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A finite group is called Z-sequenceable if its non-identity eiements can be listed x,. x2,. . ., x, $0 
that XIX,+~ =&+I& fC?r i ‘l,Z,...,rZ- 1. Various necessary and sufficient conditions are deter- 
mined for such sequencings to exist. In particular, it is proved that if n B 3, then the symmetric 
grbup S,, is not Z-sequenceable. 

1. Introduction 

Let G be a group and suppose that r(G) is the undirected graph whose vert ice:, 
are the non-identity elements of G, with elements x and y joined by an edge if and 
only if xy = yx. Nakanishi [6] considered classes of gro;tps for which T(G) is 
connected, and showed that the symmetric group S,(n B 3) is connected if and only 

if n and 32 - 1 are composite, while the alternating group &(Y 2 4) is connected if 
and anly if n, n - 1, and tt - 2 are composite. 

In this paper, we determine some necessary and suficient conditions on G in 
arder that f’(G) possess Euler and Hamiltonian paths and circuits. For elrample, we 
prove that if n 5 3, r(S,) has no Wamiltonian path, while for n 3 4, T(A,) has no 
such path. 

If G is countable, the 4:xistence of’ a Hamiltonian path in T(G) is equivalent to 
the existence of a sequencing (x,) of the non-identity elements of G such that 
xsi,I = x#+~x~ far all i. (If G is infinite, this sequeuce might be two-way infinite.) If 
such a sequencing exists, we shall say that G is Z-sequenceable. Furthermore, we 
call the finite group 6; strongly Z-sequenceable if G has a Z-sequencing 

Xl, X2,. . ., x, such thslt x,x2 = x1x;,. This is clearly equivalent to the existence of a 

Wamiltonian circuit in r(G). 
We note that the sequencings of Gordon [31 and Friedlander [Z] tag aiso be 

int2rpreted as IQ~iltmtian laths, while the sequencings of Ringel[7], dealing with 

map-coloring problems, can similarly be viewed as Hamiltonian circuits. 

It is clear that all finite abehan groups are strongly &sequenceable, while it can 
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be’shown thast the graup SJ x ZA, of order 24, is Z-sequenceable, but not strongly 
Z-,sequenceable. FinaIly, we remark that if G is Z-sequenceable, then certainly 
T(G) is connected. In what ~~IIows, we will assume a11 groups finite unless 
otherwise stated. 

2. ZI~uenceable groups 

We first show 

Proof.’ Write D, = (a, b) subject to the re1ationa8x R” = b* z= I, bab = a”‘. Recall 
that Z(D,,) +j: (1) or Z2 according as n is odd 01’ even, and that if x E l.& is a 
non-central invoIution, then the centraIiz:er of x IS 

Assume on the contrary that D,, is Z-sequenceable. Let x and y be any two 
non-commuting involutions, where far ~definiteness x precedes y in some Z- 
sequencing of G. Let t be the first element following x that does not commute with 
x. This forces the element immediately to the left of z to be central. Thus any two 
non-commuting involutions are separated by a centrai element, and since D, (n # 4) 
contains at Icast three pairwise non-commuting involutions, we have a contradic- 
tion, and the result follows. (Ht is easily seen by inspection that D, is not 
Z-sequenceable.) 

Proof. Since eh:rnents in the same coset of Z(G) commute, we can obtain a 
Z-sequencing of G by succea:CiveIy Iistin,g the eIeme;rts of each coset, separating 
elements of distinct cosets by r’,ent,raI elements. 

For example, the group G ‘= D, x Z2, of order 16, is stro@y Z-sequenccable 
since 1 Z(G)\ = 4. The statemerIt of the theorem is as strong as possible since D, is 
not Z-sequenceatbIe, and 1 ID,/ Z(LQf - 2 = 1 Z(D,) 1. 

If El, g2, . . ., gn is a Z-sequencing of G, then the sequencing I, gl, 82, . . ., ,g,, is 
caIIed an augmented Z-sequerxing of G. 
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)I respectively (so x 1 = yl 5= 1). Then an augmented Z-sequencing of G x W is 
given by zll, ztZ,. . , tm,, where z,/ = XJ,. By deleting zll = 1, WC obtain a z 
sequencing of G X H. 

Before studying the existed of Hamiltonian paths in r(S,) and f (A,). we need 
severaf lemmas. 

Lemma 2.4. Let G be w 2proup and S, = (u,), i = 1,2,. . ., r, a collection of distinct 
cyck suhgmups such that C(S, ) =: S, for all i. Ler S = l_&, , S,, artd set N = 
(x E S f (x) # 5, for my i ). *Then if 1 N 1 -=I r, Ci is not Z-srquencsable. 

Proof. Assume on the! contrary that G has a Z-sequencing x. Fix i and i, and 

suppose without loss of generality that Q, precedes a, in c. Let y bie the first 
element following U, zrat is nat in S,. (As a, @ S,, clearly such a y exists. j Then the 
element t>a the immediate left of y must be in !V, since (elements of S* - N commute 
only with elements of Sr. Thus there is a non-identity element of N between a, and 
a, for ali i,& a contradiction, and the result folbws. 

Lemma 2.5. If 88 3 I, then n! *e(n/e)“. 

Prod. From the graph of y = log x, we have log 2 + log 3 + l l b t log n B 

ITlogrdx. But f;‘Iogxdx =nIogn-(n-1). ‘Thus lag(2+..:n)s 
n tog n - (a - I), rm! exponcntiating gives n ! 3 e(n/e:)“. 

Letnm~ 2,Q. 
ii) The narmbct 01 eknrents :)f S, which are powers of ft -cycles but not themdoes 

n - cycles is 

(ii) 77~ ttumb~ of elements of S,, (n 3 3) which are powers of (~8 -- I)-cycles, l?ur 
not themselves In - I)-cycks is 

Protot. (i) Each element in question is a product of n/d d-cycles for some proper 
divisor d of VI. But for fixed d, it is well-known 8; 2991 that the number of such 

~~er~~~ ts is 



(ii;] As in (i), each element in question is a product of (n - 1)/d d-cycles for some 
proper divisor if of n - I. The airgument is the same, except that we must subtract 

n - 1; to account for duplication arising when d = 1. 

Praofl’. Case 1: n odd. The number of n-cycles in Sn 

n-cycies generate (n - l)!&(n) distinct cyclic subg:rcups, 
is (n - l)!, and these 
where Q is the Euler 

function. RecaIi that an n-cycle commutes only with its powers. By Lemma 2.6, the 
number of elements in SA which are powers of n- :ycles, but not themselves 
n -cycles is 

n! 
’ = sm (n/d)! dnfd - 

d-cn 

By Lemma 2.64, it suffices to prove that x < (n - lL)!,‘cp (n). Now by Lemma 2.5 
(replacing n by n/d), we have (n/d)! d “‘d a e(n/e)“‘d, hence 

dc.n 

Since n is odd, this latter expression k less than 

n?e’ 1 
( 1 

n !e* --. 
e n F(e/n)=?(n* 

It suffices then to show that q(n)< n(n - e)/e”. If n r 10, (n - e)/e’> 1, so 
p(n) s n(n - e)/e2. If n = 5, ? or 9, it is straightforward to verify directly that 
x < (n - I)!/&), whik if n := 3, the theorem is true by inspection. 

Case 2: n even. Tlie number of (n - 1)cycles in Sn is nh - it)!, znd these 

(n - Q-cycles generate n (n - :2)!/p(n - 1) distinct cyclic subgroups. ReczA that an 
(n - @cycle commutes only with its powers. By Lemma 2.6, the number of 
elertxnts in S,, which are powers of (n - ¶)-cycles, but not themselves (n - 1). cycles 
is 

u= 

So by Lemma 2.4, it suffkes CO show that c c n (n - J!)!/q (n - 1). This certainly 
holds if cr + (M - 1) C n(n - 2)!/4p(n - 1), or equivalently, if 

c ,&n-2)! (n- I)! 
d n-1 ((n - 1)/d)! d(“-““I Qb - 1)’ 
den-1 

But this fodfows immediately rfrom Case I, since n -. 1 is odd. 



PwoQ. If n is odd, A, contains all n-cycles, and the proof of Case 1 applies. If n is 
even, A, contains all in - I)-cycles, and the result follows from Case 2. 

Using Theorems 2.2 and 2.3, we can construct infinitely many classes of finite 
Z-sequenceable groups* Moreover, it can be shown that if G is countably infinite, 
and C(X) f’l C(y) is infinite for all n, y E G, then G is Z-sequenceable. In 
pa&ular, a countably infinite HZ-group (a group in which each element has finitely 
m,:ny conjugates) is Z-sequznceable, as is the group S, of all permutations of a 
countably infinite set moving only finitely many elements. There are many ways to 
extend the concept of Z-sequenceabiiity to uncountable groups G. For example, 
we can cat1 G Z-sequenceable if its non-identity elements can be well-ordered so 
that each element commutes with its successor. 

We conclude this section by mentioning several unanswered questions: 
(i) Is there a finite Z-sequenceable group G with Z(G) = I? 

(ii) For a countably infinite group G, are the concepts of one-way and two-way 
Z-sequenceability distinct? Tl at is, is there a G which a one-way Z-sequencing, 
but not a two-way sequencing (and vice versa). 

(iii) Can the direct product of two non-Z-sequenceable groups be Z- sequcnce- 
able? 

3. Mer paths and circuits 

We turn now to the existence of Euler paths and circuits. Recall that an 
undirected graph r has an Euler path (circuit) if and only if it is connected and has 
no (for a circuit) or exactly two vertices of odd degree. We thus have the following. 

Theorem 3.1. If 1 G ) =Z 2, and I’(G) is connected, then I’(G) has an Euler circuit if 

and only if 1 C(x)1 is even fur all x E G. 

If G has non-trivial center, &hen clearly T(G) is connected. It follows that if 
1 Z(G)1 is even, then r(G) has an Euler circuit. In particular,if G is abelian and 
1 G I> 2, then I’(G) has an Euler circuit if and only if 1 G 1 is even. On the other 
hand, if n a: 3, then neither Sn nor A,, has an Euler circuit. 

In order to determine the existence of Euler paths, we need two group- 

theoretical lemmas. 

Lemma 3.2. (i) if G is non-aMian, and r is an autumtwphism of or&r 2, then 1 
xes some non-identity ekment. 

(ii) If H 1’s a p-grog, and (1) # Kal H, then K n Z(W)+ (1). 
(iii) If W k a group of odd order, then no non- ~de~t~~ element is coj:~_kgate to its 

invtYsi?. 
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The proofs are straightforward and will be omitted. (See, e.g., [4+ p. 3363.) 

Lemma 3.3. Let G be a finite group hauing exactly two non-identity elements with 
odd-or@ c:entraihet. Then either G = Z3 or G = S3. 

huff. Assume G # 2,; then clearly 1 G 1 is even. Suppose Q E G, and W = C&z) 
has odd order. Since any generator of {a) also has odd-order centralizer, we see 
that ord a = 3, and (a)d)G. If I # 6 E W has order pn and 3 X M, then 1# (ab)” = 
am E {a}, so C(ab) E C(a). Thus 1 C(ab)f is odd, a contradiction. Hence H is a 
3-group. By the N/C Theorem 18, p. 501, N&a )/CC7 (a) G Aut(a > = 2%. and since 
IGl is even, we deduce that IGI=2*3’ for some ral. 

Let x E G have order 2, so each element of G - H is of the form xc, c E H. By 
hypothesis, for all !J E Ii C-(U), there exists c E N such that (XC)-‘b(xc) = b; that 
is!, X -‘bn t= ck-‘. Thue~ conjugation by x stabilizes the con jugacy classes of 
E:I - (1~). It also follows immediately that (a) = Z(H). 

If there exists b E H such that [x, b] = x ?P,&Z (a), then X-‘[x, 6) x = 1x9 b]I’ 
is conjugate ir: H to [K, b], contradicting Lemma 3.2 (iii). Thus for all b E H, 
[x, b) E (a), SO by Lemma 3.2 (iv), C.(x)~/E~. But C,(x) is the set of fixed points 
of the automorphism o N induced by X, so by Lemma 3.2 (i)3 (ii), we cc&ude thaF 
1-b is abelian. Since (u ) = Z(H), we have H = 2!&, and G = SJ. 

Since T(S,) is not corlnected, Lemma 3.3 gives us the following: 

Theowm 3.4. rf G is I$ r&e, then r(G) possesses an Euler path that is not n circuit if 
and only if’ G = Z3. 

4. Ad-Z-sequenceabh groups 

if G is a group (finite or infi*nit,e), we denote 5y r(G) the complement of QG’,. 
Thus two vertices x and y of ii(G) are joined by an edge if and only if xy d ye. 
Since G is never the unrion of two proper subgroups, it follows that if x and y are 
non-central elements, then C(x) U C(y) # G. Hence x and y are connected bv a 
path in r(G). 

We will say that a countable group G is AZ-sequenceable if there is a 
sequencing (x,) of its non-central elements such that xlxI+ 1 sd Xi+ 1X’i for all i. (As 
before, if G is infinite, tlhis sequence mi ht be tv,\ro-way infinite.) If G is finite, and 
its elements have such .a sequencin x2,. , ., x,,, with the further property that 
x1x, f x,x1, wq say that G is strongty AZ-sequenceabte. (An abe!ian 
va~~~~sly strongly AZ+equenceab!e.) Our aim is to show that every finite 

u~n~~a~~~. For this ~~r~os~~ we need the fo~~~w~n 



Lemma 4.1. If ti!i is a linear graph of order m, and the degree at each tmtex is at 
least m/2, th.w 3 has a Himailtupzian circuit. 

Xf G has order n, and x E C is non-central, then 1 C(x)I G n/2, Thus the 
subgraph of r(G) determined by the non-central elements satisfies the hypotheses 
of the lemma, a’ d it follows f’;lat every finite group is strongly AZ-sequenceable. 

We turn now to the q\*estk)n of maximal cliques in I’(G) and F(G). Since a se. of 
pairwise cornmu t ing ele ,zsnts of G always generates an abelian subgroup, it 
follows that if G is non-abeha?, a maximal clique in r(C) has order d 10 l/2. The 
dihedral groups Dn of order 2~ (n 2 3) provide examples for which f:quality is 
attained. 

The corresponding result for f(G) has recently been obtained by Mason, who 
proved the cclnjecture of Erdiis and Straus that any clique in i”(G) has cardinality 

+lG)+ 1. 

9. C-sequenceable groups 

In addition to the problem of determining the existence of Z-seqtbcixcings for 
finite groups, there are several other sequencing questions which give rise to 
difficult problems. Let us say that a finite group G = (1, x1, xz, , , _:*} is C- 
sequenceable if its non-identlty elements can be listed xl, xt, . . ., x,, so t%at (r,, x,,,) 
is cyclic for i = 1,2,. , ., n - I. Denote by A(G) the undirected graph u&~e vertices 
dre the non-identity elements of G, with two vertices x and y joined my an edge if 
and only if x and y generstte a cyclic subgroup. The C-sequenceakility of G is 
equivalent to the existence of a Hamiltonian path in A(G). 

If (x, yb = (z), then clearly both x and p are powers of z. ‘fhis leads us to 

Lemma 5.1. Let G = (X,X~J~, . . .,x,1 be a group, and Sf (I) a nmwmpty proper 
whet of 13‘ such thut ifx E S, then (x) G S, and if y e ?J, then (y ) n S =’ (I}. Then G 
is nut C-. equenccable. 

f. Assume on the cF>ntrary that G is C-sequencesble; let .X ,, x2,. . ., X, be 
such a sequencing. Since S is proper, there exist two adjacent elemcrrts .zr and x,+ 
eIUX.r, *)\I one of which is in S. Set (xl, ~i+~} = (2 ). Then z” = x4, tS := 3, 1 for suitable Q! 
and plr. This contradicts the ~~y~thes(~?~* and the result follows. 

this lemma, we can completely ch;iracterize C-sequenceLible abelian 
p-groups. 



84 M.D. Miller, I?..!, Friedlander 

proof. If G is cyclic, it is clearly C-sequenceable. So suppose G is not cyclic, and 

write 

Then each element x of G can be written uniquely in the form x = o 71 CT 72. . . a?, 

osaar, <p”‘. Let s =(x E G [o&2:,== ord a? for all i, j}. As S is a p-group, we 

have S# {I}. It is easily seen that if x E S, then x p E S for all Q, and that if 
yEG-S, then yeES only if yB = 1. Thus by Lemma 5.1, G is not C- 

sequenceable. 

The problem of determining which abelian groups are C-sequenceable appears 
very difficult. For example, if it = ppLpf2.. +F,pl >pz >. l b >po then 2, X 2, is 
C-sequenceable if and only if p$“~p?~ . . . pfp* > pl. The first non-abelian group that 
is C-sequenceable is D, x &, of order 16. 
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