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A finite group is called Z-sequenceable if its non-identity eiements can be listed x,, x,, . . .. x,, 50
that xx,., = x,..x for i =1,2,...,n ~ 1. Various necessary and sufficient conditions are deter-
mined for such sequencings to exist. In particular, it is proved that if n = 3, then the symmetric
group S, is not Z-sequenceable.

1. Introduction

Let G be a group and suppose that I'(G) is the undirected graph whose vertices
are the non-identity elements of G, with elements x and y joined by an edge if and
only if xy = yx. Nakanishi [6] considered classes of groups for which I'(G) is
connected, and showed that the symmetric group S,(n = 3} is connected if and only
if n and n — 1 are composite, while the alternating group A.(n = 4) is connected if
and only if n, n— 1, and n — 2 are composite.

In this paper, we determine some necessary and sufficient conditions on G in
order that I'(G ) possess Euler and Hamiltonian paths and circuits. For example, we
prove that if n =3, I'(S,) has no Hamiltonian path, while for n =4, I'(A,) has no
such path.

If G is countable, the existence of a Hamiltonian path in I'(G) is equivalen! to
the existence of a sequencing {x.} of the non-identity elements of G such that
XX = XX for all i. (If G is infinite, this sequence might be two-way infinite.) If
such a sequencing exists, we shall say that G is Z-sequenceable. Furthermore, we
call the finite group G strongly Z-sequenceable if G has a Z-sequencing
X1, X3, .« .» Xm such that x..x; = x,x,.. This is clearly equivalent to the existence of a
Hamiltonian circuit in I'(G).

We note that the sequencings of Gordon {3] and Friedlander [2] can also be
intzrpreted as Hamiltonian p:aths, while the sequencings of Ringel [7], dealing with
map-coloring problams, can similarly be viewed as Hamiltonian circuits.

It is clear that all finite abelian groups are strongly £Z-sequenceable, while it can
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be shown that the group Sy x Z,, of order 24, is Z-sequenceable, but not strongly
Z-sequenceable. Finaily, we remark that if G is Z-sequenceable, then certainly
I'(G) is connected. In what foliows, we will assume all groups finite unless
otherwise stated.

2. Z-Sequenceable groups
We first show
Theorem 2.1. If n =3, the dikedral group D, is not Z-sequenceable.

Proof. Write D, = (a, b) subject to the relations. a” = b*=1, bab = a™'. Recall
that Z(D,) = {1} or Z; according as n is odd o1 even, and that if x € D, is a
non-central involution, then the centralizer of x s

[ (x) if nis odd,
C(x)_{(a"",x) if n is even.

Assume on the contrary that D, is Z-sequenceable. Let x and y be any two
non-commuting involutions, where for definiteness x precedes y in some Z-
sequencing of G. Let z be the first element following x that does not commute with
x. This forces the element immediately to the left of z to be central. Thus any two
non-commuting involutions are separated by a central element, and since D,.(n# 4)
contains at lcast three pairwise non-commuting involutions, we have a contradic-

tion, and the result follows. (it is easily seen by inspection that D, is not
Z-sequenceable.)

Thecrem 2.2. If |G/Z(G)|- 1<|Z(G)|, then G is Z-sequenceable, while if
|GIZ(G)|=|Z(G)|, then G is strongly Z-sequenceable.

Proof. Since elements in the same coset of Z((G) commute, we can obtain a
Z-sequencing of G by successively listing the elements of each coset, separating
elements of distinct cosets by central elements.

For example, the group G := D. X Z,, of order 16, is strongly Z-sequenceable
since | Z(G)} = 4. The statement of the theorem is as strong as possible since D, is
not Z-sequenceable, and | D,/ Z(D,)|~2=|Z(D.)|.

If g1,82...,8. i a Z-sequencing of G, then the sequencing 1,882 ...,8 8
called 2n augmented Z-sequercing of G.

Thesrem 2.3. If G and H are Z-sequenceable, then so is G X H.

Proof. let x,,x5...,%, and y., y,,...,y. be augmented Z-sequencings of G and
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H respectively (so x, =y, =1). Then an augmented Z -sequencing of G x H is
given by zu,Zu,.. , Zm, where z, = xy,. By deleting z,, =1, we obtain a ~-
sequencing of G X H.

Before studying the existence of Hamiltonian paths in I'(S,) and I’ (A.), we need
several lemmas.

Lemma 2.4. Let G be a group and S, =(a,), i = 1,2,...,r, a collection of distinct
cyclic subgroups such that C(S)=S, for all i. Let $=U.,S, and set N =
{x €S |(x)#S, for any i}. Then if IN|<r, G is not Z-sequenceable.

Proof. Assume on the contrary that G has a Z-sequencing 2. Fix i and J» and
suppose without loss of generality that a, precedes a, in Z. Let y be the first
element following «. ihat is not in S.. (As a,& S, clearly such a y exists.) Then the
clement t the immediate left of y must be in N, since clements of $, — N commute
only with elements of S,. Thus there is a non-identity element of N between a, and
a, for ali i,j, a contradiction, and the result follows.

Lemma 2.5. Ifn=1, then n! =e(n/e)".

Proof. From the graph of y =logx, we have log2+log3+ - +logn=
[tlogxdx. But [ilogxdx=rlogn—-(n-1). Thus log(2-3-...-n)=
nlogn - (n - 1), and exponcntiating gives n! =e(n/e)".

Lemma 2.6.
(i) The number of elements of S, which are powers of n-cycles but not themselves
n-cycles is

n!
i (n/d)td™
d=n
(i) The number of elements of S, (n = 3) which are powers of (n - 1)-cycles, but
not themselves {n — 1)-cycles is

n!

d;ﬂ ((n ~ Dyd) d '

den-1

~{r -1).

Proof. (i) Each element in question is a product of n/d d-cycles for some proper
divisor d of n. But for fixed d, it is well-known [§; 299] that the number of such
elements is

nl_
d"¥ (njd)!”

The result follows by summing over the proper divisors of n.
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(ii) Asin (i), each element in question is a product of (n — 1)/d d-cycles for some
proper divisor < of n — 1. The argument is the same, except that we must subtract
n -1 to account for duplication arising when d = 1.

Theorem 2.7. If n =3, then S, is not Z-sequenceabie.

Proof. Case 1: n odd. The number of n-cycles in S, is (n—1)!, and these
n-cycles generate (n — 1)!/p(n) distinct cyclic subgrcups, where ¢ is the Euler
function. Recall that an n-cycie commutes only with its powers. By Lemma 2.6, the
number of elements in S, which are powers of n-:ycles, but not themselves
n-cycles is

e rrired

By Lemma 2.4, it suffices to prove that y <(n —1)!/¢(n). Now by Lemma 2.5
(replacing n by n/d), we have (n/d)!d"* =e(n/e)"®, hence

n! (e)""’
< — =} .
x<o 2 a

d<.n

Since n is odd, this latter expression is less than

nlie 1 - n'e’
( ) 1—-(e/n) ni(n-e)’

It suffices then to show that e(n)sn(n-e)le’. If n>10, (n—e)le*>1, so
e(n)ysn(n-e)/e’. If n=5, 7 or 9, it is straightforward to verify directly that
x <(n—1)Y¢(n), while if n =3, the theorem is true by inspection.

Case 2: n even. Tie number of (n -~ 1)-cycles in S, is n(n —2)!, and these
(n — l)-cycles generate n (n — 2)!/@(n — 1) distinct cyclic subgroups. Reczll that an
(n - l)-cycle commutes only with its powers. By Lemma 2.6, the number of

elements in S, which are powers of (n — 1)-cycles, but not themselves (n — 1)- cycles
is

= n!
7= 2 G miaae D
d~

So by Lemma 2.4, it suffices to show that o < n(n - 2)//¢(n = 1). This certainly
holds if o + (n — 1)< n{n —2)!/e(n — 1), or equivalently, if

(n- 1) < (n -2)!
z (n = 1)/d)1d" ™" p(n-1)’

d<n-t

But this follows immediately from Case 1, since n -1 is odd.

Corollary. If n =4, then A, i: not Z-sequenceable.



Sequencing in finite groups 23]

Proof. If n is odd, A, contains all n-cycles, and the proof of Case 1 applies. If n is
even, A, contains all (n — 1)-cycles, and the resuit follows from Case 2.

Using Tneorems 2.2 and 2.3, we can construct infinitely many classes of finite
Z-sequenceable groups. Moreover, it can be shown that if G is countably infinite,
and C(x)N C(y) is infinite for all x,y € G, then G is Z-sequenceable. In
particalar, a countably infinite FC-group (a group in which each element has finitely
m:.:ny conjugates) is Z-sequenceable, as is the group S. of all permutations of a
countably infinite set moving only finitely many elements. There are many ways to
extend the concept of Z-sequenceabiiity to uncountable groups G. For example,
we can call G Z-sequenceable if its non-identity elements can be well-ordered so
that each element commutes with its successor. .

We conclude this section by mentioning several unanswered questions:

(i) Is there a finite Z-sequenceable group G with Z(G)=1?

(if) For a countably infinite group G, are the concepts of one-way and two-way
Z-sequenceability distinct? That is, is there a G which a one-way Z-sequencing,
but not a two-way sequencing (and vice versa).

(iii) Can the direct product of two non-Z-sequenceable groups be Z- sequence-
able?

3. Euler paths and circuits

We turn now to the existence of Euler paths and circuits. Recall that an
undirected graph I' has an Euler path (circuit) if and only if it is connected and has
no (for a circuit) or exactly two vertices of odd degree. We thus have the following.

Theorem 3.1. If |G |>2, and I'(G) is connected, then I'(G) has an Euler circuit if
and only if | C(x)| is even for all x € G.

If G has non-trivial center, then clearly I'(G) is connected. It follows that if
| Z(G)| is even, then I'(G) has an Euler circuit. In particular,if G is abelian and
|G |>2, then I'(G) has an Euler circuit if and only if |G | is even. On the other
hand, if n =3, then neither S, nor A, has an Euler circuit.

In order to determine the existence of Euler paths, we need two group-
theoretical lemfnas.

Lemma 3.2. (i) If G is non-abelian, and + is an automorphism of order 2, then ¢
fixes some non-identity element.

(i) If H is a p-group, and {1} # K<|H, then K N Z(H)# {1}.

(iii) If H is a group of odd order, then no non-identity element is conugate io its
inverse.

(iv) Suppose H is a subgroup of G, x € G. If [x, HYC Z(H), then Cu(x)<|H.
(Here [x, K] denotes the subgroup of G generated by all x*h~'xh, h € H))
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The proofs are straightforward and will be omitted. (See, e.g., [4, p. 336].)

Lemma 3.3. Let G be a finite grouir having exactly two non-identity elements with
odd-order centralizer. Then either G =17, or G = §,.

Proof. Assume G# Z,; then clearly | G | is even. Suppose a € G, and H = Cg(a)
has odd order. Since any generator of (a) also has odd-order centralizer, we see
that ord a = 3, and (a)<|G. If 1 # b € H has order m and 3 4 m, then 1 # (ab)™ =
a™ €{a), so C(ab)C C(a). Thus | C(ab)| is odd, a contradiction. Hence H is a
3-group. By the N/C Theorem [8,p. 50], No{a)/Cs{a)C Aut{a)= Z,, and since
|G| is even, we deduce that |G |=2-3" for some r = 1.

Let x € G have order 2, so each element of G — H is of the form xc, ¢ € H. By
hypothesis, for all b € H ~(a), there exists ¢ € H such that (xc) 'b(xc) = b; that
is, x 'bx = cbc™'. Thus conjugation by x stabilizes the conjugacy classes of
H - {a). It also follows immediately tha:. (a) = Z(H).

If there exists b € H such that [x,b) = x"'b"'xb& (a), then x'[x, b] x = |x, b]™"
is conjugate ir: H to [x, b], contradicting Lemma 3.2 (iii). Thus for all b € H,
[x.b] € (a), so by Lemma 3.2 (iv}, Cu(x )< FH. But Cu(x) is the set of fixed points
of the automorphism of H induced by x, so by Lemma 3.2 (i). (ii), we cenclude that
H is abelian. Since {(a)= Z{H), we have H = Z,, and G = S,.

Since I'(S;) is not connected, Lemma 3.3 gives us the following:

Theorem 3.4. If G isfinite, then I'(G) possesses an Euler path that is not a circuit if
and only if G = Z.

4. Auti-Z-sequenceabl: groups

If G is a group (finite or infinite), we denote by I°(G) the complement of I'(G ).
Thus two vertices x and y of ['(G) are joined by an edge if and only if xy# yx.
Since G is never the union of two proper subgroups, it follows that if x and y are
non-central elements, then C(x)U C(y)# G. Hence x and y are connected by a
path in ['(G).

We will say that a countable group G is AZ-sequenceable if there is a
sequencing {x,} of its non-central elements such that xx.., # x..,x; for all i. (As
before, if G is infinite, this sequence might be two-way infinite.) If G is finite, and
its elements have such a sequencing x,,x,,..., x» with the further property that
XiXn # XmX1, We say that G is strongly AZ-sequenceable. (An abe'ian group is
vacuously strongly AZ-sequenceable.) Our aim is to show that every finite group is

strongly AZ-sequenceable. For this purpose, we need the following result of
Dirac {i].
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Lemma 4.1. If G is a linear graph of order m, and the degree at each vertex is at
least m /2, th>n 4 has a Hamiltonian circuit.

If G has _(_)rder n, and x € G is non-central, then |C(x)|<n/2. Thus the
subgraph of I'(7) determined by the non-central elements satisfies the hypotheses
of the lemma, 2" d it follows that every finite group is strongly A Z-sequenceable.

We tuin now to the question of maximal cliques in I'(G) and F(G). Since a se. of
pairwise commuting elements of G always generates an abelian subgroup, it
follows that if G is non-abeliar, a maximal clique in I'(G) has order =< |5 {/2. The
dihedral groups D, of order 2n (n = 3) provide examples for which equality is
attained.

The corresponding resuit for I'(G) has recently been obtained by Mason, who
proved the conjecture of Erdds and Straus that any clique in I'(G) has cardinality
si{G|+1.

5. C-sequenceable groups

In addition to the problem of determining the existencs of Z-sequcicings for
finite groups, there are several other sequencing questions which :ive rise to
difficult problems. Let us say that a finite group G ={l,x, x5, . ,.7} is C-
sequenceable if its non-identity elements can be listed x;, x, ..., X, s that (x, x..,)
iscyclic fori = 1,2,...,n — 1. Denote by 4(G) the undirected graph whose vertices
are the non-identity elemenss of G, with two vertices x and y joined 2y an edge if
and only if x and y generate a cyclic subgroup. The C-sequenceatility of G is
equivalent to the existence of a Hamiltonian path in A(G).

If (x, y)=(z), then clearly both x and y are powers of z. This leads us to

Lemma 5.1, Let G =({1,x,,x3,..., %} be a group, and S# {1} a non-empty proper
subset of (5 such thatif x € S, then (x)C S, and if y& S, then (y)N S = {1}. Then G
is not C-. equenceable.

Proof. Assume on the contrary that G is C-sequenceable; let x,,xo, ..., x. be
such a sequencing. Since § is proper, there exist two adjacent eiements x, and x,.,,
exactly one of which is in S. Set (x,, x;.,) = (z). Then z% = x, z® = 5, , for suitable a
and B. This contradicts the hypotheses, and the result follows.

Using this lemma, we can completely characterize C-sequenceable abelian
p-groups.

Theorem 5.2. If G is a finiie abelian p-group, then G is C-sequenceable if and only
if G is cycic.
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Proof. If G is cyclic, it is clearly C-sequenceable. So suppose G is not cyclic, and
write ‘ ‘

G=Z'XL'X XL,
={a)x{a)x -+ x{a,), r=2.

Then each element x of G can be written uniquely in the form x = af"a32...a%,
O0<a, <p™ Let S={x€G|orda™=orda for all i,j}. As S is a p-group, we
have S# {1}. It is easily seen that if x €S, then x" € S for all &, and that if
yEG-S, then y?€S only if y*=1. Thus by Lemma 5.1, G is not C-
sequenceable. '

The problem of determining which abelian groups are C-sequenceable appears
very difficult. For example, if n = pip3:...p7pi>p,>+ -+ > p, then Z, X Z, is
C-sequenceable if and only if p3*:p3™... p?*> p,. The first non-abelian group that
is C-sequenceable is D, x Z,, of order 16.
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