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Abstract Here, we produced the C-terminal truncation variants
of mouse inducible heat shock protein 72 (Hsp72) to elucidate
the regulatory role of the C-terminal helical lid of Hsp70 for
substrate recognition. All of the truncation variants containing
the substrate binding domain bound a short-length peptide
substrate CLLLSAPRR. When a large mass reduced carb-
oxymethyl a-lactalbumin (RCMLA) as a substrate was used in
gel filtration experiment, we observed the complex formation
only for the truncation variants containing the long a-helix C in
the helical lid. However, RCMLA binding occurred even for the
variants lacking a-helix C when their C-terminal region was
anchored onto a solid phase. Together with the finding that helix
C is involved in the self-association of Hsp70, our present data
suggest that the C-terminal region of Hsp70 modulates the
substrate recognition and its kinetics may be substrate-mass
dependent.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Heat shock protein (Hsp) 70 is one of the molecular chap-

erones that are expressed constitutively or in response to sev-

eral types of stress, including heat shock, oxidative stress,

glucose deprivation, and exposure to toxins and heavy metals

[1–4]. Hsp70s are known to assist a variety of cellular processes

such as protein folding, assembly and disassembly of multi-

meric proteins, protein translocation across membranes, pro-

tein degradation and signal transduction [2–4].

The molecular chaperone Hsp70 is basically composed of

three structural domains [5]. The N-terminal 44 kDa segment

that contains the adenosine nucleotide binding site displays a

weak intrinsic ATP-hydrolytic activity [6,7]. The structure of

this domain is similar to the structures of hexokinase and

actin [7–9]. The adjacent 18 kDa segment has been shown to

bind peptide substrates [10]. The X-ray crystallographic
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study revealed that the peptide binding domain consists of a

b-sandwich structure made up of eight b-strands and loops

[11]. The channel to which peptide substrates are bound is

covered with a compact lid-like structure made up of a-he-
lices that are followed by a disordered flexible tail [11]. Re-

cently, Chou et al. [12] reported that the folding pattern of

a-helices in the lid structure of rat Hsc70 differs from that of

DnaK. The region of DnaK in the lid structure is composed

of four helices, aB–aE, whereas the equivalent region of rat

Hsc70 adopts a helix-loop-helix conformation.

A variety of peptides and nascent polypeptide chains have

been shown to be substrates of the C-terminal peptide binding

domain of Hsp70 [13,14]. In general, Hsp70 preferentially

binds hydrophobic peptides. A minimum peptide length of

seven residues is required for optimal binding to BiP, the

ER-located Hsp70 [15]. It has been proposed that BiP prefer-

entially binds peptides containing hydrophobic residues in al-

ternating positions [16]. Hsp70 also forms a stable complex

with unfolded proteins, such as reduced carboxymethylated

a-lactalbumin (RCMLA), a thermally unstable mutant of

staphylococcal nuclease, and apocytochrome c [17–19]. DnaK

binding sites in protein sequences were found to occur statis-

tically in every 36 residues [20]. Using a leucine-rich octapep-

tide and RCMLA, Hu and Wang reported that the C-terminal

10 kDa fragment appears to play a role in complexing with

RCMLA [21]. However, it remains to be elucidated how the C-

terminal region of Hsp70 is involved in the recognition of

peptide substrates.

Here, using recombinant truncation variants that are se-

quentially lacking the individual helix and a flexible tail of

mouse inducible Hsp72, we show the effect of deletion of the

C-terminal domain on binding to two kinds of substrates with

different peptide length.
2. Materials and methods

2.1. Materials
ATP-Na2 (purity >98%), ATP-agarose (A-2767), and RCMLA were

purchased from Sigma. Acrylodan-peptide CLLLSAPRR (a-p5) was
synthesized at and purchased from Kurabo, BioMedical, Japan. The
antiserum against mouse Hsp70 (SPA-812) from StressGen Biotech-
nologies Corp. (Canada) and the HRP-conjugated monoclonal anti-
body against histidine-tag from Invitrogen (Carlsbad, CA, USA) were
used for detection of the recombinant variants. EZ-LinkTM sulfo-
NHS-LC-biotin (Pierce) was used to biotinylate the RCMLA protein.
A fluorescein-EX labeling kit to fluoresceinate proteins was from
Molecular Probe. Labeling of RCMLA was performed according to
the manufacturer’s protocol.
blished by Elsevier B.V. All rights reserved.
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2.2. Cloning, expression, and purification of Hsp72 recombinant
variants

To express mouse Hsp72 and its C-terminal truncation variants,
d(1–615), d(1–562), d(1–543), and d(1–384), we introduced the corre-
sponding cDNA fragments into pET-20b(+) vector using NdeI and
XhoI sites (Novagen). Briefly, the corresponding cDNA fragments
were amplified by PCR techniques using sets of specific primers and
the plasmid mhsp72-pcDNA, which contains the cDNA encoding the
entire sequence of mouse hsp72, as a template. 50-GCACGA-
GGGATCCATATGGCCAAGAACACGGCGATC-30 was used as
the forward primer in all cases. The reverse primers for the wild-type,
d(1–615), d(1–562), d(1–543), d(1–384) were 50-CAGCAGAGGCTC-
GAGATCCACCTCCTCGATGGT-30 for the full-length hsp72 with
the entire sequence, 50-TTTAGCCCCCTCGAGACCCGCACCC-
TGGTA-30, 50-GTCAGCCTCCTCGAGCTTGCCCTTGAGACC-30,
50-GAAGGCATAGGACTCGAGCGCGTTCTTGGC-30, and 50-CT-
GCACGTTCTCGAGCTTGTCCCCCATCAG-30, respectively. These
PCR products were subcloned into the same restriction enzyme sites of
pET-20b(+). The resulting plasmids were suitable for expression of the
designed proteins with a histidine tag at their C-termini. After the
plasmids were introduced into Escherichia coli BL21(DE3), the bac-
teria harboring the constructed plasmids were grown in LB media for
protein expression. After isopropyl-b-DD-thiogalactopyranoside induc-
tion for 4 h, bacterial extract containing the designed proteins pro-
duced were applied to a Ni–NTA agarose (Qiagen) column, which was
basically developed according to the manufacturer’s protocol. After
dialysis of the eluate against buffer A [20 mM HEPES, 20 mM KCl, 10
mM (NH4)2SO4, 5 mM MgSO4, 1 mM dithiothreitol, and 0.5 mM
phenylmethylsulfonyl fluoride (pH 7.0)], the dialysate was applied to
ATP agarose (Sigma), which was developed according to the method
described by Schlossman et al. [22]. After extensive dialysis in the
presence of EDTA and a saturated concentration of ammonium sul-
fate to remove ATP, all samples were finally dialyzed against buffer B
[20 mM NaH2PO4, 150 mM KCl, and 3 mM 2-mercaptoethanol (pH
7.0)] and then stored at 4 �C before use.

2.3. Size-exclusion chromatography
The molecular size and status of recombinant proteins was analyzed

by size-exclusion chromatography using a column of TSK gel
G2000SW (7.5 i.d. · 300 mm, TOSOH, Tokyo, Japan) that was
equilibrated with buffer C [20 mM NaH2PO4, 150 mM KCl (pH 6.5)].
The protein samples were incubated at 37 �C for 30 min in buffer B in
advance and eluted with buffer C at a flow rate of 0.5 mL/min.
The size-exclusion chromatography with a column of Superdex 200

HR 10/30 (Amersham Biosciences, Piscataway, NJ, USA) was used to
check complex formation of the truncation variants with the peptide a-
p5. The proteins were eluted with buffer C at a flow rate of 0.5 mL/min
and monitored at the wavelength of 280 nm. The acrylodan-derived
fluorescence was detected using a spectrofluorometric detector RF-550
(Shimadzu, Kyoto, Japan) at the excitation wavelength of 370 nm and
the emission wavelength of 520 nm.
Fig. 1. Design of recombinant Hsp72 and its truncation variants. (A)
Shown is a schematic of the wild-type Hsp72 (residues 1–641) with the
boundaries indicated numerically. The lid region is not drawn to scale.
(B) SDS–PAGE of the purified truncation variants. Samples (1.5 lg
protein/lane) were electrophoresed on a 10% acrylamide gel and vi-
sualized by Coomassie Brilliant Blue staining: lane 1, molecular weight
marker; lane 2, wild-type Hsp72; lane 3, variant d(1–615); lane 4,
variant d(1–562); lane 5, variant d(1–543); lane 6, variant d(1–384).
(C), (D) Western blotting of the purified truncation variants (150 ng
protein/lane). Proteins were probed with polyclonal anti-Hsp72 anti-
body (C) and a monoclonal antibody against the histidine-repeat se-
quence (D): lanes 7 and 12, wild-type Hsp72; lanes 8 and 13, variant
d(1–615); lanes 9 and 14, variant d(1–562); lanes 10 and 15, variant
d(1–543); lanes 11 and 16, variant d(1–384).
2.4. Analyses of the binding of recombinant variants to peptide
substrates

To measure complex formation of the recombinant proteins with the
peptide a-p5, the excitation wavelength was set at 370 nm and the
emission at 500 nm was recorded. The spectra of the peptide a-p5 or of
the a-p5–protein complexes were scanned from 430 to 610 nm. Reac-
tions were initiated by manually adding the peptide solution with a
microliter pipette to protein solution in a quartz cuvette and observed
at 25 �C for 30 min. The fluorescence spectral data were collected with
a fluorescence spectrophotometer F-3000 (Hitachi, Japan).
FITC-labeled RCMLA was incubated at 37 �C for 30 min with the

truncation variants at a molar ratio of 1:1 in the presence of buffer D
[20 mM Tris–HCl, 150 mM KCl, and 3 mM 2-mercaptoethanol (pH
7.4)]. The variant-RCMLA complex was loaded on a column of TSK
gel G3000SW (7.5 i.d. · 300 mm, TOSOH, Tokyo, Japan) that was
equilibrated with buffer C. The proteins eluted were monitored at the
wavelength of 280 nm and the FITC fluorescence was detected using a
spectrofluorometric detector at the excitation wavelength of 492 nm
and the emission wavelength of 515 nm.
The truncation variants were mixed with Ni–NTA magnetic beads

(Qiagen) to immobilize the proteins through the C-terminal histidine-
tag sequence. After 5 min of incubation, the immobilized proteins were
incubated at 37 �C for 30 min with biotinylated RCMLA at a molar
ratio of 1:1 in the presence of buffer E [10 mM NaH2PO4, 150 mM
KCl, 3 mM 2-mercaptoethanol, and 0.005% Tween 20 (pH 7.5)]. After
the incubation, the beads were washed twice with buffer E and then the
variant–RCMLA complex was eluted from the beads in the presence of
buffer F [50 mM NaH2PO4, 300 mM NaCl, 3 mM 2-mercaptoethanol,
250 mM imidazole, and 0.005% Tween 20 (pH 7.5)]. Eluted samples
were subjected to SDS–PAGE and blotted onto PVDF membranes to
detect the biotinylated RCMLA using a chemiluminescence system
(Amersham Biosciences). To check the ATP-dependent dissociation of
RCMLA substrate, the beads were treated at 37 �C for 5 min in the
presence of 5 mM ATP and 10 mM MgCl2 before washing the beads
containing the variant–RCMLA complex.

2.5. CD measurement
CD spectra were recorded with a spectrometer (model J-720; Jasco,

Tokyo Japan) equipped with an interface and computer. Far-UV CD
spectrawere recorded at a protein concentration of 0.25mg/mLwith a 1-
mm cell at wavelengths from 250 to 195 nm. The unfolding transition
curves for the recombinant proteins were obtained by measuring the
ellipticity at 222 nm in a 1-mm cell at a protein concentration of 0.25mg/
mL in the presence of buffer B. The temperature was increased from 25
to 85 �C at a rate of 1.0 �C/min for the heat-denaturation process. The
measured ellipticities were corrected for the temperatures monitored
with a thermocouple (type SK-2000MC; Sato Keiryoki Mfg. Co., Ltd.,
Japan) and a flexible probe inserted directly into the 1-mm cell.
3. Results

3.1. Characterization of the recombinant truncation variants

The crystal structure of rat Hsc70 shows that its 10-kDa

subdomain adopts a helix-loop-helix fold and that this con-



Fig. 2. Far-UV spectra of the recombinant proteins. Curve 1, Oval-
bumin that had completely unfolded in the presence of 6 M guanidium
hydrochloride; curve 2, wild-type Hsp72; curve 3, variant d(1–615);
curve 4, variant d(1–562); curve 5, variant d(1–543); curve 6, variant
d(1–384).
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formation is different from the equivalent subdomain of

DnaK, the bacterial homolog of Hsc70 [12]. Considering the

data of Chou et al. showing that a-helix C corresponds to

amino acid residues 564–610 in mouse inducible Hsp72, we

designed recombinant variants that sequentially deleted the

individual helices and the flexible tail (Fig. 1A). The variants

d(1-615) and d(1–562) lack the flexible tail at the extreme C-

terminus and the entire a-helix C, respectively. The variant

d(1–543) was constructed as a protein containing the mini-

mum unit of the substrate binding domain according to the

data of Wang et al. [10]. The SDS–PAGE patterns showed

that the purified proteins had the expected molecular sizes

with purity over 98% (Fig. 1B). Western blotting patterns

revealed that every product was reactive with the antiserum

against Hsp70 and had a precise sequence at the C-terminus,

confirming the structural integrity of the Hsp70 entity

(Fig. 1C and D).

CD spectroscopy showed significant secondary structure in

the truncation variants. Every variant showed significant and
Fig. 3. Gel filtration analysis of the recombinant proteins. Gel filtration chrom
shown for the wild-type Hsp72 (A), variant d(1–615) (B), and variant d(1–5
intrinsic secondary structure (Fig. 2). Especially, the profile of

the wild-type protein had peaks at 208 nm and 222 nm, re-

flecting significant content of a-helix, whereas the profile of

d(1–543), which lacks a few a-helices in the C-terminal 10-kDa

subdomain, had the peak at 215 nm, suggesting the presence of

significant b-sheet structure in the substrate binding domain.

3.2. Self-association of the recombinant truncation variants

Since several reports have shown that the C-terminal portion

of Hsp70 molecules could be involved in self-association

[12,23–25], the truncation variants were subjected to size-

exclusion chromatography (Fig. 3). The wild-type recombinant

and d(1–615) variant were found to exist as monomer, dimer

and oligomer, although there may be differences in the pro-

portions of self-association (Fig. 3A and B). On the other

hand, variant d(1–562) predominantly existed as the monomer

(Fig. 3C). The recombinant variants d(1–543) and d(1–384)

were also monomeric (data not shown). This suggests that the

long a-helix C at the C-terminus is responsible for self-

association of Hsp70 molecules.

3.3. Thermal stability monitored by far-UV CD of the

truncation variants

Fig. 4 shows the changes in the ellipticity at 222 nm of the

truncation variants as a function of temperature in the range of

30–80 �C. The wild-type hsp72 (Fig. 4A) and d(1–615) variant

(Fig. 4B) underwent a small cooperative conformational

change in the vicinity of 42 �C followed by a second and less

cooperative transition in the temperature range of 60–80 �C.
Abrupt transition took place around the temperature of 42 �C
for two truncation variants, d(1–562) and d(1–543) (Fig. 4C

and D). In the presence of Mg2þ/ATP, however, the stability of

all recombinant proteins was increased so that they were

substantially stable at the temperature below 55 �C. Thus, the
C-terminal truncation did not cause a marked decrease in

thermal stability.

3.4. Molecular interactions between the truncation variants and

various substrate peptides

A number of short peptides have been reported so far to

bind to Hsp70, with Kd values ranging from 1 to 20 lM
[13,16,26,27]. Unfolded proteins such as RCMLA and a
atography was performed as described in Section 2. Elution profiles are
62) (C).



Fig. 5. Binding of acrylodan-CLLLSAPRR (a-p5) peptide to the re-
combinant proteins. Fluorescence emission spectra of protein-bound
a-p5 were recorded under the conditions described in Section 2. The
emission at 500 nm was compared as the relative fluorescence.

Fig. 4. Thermal stability monitored by far-UV CD of the truncation
variants. Shown is the observed ellipticity at 222 nm that changes as a
function of temperature. The temperature was increased from 25 �C to
85 �C at a rate of 1.0 �C/min for the heat-denaturation of the wild-type
(A), variant d(1–615) (B), variant d(1–562) (C), and variant d(1–543)
(D).

Fig. 6. Gel filtration analysis of the recombinant proteins complexed
with a-p5 peptide. Gel filtration chromatography was performed as
described in Section 2. From upper line, elution profiles are shown for
the wild-type Hsp72, variant d(1–615), variant d(1–562), variant d(1–
543), and variant d(1–384).
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thermally unstable mutant of staphylococcal nuclease are also

known to form complexes with Hsp70 [17–19]. We investigated

if the types of peptide substrate may affect the binding prop-

erties of Hsp72. The peptide a-p5 is a representative substrate

for E. coli Hsp70 DnaK [28–30]. On binding to DnaK under

our experimental conditions, the fluorescence spectrum of a-p5

underwent a blue shift of emission maximum from 526 to 513

nm, depending on the concentration of DnaK. The fluores-

cence intensity of a-p5 at 500 nm in the presence of 10 lM
DnaK concomitantly increased to 370% of that of the un-

bound ligand (data not shown). When the relative fluorescence

of a-p5 as a measure of peptide binding was compared among

the truncation variants at the concentration of 10 lM (Fig. 5),

the variants containing substrate-binding domain displayed

significant binding of the peptide a-p5. Binding of the peptide

a-p5 by the truncation variants including d(1–562) was clearly

detected by the size-exclusion chromatography as shown in

Fig. 6. We observed the decreased fluorescence intensity in

both experiments by sequentially deleting the C-terminal re-

gion of Hsp72. This may result from increased quenching that

is expected as the lid structure is deleted. However, these data

suggest that the truncation variants intrinsically retain the

ability to bind peptide substrate.

When the formation of substrate–Hsp72 complex was ex-

amined using an unfolded protein RCMLA instead of the

nonapeptide a-p5, FITC-labeled RCMLA bound the wild-type

Hsp72 and variant d(1–615) (Fig. 7A and B). Addition of

Mg2þ-ATP to the reaction mixture caused dissociation of the

RCMLA substrate from Hsp72 complexes (Fig. 7D and E),

suggesting that the substrate binding was intrinsically ATP-

dependent. In this gel filtration experiment, however, we could
not observe the peak showing the complex of other shorter

truncation variants such as variant d(1–562) with RCMLA

(Fig. 7C). To address if protein stability can affect the binding

property, we examined the binding of d(1–562) variant with

RCMLA in the presence of Mg2þ/ADP. No detectable peak

appeared under this condition, as shown in Fig. 7F.

Then, we examined binding property of the truncation

variants to RCMLA substrate under the condition where they

were immobilized on the Ni2þ–NTA magnetic beads through



Fig. 7. Binding of FITC-labeled RCMLA to the recombinant proteins
free in solution. Gel filtration chromatography was performed as de-
scribed in Section 2. The upper three panels show the elution profiles of
FITC-labeled RCMLA that was mixed with wild-type Hsp72 (A),
variant d(1–615) (B), and variant d(1–562) (C). The lower three panels
show the elution profiles of the wild-type Hsp72 (D) and d(1–615)
variant (E) after incubation in the presence of Mg2þ/ATP, and
d(1–562) variant after incubation in the presence of Mg2þ/ADP (F).
Elution positions of the complex RCMLA-Hsp72 and free RCMLA
are shown by closed and open triangles, respectively.
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the interaction with the C-terminal histidine tag sequence. As

shown in Fig. 8, the variants except for d(1–384) showed nu-

cleotide-dependent formation of the Hsp-RCMLA complexes,
Fig. 8. Binding of biotinylated RCMLA to the recombinant proteins
anchored onto Ni-NTA solid phase. Biotinylated RCMLA that had
bound to wild-type Hsp72 and its truncation variants was analyzed by
SDS–PAGE and visualized using the ECL Western blotting analysis
system (Amersham) with HRP-conjugated streptavidin. No RCMLA
was detected in the reaction without Hsp72 (lane 1). The wild-type
Hsp72 (lanes 2–4), variant d(1–615) (lanes 5–7), variant d(1–562) (lanes
8–10), variant d(1–543) (lanes 11–13), or variant d(1–384) (lanes 14–16)
was incubated in the absence (lanes 2, 5, 8, 11, and 14) or the presence
(lanes 3, 4, 6, 7, 9, 10, 12, 13, 15, and 16) of biotinylated RCMLA. The
reaction mixtures were treated with ATP to dissociate the Hsp70-
RCMLA complex (lanes 4, 7, 10, 13, and 16).
although there may have been differences in the binding ca-

pacity. Interestingly, unlike the case of the peptide a-p5, the

deletion of the flexible tail portion greatly reduced the ability

of the truncation variants to bind to RCMLA.
4. Discussion

In the present study, we showed that the long a-helix C in

the helical lid and the following flexible region of Hsp72 in-

fluence the recognition of a large mass substrate. The kinetics

for substrate release may be substrate-mass dependent. Also,

helix C was shown to be required for self-association of Hsp72.

The truncation variants containing the substrate-binding

domain were shown to bind a short-length peptide a-p5 (see

Figs. 5 and 6). Taking into account quenching effect, the ob-

served decrease in fluorescence does not always reflect a de-

crease in the amount of bound peptide. However, we

qualitatively showed that residues 385–543 in the variants we

produced can form a functional subdomain that potentially

has binding ability for the substrate peptide. This observation

is compatible with the report of Wang et al. [10].

When RCMLA was used as a large mass substrate, we could

not detect the peak showing the complex of the variant d(1–

562) with RCMLA in the size-exclusion chromatography ex-

periment. In contrast, d(1–562) variant was shown to bind

RCMLA when the variant was immobilized on the Ni2þ–NTA

magnetic beads. This discrepancy may be explained by the

following possible reasons. First, the b-sandwich substrate-

binding domain itself may have lost the structural stability

needed for recognition of RCMLA polypeptide because, in

general, the truncation causes the decrease in protein stability

to change physical properties. However, a marked decrease in

thermal stability by the C-terminal truncation was not ob-

served as shown in Fig. 4. There was no peak showing the

complex of d(1–562) variant with RCMLA even though the

stability of the variant was increased in the presence of Mg2þ/
ADP. These data allow us to rule out the first possibility.

Second, d(1–562) variant could bind RCMLA, but the off-

rate has increased compared to the wild-type. RCMLA might

dissociate from the variant during the transit time down the

column of gel filtration, because helix D in DnaK was shown

to be essential for long-lived DnaK-peptide complexes and the

off-rate was markedly increased when helix D is deleted [31].

The region equivalent to helix D of DnaK is included in the

sequence between 563 and 615 residues of mouse Hsp72.

Taking into account that the complex of d(1–562) variant with

a-p5 peptide was clearly detected in the column experiment as

shown in Fig. 6, this observation raises the possibility that the

increase in off-rate can be substrate-mass dependent. To ad-

dress this problem, we should require a larger set of quanti-

tative experiments with peptide libraries showing diversity in

sequence and mass.

An individual helix in the C-terminus of DnaK discretely

coordinates the functional structure of the helical lid of DnaK.

Helix D of DnaK is necessary and sufficient to create the

protective lid structure when a substrate peptide is added. In

the absence of peptide, helix E promotes the formation of the

antiparallel helical bundle composed of the B to D helices and

prevents internal ligand formation [31]. Wang and colleagues

showed that internal ligand formation, i.e., self-binding, occurs

in the region of DnaK which contains the b-sandwich sub-
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strate-binding domain plus the lid helices aA and aB [32]. This

self-binding results from the fact that leucine residue 543 in

helix B is tightly held in a deep hydrophobic pocket within the

substrate-binding site, leading to stabilization of substrate-

binding domain. Similarly, in rat Hsc70, leucine residue 542

was observed to intramolecularly interact with the hydropho-

bic groove of the substrate-binding domain by salt-bridge

formation [33]. Three discrete helices C-E in DnaK are

equivalent to the long a-helix C in the helix-loop-helix fold of

rat Hsc70 [12]. Assuming that the C-terminal structure of

mouse inducible Hsp72 is similar to that of the rat Hsc70

homolog, the region around the end of helix B0 of variant d(1–
562) is presumed to cause internal ligand formation that re-

tards RCMLA recognition. The long helix C of mouse Hsp72,

which contains the equivalent portion to helices D and E of

DnaK, may regulate internal ligand formation by helix B0.
According to the substrate mass, therefore, helix C may play a

role in modulating the off-rate for substrate binding.

Another interesting result in this study is that deletion of the

flexible tail results in decreased RCMLA binding (see Fig. 8).

Recently, Demand et al. reported that the C-terminal 10-kDa

domain could interact with Hdj-1/Hsp40 [34]. The EEVD

motif at the extreme C-terminus of human Hsp70, which is

conserved among many species, is known to be important for

its peptide binding activity and ATPase activity because mu-

tation of the EEVD sequence abolishes chaperone activity

[35,36]. The reduction of RCMLA binding to d(1–615) variant,

compared to the wild-type Hsp72, might result from the de-

letion of this EEVD motif in the variants. Deletion of the lid of

DnaK increases the kinetics of ATP-triggered peptide release

[37]. The flexible tail and helix E of DnaK modulate the ki-

netics of ATP binding [31]. Taken together, the C-terminal tail

could work in concert with the nucleotide-binding domain to

control the kinetics for binding of a large mass substrate.

Additionally, our present data clearly showed that helix C

dictates the chaperone self-association (see Fig. 4) and are thus

compatible with the results reported by Chou et al. [12]. Under

certain conditions Hsp70 proteins are known to exist as olig-

omers, which are converted to monomers in the presence of

peptide substrates or ATP [17,38]. That oligomers also form in

vivo has been suggested by genetic data obtained from studies

of dominant hsp70 mutations and intergenic complementation

experiments between hsp70 mutants [39,40].

Considering that the C-terminal region of Hsp70 may

modulate the kinetics of the substrate recognition according to

the substrate-mass specific off-rate, we speculate that the he-

lical lid region of Hsp70 may significantly regulate intracellular

protein synthesis as the chain length of a polypeptide being

synthesized increases. Further investigations will be needed in

the future to elucidate the biological function of the C-terminal

region of the Hsp70 family in vivo.
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