

desirable to obtain the matrix explicitly with much less cost. The purpose of this paper
is thus to derive an explicit formula for the coefficient matrix, which obtains a general
case of the formula in[4, Lemma 2.3]and then to give an improved estimate of its
setup cost. It turns out that the setup cost is linear both in the degree of a polynomial
to be factored and in the size of the base field. Moreover, as in characteristic two in
[5], we see that the coefficient matrix has a special form which may result in a speedup
in the calculation of the null space of the matrix on a more general setting.

2. Hasse–Teichmüller derivatives

Let Fq be a finite field ofq elements whereq is a power of prime characteristicp.
For each integern�0 the Hasse–Teichmüller derivativeH(n) of order n is defined on
the field Fq((x

−1)) of formal Laurent series in the variablex−1 over Fq as follows:

H(n)

( ∞∑
i=w∈Z

cix
−i

)
=

∞∑
i=w∈Z

(−i

n

)
cix

−i−n.

For later use we here state the product rule and the quotient rule, which were shown
by Teichmüller and Göttfert, respectively, but we refer to[2,6–8,17] for more basic
properties of Hasse–Teichmüller derivatives such as the chain rule.

Product rule. For f, g in Fq((x
−1)), H(n)(fg) = ∑n

i=0H(i)(f )H(n−i)(g).

Quotient rule. For f, g in Fq((x
−1)),

H(n)(
g

f
) = H(n)g

f
+

n∑
i=1

H(n−i)(g)

i∑
j=1

(−1)j
f j+1

∑
i1,...,ij �1,
i1+···ij=i

H (i1)(f ) · · ·H(ij )(f ).

We have the following simple lemma.

Lemma 2.1. Let r > 1 be a divisor ofq. Then for each n with1�n�r − 1, H(n)

kills the rth powers ofFq((x
−1)).

Proof. Write f r = ∑∞
i=w∈Z f r

i x
−ri for f = ∑∞

i=w∈Z fix
−i ∈ Fq((x

−1)). We compute

H(n)(f r) =
∞∑

i=w∈Z

(−ri

n

)
f r
i x

−ri−n = 0
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since
(
ri
n

)
≡ 0 (modp) for all integersi and n with 1�n�r − 1. �

3. Description of Niederreiter’s algorithm

Following the approach in[12], we will describe the algorithm of Niederreiter for
factoring a monic polynomialf in Fq [x]. Throughout, we fix an integerr > 1 so thatFr

can be a subfield of orderr of Fq . Two cases wherer = q or r = p, the characteristic
of Fq , are of greater interest to us.
Niederreiter considers the following differential equation over the rational function

field Fq(x):

H(r−1)(y) = yr . (1)

Niederreiter’s polynomial factorization is based on the following theorem.

Theorem 3.1. Let f = g
e1
1 · · · gemm be the canonical factorization overFq of a monic

nonconstant polynomialf . Then a basis of theFr -space of solutions to(1) of the form

y = h
f
with f fixed, denotedLq,r (f ), is given by{ g

′
1

g1
, . . . ,

g′
m

gm
}.

From Theorem3.1 every rational functionh
f

∈ Lq,r (f ) has a unique representation

h/f =
m∑
i=1

ci
g′
i

gi
with ci ∈ Fr . (2)

For a square-free polynomialf , we derive from (2)

gcd(f, h) =
∏

1� i �m
ci=0

gi for h �= 0, f ′
.

Since reducing a polynomial to be factored to a square-free one is not a serious problem
it is very crucial to efficiently find a basis ofLq,r (f ) in the factorization procedure.
To do so, we write solutions inLq,r (f ) as

f rH(r−1)
(
h

f

)
= hr, (3)

whereh ∈ Fq [x] is an unknown polynomial of degree< d := deg(f ). The restriction
on the degree ofh follows easily by comparing the degrees of polynomials on both
sides of (3). Now comparing the coefficients of both sides of (3) we obtain a system
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of d algebraic equations for the unknown coefficientsh0, . . . , hd−1 of h = ∑d−1
i=0 hixi .

If Nr(f ) denotes thed × d coefficient matrix overFq on the left-hand side of (3)
and h = (h0, . . . , hd−1) is the coefficient vector ofh and h[r] stands for the vector
(hr0, . . . , h

r
d−1) then (3) is equivalent to the system

Nr(f )hT = (h[r])T . (4)

Niederreiter gave two ways of setting upNr(f ) and described a polynomial-time algo-
rithm of computing it. For arbitraryd and r, the generic method of computingNr(f )

is to use the quotient rule to compute the left-hand side of (3) but it does not enable
us to give a precise analysis of the complexity for setting upNr(f ) since it involves
complicated calculations of the quotient rule.
Another way of computingNr(f ) is to use connections with decimation operators on

sequences overFq to obtain an explicit formula forNr(f ) in terms of the Berlekamp
matrix Br(f ) and Hankel matricesG(f [r]) andU(f ) associated to the polynomialf .
For comparison with ours we just state the results on the formula ofNr(f ) and its
complexity bound in[12,13].

Theorem 3.2.We haveNr(f ) = G(f [r])Br(f )U(f ).

Theorem 3.3. The setup cost for the matrixNr(f ) is O(d� + (d2 + logr)(log d log
log d)) arithmetic operations inFq , whered = deg(f ) and � < 2.38 is the exponent
of fast matrix multiplication.

4. Setup cost of the coefficient matrix

In this section, we aim to derive an explicit formula for the coefficient matrixNr(f )

and use this formula to analyze its setup cost in detail. By the product rule and Lemma
2.1 we see that (3) is equivalent to the system

H(r−1)(f r−1h) = hr . (5)

Set f r−1 = ∑(r−1)d
i=0 aix

i for f = ∑d
i=0 fixi and puth = ∑d−1

i=0 hixi . Substituting
these expressions into (5), we obtain, by the product rule andFq -linearity,

H(r−1)(f r−1h) =
∑

�+�=r−1
H(�)(f r−1)H (�)(h)

=
∑

�+�=r−1

(r−1)d∑
i=0

(
i

�

)
aix

i−� ·
d−1∑
j=0

(
j

�

)
hjx

j−�.
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Rewrite it as

H(r−1)(f r−1h) =
∑

�+�=r−1

(d−1)r∑
k=0


 ∑

i+j=k+r−1

(
i

�

)(
j

�

)
aihj


 xk.

Interchanging two outer sums in the preceding equation gives

H(r−1)(f r−1h) =
(d−1)r∑
k=0


 ∑

�+�=r−1

∑
i+j=k+r−1

(
i

�

)(
j

�

)
aihj


 xk.

Interchanging two inner sums in the preceding equation gives

H(r−1)(f r−1h) =
(d−1)r∑
k=0


 ∑

i+j=k+r−1

∑
�+�=r−1

(
i

�

)(
j

�

)
aihj


 xk.

Rewrite it as

H(r−1)(f r−1h) =
(d−1)r∑
k=0


k+r−1∑

j=0

∑
�+�=r−1

(
k + r − 1− j

�

)(
j

�

)
ak+r−1−j hj


 xk.

Since the innermost sum is the coefficient ofxr−1 in the polynomial(1+ x)k+r−1, we
have, for each 0�j�min{d − 1, k + r − 1},

∑
�+�=r−1

(
k + r − 1− j

�

)(
j

�

)
=
(
k + r − 1
r − 1

)
.

By the Lucas’ congruence theorem, we see that

(
k + r − 1
r − 1

)
≡
{
1(modp) if r|k,
0 (modp) otherwise.

Now, by this property, (5) simplifies to

d−1∑
k=0


rk+r−1∑

j=0
ark+r−1−j hj


 xrk =

d−1∑
k=0

hrkx
rk. (6)
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Hence we see that (6) (hence (4)) is equivalent to the system

min{r(k+1)−1,d−1}∑
j=max{r(k+1−d)+d−1,0}

ark+r−1−j hj = hrk for 0�k�d − 1. (7)

Thus, the matrix in (4) is given by

Nr(f ) =




ar−1 · · · a0 · · · 0 0 · · · 0 · · · 0
a2r−1 · · · ar · · · a0 0 · · · 0 · · · 0
a3r−1 · · · a2r · · · ar ar−1 · · · 0 · · · 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · 0 · · · · a(r−1)d · · · a(r−1)d−r

0 · · · 0 · · · 0 · · · · 0 · · · 1



. (8)

In case of r = q, the matrix in (8) reduces to the matrix which was obtained by
Fleischmann and Roelse[4, Lemma 2.3]. In case ofr = 2, which can be made ifFq

has characteristic 2,ai = fi for all 0� i�d, so that (7) reduces to

min{2k+1,d−1}∑
j=max{2k+1−d,0}

f2k+1−j hj = h2k for 0�k�d − 1, (9)

which was observed by Niederreiter[12].
We point out here that there is no setup cost forN2(f ) from (8) or (9) since its

entries can be read off immediately from the coefficients of the given polynomialf .
Likewise, for arbitraryd and r, one can set upNr(f ) with no further cost as long as
the coefficients off r−1 are explicitly obtained. So the setup cost forNr(f ) depends
only upon the explicit expansion off r−1.
As for the complexity ofNr(f ), we need to expand out the polynomialf r−1 com-

pletely. The naive method for computing the coefficients off r−1 is to multiply f by
itself r − 1 times and it requires much cost simply because it does not involve poly-
nomial reduction. But there is an efficient way of obtaining the coefficients off r−1
with much less cost when compared to that of Niederreiter’s (Theorem3.3). To this
end, let us now consider

f r−1(x) = f r(x)

f (x)
. (10)

Each coefficient of the numerator polynomialf r(x) can be calculated byO(logr)
arithmetic operations inFq , so we can obtain the coefficients off r in O(d logr)
arithmetic operations inFq . We note that at this stage, if a normal basis for an extension
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field Fq over Fr is exploited,f r can be calculated for free. By (10) the computation
of f r−1 is obtained by only one division with remainder 0, applied tof r and f .
According to standard results on the complexity of polynomial divisions[1,17], the
computation off r−1 can be done inO(rd · logrd · log logrd) arithmetic operations
in Fq using fast methods. To sum up the discussion above, we state the complexity
bound forNr(f ).

Theorem 4.1. The setup cost for the matrixNr(f ) is O(rd · logrd · log logrd) arith-
metic operations inFq .

We remark that the arithmetic complexity forNr(f ) in Theorem4.1 is linear both in
d = deg(f ) and in r ignoring log parts. The reason for this is that it does not involve
the computation of the Berlekamp matrix, unlike the Niederreiter’s formula forNr(f ).
Such observation on the complexity ofNr(f ) makes the probabilistic factorization
algorithm of Gao and Gathen improve its run time significantly (see[5, Theorem 3.1]).
For their algorithm is mainly based on the algorithm of Niederreiter and they used
Kaltofen and Saunders’ version[9] of Wiedermann’s method[19] for solving sparse
linear systems. This is the case when deg(f ) = d is large compared tor.
Following the approach in[5], we now calculate the left-hand side of (5) in a slightly

different way. For anyg = ∑n
i=0 gixi ∈ Fq [x] of degreen, we set

g〈j〉(x) :=
∑
0� i � n

i≡j (modr)

gix
i−j
r

for each 0�j�r − 1.
Then g〈j〉 is called the contractedj (modr) part of g(x), and we see thatg(x) =∑r−1
j=0 xjg〈j〉(xr). In particular, if r = 2, g〈0〉 andg〈1〉 are the contracted even and odd

part of g as defined in[5]. Using this expression of a polynomial one can compute the
left-hand side of (5) as follows.

H(r−1)(f r−1h) = H(r−1)

r−1∑

i=0
xi(f r−1)〈i〉(xr) ·

r−1∑
j=0

xjh〈j〉(xr)




= H(r−1)

2(r−1)∑

k=0

∑
i+j=k

xk((f r−1)〈i〉h〈j〉)(xr)




=
2(r−1)∑
k=0

∑
i+j=k

H (r−1) (xk((f r−1)〈i〉h〈j〉)(xr)
)

=
2(r−1)∑
k=0

∑
i+j=k

H (r−1)(xk) · ((f r−1)〈i〉h〈j〉)(xr)
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=
2(r−1)∑
k=0

∑
i+j=k

(
k

r − 1
)
xk−r+1((f r−1)〈i〉h〈j〉)(xr)

=
∑

i+j=r−1

(
(f r−1)〈i〉h〈j〉) (xr),

where the Lucas’ congruence theorem applies to the last equality. From the very last
identity above, the computation ofH(r−1)(f r−1h) can be done inr multiplications of
polynomials of degree at mostd. But the problem we face here is we should know the
coefficients off r−1 in advance. Without knowing those coefficients, one may use the
multinomial coefficient formula to compute(f r−1)〈j〉 in terms off 〈i〉 but computing
H(r−1)(f r−1h) this way requires more cost than only one polynomial division applied
to f r and f .
On the other hand, ifr = 2, thenH(1)(f h) = (f h)

′
(x)=(f 〈0〉h〈1〉+f 〈1〉h〈0〉)(x2).

From this equation, Gao and Gathen[5] observed that a suitable rearrangement of
the columns of the matrixN2(f ) becomes the Sylvester matrix of the contracted
polynomialsf 〈0〉 andf 〈1〉. We also observe that in the case where deg(f ) = d is large
compared tor, a suitable rearrangement of the columns ofNr(f ) in (8) turns out to be
the Sylvester matrix of the contracted polynomials(f r−1)〈j〉(x) for all 0�j�r−1. As
in characteristic 2 in[5], it is also expected that this special feature of the coefficient
matrix may result in efficient methods for finding a basis of the null space of the
system corresponding to (4).
We close this paper by making several remarks onNr(f ).

Remarks.

1. As Niederreiter’s factorization algorithm works over any effectively computable
field of positive characteristic so does the formula forNr(f ) in (8).
2. It is shown in [12] that there is a close tie ofNq(f ) with the Berlekamp matrix

Bq(f ) for r = q. Indeed,Nq(f ) and Bq(f ) are similar matrices, i.e.,Bq(f ) =
G(f )−1Nq(f )G(f ). From this relation one can use Theorem4.1 to deduce that the
setup cost ofBq(f ) is O(ds + qd · logqd · log logqd) arithmetic operations inFq ,
where s := max{�,2} and � is as in Theorem3.3. Compare this withO((d2 +
d logq) logd ·log logd), which is the standard complexity forBq(f ) with fast arithmetic
applied.
3. Niederreiter gave two ways of obtaining the system of linear equations corre-

sponding to (4). A first and easy way for this is to chooser = q. Another way is
to use a normal basis for a nontrivial extension field of the underlying finite field. In
using normal bases, we can improve the run time for settingNq(f ) up significantly
because computing matrix multiplication inNq(f ) is avoided. See[15, Theorems 2
and 3] for details.
4. Except forr = 2, sparsity off does not imply that ofNr(f ) but sparsity off r−1

does. Thus the matrix in (8) is very useful to implementations of the factorization
algorithm when the degree off is large compared tor.
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