ON SOME SEQUENCING PROBLEMS IN FINITE GROUPS

Michael D. MILLER
Department of Mathematics, University of California, Los Angeles, CA, 90024, U.S.A.

Richard J. FRIEDLANDER
Department of Mathematics, Unicersity of Missouri, St. Louis, MO, 63121. U.S.A.

Received 3 August 1976

Abstract

A finite group is called Z-sequenceable if its non-identity eiements can be listed $x_{1}, x_{2}, \ldots, x_{n}$ so that $x_{i} x_{i+1}=x_{i+1} x_{i}$ for $i=1,2, \ldots, n-1$. Various necessary and sufficient conditions are determined for such sequencings to exist. In particular, it is proved that if $n \geqslant 3$, then the symmetric group S_{n} is not Z-sequenceable.

1. Introduction

Let G be a group and suppose that $\Gamma(G)$ is the undirected graph whose vertices, are the non-identity elements of G, with elements x and y joined by an edge if and only if $x y=y x$. Nakanishi [6] considered classes of groups for which $\Gamma(G)$ is connected, and showed that the symmetric group $S_{n}(n \geqslant 3)$ is connected if and only if n and $n-1$ are composite, while the alternating group $A_{n}(n \geqslant 4)$ is connected if and only if $n, n-1$, and $n-2$ are composite.

In this paper, we determine some necessary and sufficient conditions on G in order that $\Gamma(G)$ possess Euler and Hamiltonian paths and circuits. For example, we prove that if $n \geqslant 3, \Gamma\left(S_{n}\right)$ has no Hamiltonian path, while for $n \geqslant 4, \Gamma\left(A_{n}\right)$ has no such path.

If G is countable, the existence of a Hamiltonian path in $\Gamma(G)$ is equivalent to the existence of a sequencing $\left\{x_{n}\right\}$ of the non-identity elements of G such that $x_{i} x_{i-1}=x_{i+1} x_{i}$ for all i. (If G is infinite, this sequence might be two-way infinite.) If such a sequencing exists, we shall say that G is Z-sequenceable. Furthermore, we call the finite group G strongly Z-sequenceable if G has a Z-sequencing $x_{1}, x_{2}, \ldots, x_{m}$ such that $x_{m} x_{1}=x_{1} x_{m}$. This is clearly equivalent to the existence of a Hamiltonian circuit in $\Gamma(G)$.

We note that the sequencings of Gordon [3] and Friedlander [2] can also be interpreted as Hamiltonian [aths, while the sequencings of Ringel [7], dealing with map-coloring problems, can similarly be viewed as Hamiltonian circuits.

It is clear that all finite abelian groups are strongly Z-sequenceable, while it can
be shown that the group $S_{3} \times \mathbf{Z}_{4}$, of order 24 , is Z-sequenceable, but not strongly Z-sequenceable. Finally, we remark that if G is Z-sequenceable, then certainly $\Gamma(G)$ is connected. In what foliows, we will assume all groups finite unless otherwise stated.

2. Z-Sequenceable groups

We first show

Theorem 2.1. If $n \geqslant 3$, the dihedral group D_{n} is not Z-sequenceable.
Proof. Write $D_{n}=\langle a, b\rangle$ subject to the relations $a^{n}=b^{2}=1, b a b=a^{-1}$. Recall that $Z\left(D_{n}\right)=\{1\}$ or Z_{2} according as n is odd or even, and that if $x \in D_{n}$ is a non-central involution, then the centralizer of x is

$$
C(x)=\left\{\begin{array}{cl}
\langle x\rangle & \text { if } n \text { is odd } \\
\left\langle a^{n / 2}, x\right\rangle & \text { if } n \text { is even }
\end{array}\right.
$$

Assume on the contrary that D_{n} is Z-sequenceable. Let x and y be any two non-commuting involutions, where for definiteness x precedes y in some Z sequencing of G. Let z be the first element following x that does not commute with x. This forces the element immediately to the left of z to be central. Thus any two non-commuting involutions are separated by a central element, and since $D_{n}(n \neq 4)$ contains at least three pairwise non-commuting involutions, we have a contradiction, and the result follows. (if is easily seen by inspection that D_{4} is not Z-sequenceable.)

Theorem 2.2. If $|G / Z(G)| \cdot 1 \leqslant|Z(G)|$, then G is Z-sequenceable, while if $|G| Z(G)|\leqslant|Z(G)|$, then G is strongly Z-sequenceable.

Proof. Since elements in the same coset of $Z(G)$ commute, we can obtain a Z-sequencing of G by succesively listing the elements of each coset, separating elements of distinct cosets by central elements.

For example, the group $G:=D_{4} \times Z_{2}$, of order 16 , is strongly Z-sequenceable since $|Z(G)|=4$. The statement of the theorem is as strong as possible since D_{4} is not Z-sequenceable, and $\left|D_{4} / Z\left(D_{4}\right)\right|-2=\left|Z\left(D_{4}\right)\right|$.

If $g_{1}, g_{2}, \ldots, g_{n}$ is a Z-sequencing of G, then the sequencing $1, g_{1}, g_{2}, \ldots, g_{n}$ is called an augmented Z-sequericing of G.

Theserem 2.3. If G and H are Z-sequenceable, then so is $G \times H$.
Prool. Let $x_{1}, x_{2}, \ldots, x_{n}$ and y, y_{2}, \ldots, y_{n} be augmented Z-sequencings of G and
H respectively (so $x_{1}=y_{1}=1$). Then an augmented Z-sequencing of $G \times H$ is given by $z_{11}, z_{12}, \ldots, z_{m n}$, where $z_{11}=x_{i} y_{,}$. By deleting $z_{11}=1$, wc obtain a z. sequencing of $G \times H$.

Before studying the existence of Hamiltonian paths in $\Gamma\left(S_{n}\right)$ and $\Gamma\left(A_{n}\right)$, we need several lemmas.

Lemma 2.4. Let G be agroup and $S_{i}=\left\langle a_{1}\right\rangle, i=1,2, \ldots, r$, a collection of distinct cyclic suhgroups such that $C\left(S_{i}\right)=S_{1}$ for all i. Let $S=\bigcup_{i=1} S_{i}$, and set $N=$ $\left\{x \in S \mid\langle x\rangle \neq S_{i}\right.$ for any i\}. Then if $|N|<r, G$ is not Z-sequenceable.

Proof. Assume on the contrary that G has a Z-sequencing \sum. Fix i and j, and suppose without loss of generality that a_{i} precedes a_{i} in Σ. Let y be the first element following $u_{\text {, }}$: bat is not in $S_{\text {. ((As }} a_{1} \notin S_{i}$, clearly such a y exists.) Then the element t o the immediate left of y must be in N, since elements of $S_{i}-N$ commute only with elements of S_{i}. Thus there is a non-identity element of N between a_{1} and a for ali i, j, a contradiction, and the result follows.

Lemma 2.5. If $n \geqslant 1$, then $n!\geqslant \mathrm{e}(n / \mathrm{e})^{n}$.
Proof. From the graph of $y=\log x$, we have $\log 2+\log 3+\cdots+\log n \geqslant$ $\int_{1}^{n} \log x \mathrm{~d} x$. But $\quad \int_{i}^{n} \log x \mathrm{~d} x=n \log n-(n-1)$. Thus $\quad \log (2 \cdot 3 \cdot \ldots \cdot n) \geqslant$ $n \log n-(n-1)$, an! exponentiating gives $n!\geqslant e(n / e)^{n}$.

Lemma 2.6.

(i) The number of elements of S_{n} which are powers of n-cycles but not themselves n-cycles is

$$
\sum_{d=n} \frac{n!}{(n / d)!d^{n / d}}
$$

(ii) The number of elements of $S_{n}(n \geq 3)$ which are powers of $(n-1)$-cycles, but not themselves $(n-1)$-cycles is

$$
\sum_{\substack{d, n-1 \\ d \in n-1}} \frac{n!}{((n-1) / d)!d^{(n-1) / d}}-(n-1)
$$

Proof. (i) Each element in question is a product of $n / d d$-cycles for some proper divisor d of n. But for fixed d, it is well-known [8; 299] that the number of such elerments is

$$
\frac{n!}{d^{n / d}(n / d)!} .
$$

The result follows by summing over the proper divisors of n.
(ii) As in (i), each element in question is a product of $(n-1) / d d$-cycles for some proper divisor $\{$ of $n-1$. The argument is the same, except that we must subtract $n-1$ to account for duplication arising when $d=1$.

Theorem 2.7. If $n \geqslant 3$, then S_{n} is not Z-sequenceabie.
Proof. Case 1: n odd. The number of n-cycles in S_{n} is ($n-1$)!, and these n-cycles generate $(n-1)!/ \varphi(n)$ distinct cyclic subgrcups, where φ is the Euler function. Recall that an n-cycie commutes only with its powers. By Lemma 2.6, the number of elements in S_{n} which are powers of n-yycles, but not themselves n-cycles is

$$
x=\sum_{\substack{d \prod_{d<n}}} \frac{n!}{(n / d)!d^{n / d}}
$$

By Lemma 2.4, it suffices to prove that $\chi<(n-1)!/ \varphi(n)$. Now by Lemma 2.5 (replacing n by n / d), we have $(n / d)!d^{n / d} \geqslant \mathrm{e}(n / \mathrm{e})^{n / d}$, herice

$$
x \leqslant \frac{n!}{\mathrm{e}} \sum_{\substack{d!n \\ d<n}}\left(\frac{\mathrm{e}}{n}\right)^{n / d}
$$

Since n is odd, this latter expression is less than

$$
\frac{n!}{\mathrm{e}}\left(\frac{\mathrm{e}}{n}\right)^{3} \frac{1}{1-(\mathrm{e} / n)}=\frac{n!\mathrm{e}^{2}}{n^{2}(n-\mathrm{e})}
$$

It suffices then to show that $\varphi(n) \leqslant n(n-e) / \mathrm{e}^{2}$. If $n>10$. $(n-\mathrm{e}) / \mathrm{e}^{2}>1$, so $\varphi(n) \leqslant n(n-e) / \mathrm{e}^{2}$. If $n=5,7$ or 9 , it is straightforward to verify directly that $\chi<(n-1)!/ \varphi(n)$, while if $n=3$, the theorem is true by inspection.

Case 2: n even. The number of $(n-1)$-cycles in S_{n} is $n(n-2)$!, and these $(n-1)$-cycles generate $n(n-2)!/ \varphi(n-1)$ distinct cyclic subgroups. Recull that an ($n-1$)-cycle commutes only with its powers. By Lemma 2.6, the number of elemuents in S_{n} which are powers of $(n-1)$-cycles, but not themselves $(n-1)$-cycles is

$$
\sigma=\sum_{\substack{d / n-1 \\ d \times n-1}} \frac{n!}{((n-1) / d)!d^{(n-1) / d}}-(n-1)
$$

So by Lemma 2.4, it suffices to show that $\sigma<n(n-3)!/ \varphi(n-1)$. This certainly holds if $\sigma+(n-1)<n(n-2)!/ 4 \rho(n-1)$, or equivalently, if

$$
\sum_{\substack{d \times-1 \\ d<n-1}} \frac{(n-1)!}{((n-1) / d)!d^{(n-1) / 4}}<\frac{(n-2)!}{\varphi(n-1)} .
$$

But this follows immediately from Case 1 , since $\boldsymbol{n}-1$ is odd.
Corollary. If $n \geqslant 4$, then A_{n} bi not Z-sequenceable.

Prof. If \boldsymbol{n} is odd, $\boldsymbol{A}_{\boldsymbol{n}}$ contains all \boldsymbol{n}-cycles, and the proof of Case 1 applies. It \boldsymbol{n} is even, A_{n} contains all ($n-1$)-cycles, and the result follows from Case 2.

Using Theorems 2.2 and 2.3, we can construct infinitely many classes of finite Z-sequenceable groups. Moreover, it can be shown that if G is ccountably infinite, and $C(x) \cap C(y)$ is infinite for all $x, y \in G$, then G is Z-sequenceable. In particular, a countably infinite FC-group (a group in which each element has finitely m_{i} :ny conjugates) is \boldsymbol{Z}-sequenceable, as is the group S_{∞} of all permutations of a countably infinite set moving only finitely many elements. There are many ways to extend the concept of Z-sequenceabiiity to uncountable groups G. For example, we can call $G Z$-sequenceable if its non-identity elements can be well-ordered so that each element commutes with its successor.

We conclude this section by mentioning several unanswered questions:
(i) Is there a finite Z-sequenceable group G with $Z(G)=1$?
(ii) For a countably infinite group G, are the concepts of one-way and two-way Z-sequenceability distinct? That is, is there a G which a one-way Z-sequencing, but not a two-way sequencing (and vice versa).
(iii) Can the direct product of two non- Z-sequenceable groups be Z-sequenceable?

3. Euler paths and circuits

We turn now to the existence of Euler paths and circuits. Recall that an undirected graph Γ has an Euler path (circuit) if and only if it is connected and has no (for a circuit) or exactly two vertices of odd degree. We thus have the following.

Theorem 3.1. If $|G|>2$, and $\Gamma(G)$ is connected, then $\Gamma(G)$ has an Euler circuit if and only if $|C(x)|$ is even for all $x \in G$.

If G has non-trivial center, then clearly $\Gamma(G)$ is connected. It follows that if $|Z(G)|$ is even, then $\Gamma(G)$ has an Euler circuit. In particular, if G is abelian and $|G|>2$, then $\Gamma(G)$ has an Euler circuit if and only if $|G|$ is even. On the other hand, if $n \geqslant 3$, then neither S_{n} nor A_{n} has an Euler circuit.

In order to determine the existence of Euler paths, we need two grouptheoretical lemmas.

Lemma 3.2. (i) If G is non-abelian, and r is an automorphism of order 2, then 7 fixes some non-identity element.
(ii) If H is a p-group, and $\{1\} \neq K \triangleleft \mid H$, then $K \cap Z(H) \neq\{1\}$.
(iii) If H is a group of odd order, then no non-identity element is coniugate to its inverse.
(iv) Suppose H is a subgroup of $G, x \in G$. If $[x, H] \subseteq Z(H)$, then $C_{H}(x) \triangleleft \mid H$. (Here $[x, H]$ denotes the subgroup of G generated by all $x^{-1} h^{-1} x h, h \in H$.)

The proofs are straightforward and will be omitted. (See, e.g., [4, p. 336].)
Lemma 3.3. Let G be a finite group having exactly two non-identity elements with odd-order centralizer. Then either $G=\mathbf{Z}_{3}$ or $\boldsymbol{G}=\boldsymbol{S}_{3}$.

Proof. Assume $G \neq \mathbf{Z}_{3}$; then clearly $|G|$ is even. Suppose $a \in G$, and $H=C_{G}(a)$ has odd order. Since any generator of $\langle a\rangle$ also has odd-order centralizer, we see that ord $a=3$, and $\langle a\rangle \triangleleft \mid G$. If $1 \neq b \in H$ has order m and $3 \times m$, then $1 \neq(a b)^{m}=$ $a^{m} \in\{a\rangle$, so $C(a b) \subseteq C(a)$. Thus $|C(a b)|$ is odd, a contradiction. Hence H is a 3-group. By the N/C Theorem [8, p. 50], $N_{\sigma}\langle a\rangle / C_{G}\langle a\rangle \subseteq \operatorname{Aut}(a)=Z_{2}$, and since $|G|$ is even, we deduce that $|G|=2 \cdot 3$ for some $r \geqslant 1$.
Let $x \in G$ have order 2 , so each element of $G-H$ is of the form $x c, c \in H$. By hypothesis, for all $b \in H \cdots\langle a\rangle$, there exists $c \in H$ such that $(x c)^{-1} b(x c)=b$; that is, $x^{-1} b x=c b c^{-1}$. Thus conjugation by x stabilizes the conjugacy classes of $H-\langle a\rangle$. It also follows immediately that $\langle a\rangle=Z(H)$.

If there exists $b \in H$ such that $[x, b]=x^{-1} b^{-1} x b \notin\langle a\rangle$, then $x^{-1}[x, b] x=[x, b]^{-1}$ is conjugate in H to $[x, b]$, contradicting Lemma 3.2 (iii). Thus for all $b \in H$, $[x, b] \in\langle a\rangle$, so by Lemma 3.2 (ivy, $C_{H}(x) \triangleleft \mid H$. But $C_{H}(x)$ is the set of fixed points of the automorphism of H induced by x, so by Lemma 3.2 (i). (ii), we conclude that H is abelian. Since $\langle a\rangle=Z(H)$, we have $H=\mathbf{Z}_{3}$, and $G=S_{3}$.

Since $\Gamma\left(S_{3}\right)$ is not connected, Lemma 3.3 gives us the following:
Theorem 3.4. If G is finite, then $\Gamma(G)$ possesses an Euler path that is not a circuit if and only if $G=Z_{3}$.

4. Anti-Z-sequenceable groups

If G is a group (finite or infinite), we denote by $\bar{\Gamma}(G)$ the complement of $\Gamma(G)$. Thus two vertices x and y of $\bar{\Gamma}(G)$ are joined by an edge if and only if $x y \neq y$. Since G is never the union of iwo proper subgroups, it follows that if x and y are non-central elements, then $C(x) \cup C(y) \neq G$. Hence x and y are connected by a path in $\bar{\Gamma}(G)$.

We will say that a countable group G is $A Z$-sequenceable if there is a sequencing $\left\{x_{n}\right\}$ of its non-central elements such that $x_{1} x_{i+1} \neq x_{i+1} x_{i}$ for all i. (As before, if G is infinite, this sequence might be two-way infinite.) If G is finite, and its elements have such a sequencing $x_{1}, x_{2}, \ldots, x_{m}$ with the further property that $x_{1} x_{m} \neq x_{m} x_{1}$, we say that G is strongly $A Z$-sequenceable. (An abelian group is vacuously strongly $A Z$-sequenceable.) Our aim is to show that every finite group is strongly AZ-sequenceable. For this purpose, we need the following result of Dirac [1].

Lemma 4.1. If \mathscr{G} is a linear graph of order m, and the degree at each vertex is at least $m / 2$, th.'n \mathscr{G} has a Hamiltonian circuit.

If G has order n, and $x \in G$ is non-central, then $|C(x)| \leqslant n / 2$. Thus the subgraph of $\bar{\Gamma}(G)$ determined by the non-central elements satisfies the hypotheses of the lemina, $a \mathrm{~d}$ it follows fhat every finite group is strongly $A Z$-sequenceable.

We turn now to the question of maximal cliques in $\Gamma(G)$ and $\bar{\Gamma}(G)$. Since a se: of pairwise cunmuting elements of G always generates an abelian subgroup, it follows that if G is non-abelian, a maximal clique in $\Gamma(G)$ has order $\leqslant|G| / 2$. The dihedral groups D_{n} of order $2 n(n \geqslant 3)$ provide examples for which equality is attained.

The corresponding result for $\bar{\Gamma}(G)$ has recently been obtained by Mason, who proved the cunjecture of Erdös and Straus that any clique in $\tilde{\Gamma}(G)$ has cardinality $\leqslant \frac{1}{2}|G|+1$.

5. C-sequenceable groups

In addition to the problem of determining the existence of Z-sequencings for finite groups, there are several other sequencing questions which give rise to difficult problems. Let us say that a finite group $G=\left\{1, x_{1}, x_{2}, \ldots, x_{n}\right\}$ is C sequenceable if its non-identity elements can be listed $x_{1}, x_{2}, \ldots, x_{n}$ so that $\left\langle x_{i}, x_{i+1}\right\rangle$ is cyclic for $i=1,2, \ldots, n-1$. Denote by $\Delta(G)$ the undirected graph wiose vertices are the non-identity elements of G, with two vertices x and y joined y an edge if and only if x and y generate a cyclic subgroup. The C-sequenceatility of G is equivalent to the existence of a Hamiltonian path in $\Delta(G)$.

If $\langle x, y\rangle=\langle z\rangle$, then clearly both x and y are powers of z. This leads us to

Lemma 5.1. Let $G=\left\{1, x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a group, and $S \neq\{1\}$ a non-empty proper subset of G such that if $x \in S$, then $\langle x\rangle \subseteq S$, and if $y \notin S$, then $\langle y) \cap S=\{1\}$. Then G is not C - equenceable.

Proof. Assume on the crntrary that G is C-sequenceable; let $x_{1}, x_{2}, \ldots, x_{n}$ be such a sequencing. Since S is proper, there exist two adjacent eiements x_{1} and x_{i+1}, exact!y one of which is in S. Set $\left(x_{i}, x_{i+1}\right)=\langle z\rangle$. Then $z^{\alpha}=x_{i}, z^{\beta}:=x_{i}$, for suitable α and β. This contradicts the inypotheses, and the result follows.

Using this lemma, we can completely characterize \mathbb{C}-sequenceable abelian p-groups.

Theorem 5.2. If G is a finiec abelian p-group, then G is C-sequenceable if and only if G is cycic.

Proof. If G is cyclic, it is clearly C-sequenceable. So suppose G is not cyclic, and write

$$
\begin{aligned}
\mathbf{G} & =\mathbf{Z}_{p}^{n_{1}} \times \mathbf{Z}_{p}^{n_{2}} \times \cdots \times \mathbf{Z}_{p}^{n_{p}} \\
& =\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle, \quad r \geq 2
\end{aligned}
$$

Then each element x of G can be written uniquely in the form $x=a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} \ldots a_{r}^{\alpha_{r}}$ $0 \leqslant \alpha_{i}<p^{n_{i}}$. Let $S=\left\{x \in G \mid\right.$ ord $a_{i}^{w_{i}}=$ ord $a_{i}^{\alpha_{j}}$ for all $\left.i, j\right\}$. As S is a p-group, we have $S \neq\{1\}$. It is easily seen that if $x \in S$, then $x^{\alpha} \in S$ for all a, and that if $y \in G-S$, then $y^{\beta} \in S$ only if $y^{\beta}=1$. Thus by Lemma $5.1, G$ is not C sequenceable.

The problem of determining which abelian groups are C-sequenceable appears very difficult. For example, if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\sigma_{r}}, p_{1}>p_{2}>\cdots>p_{n}$ then $\mathbf{Z}_{n} \times \mathbf{Z}_{n}$ is C -sequenceable if and only if $p_{2}^{2 \alpha_{2}} p_{3}^{2 \alpha_{3}} \ldots p_{r}^{2 \alpha_{r}}>p_{1}$. The first non-abelian group that is C-sequenceable is $D_{4} \times Z_{2}$, of order 16 .

Acknowledgments

The authors would like to express their gratitude to Basil Gordon, E.G. Straus and Craig Squier for their many helpful suggestions.

References

[1] G.A. Dirac, Some theorems on abstract graphs. Proc. London Math. Soc. 2 (1952) 69-81.
[2] R. Friedlander, Sequences in non-abelian groups with distinct partial products, Aequat. Mat. 14 (1976) 59-66.
[3] B. Gordon, Sequences in groups with distinct partial products, Pracific J. Math. 11 (1961) 1309-1313.
[4] D. Gorenstein, Finite Groups, (Harper and Row, NY 1968).
[5] D.R. Mason, private communication.
[6] M. Nakanishi, On a kind of connectivity in finite groups, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A9 (1967) 158-162.
[7] G. Ringel. Cyclic arrangements of the elements of a group. Notices Amer. Math. Soc. 21 (1974) A95-96.
[8] W.F. Scott, Group Theory (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1.64).

