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Abstract

Let L ⊂ S3 be a link. We study the Heegaard Floer homology of the branched double-cover
�(L) of S3, branched alongL. When L is an alternating link,ĤF of its branched double-
cover has a particularly simple form, determined entirely by the determinant of the link. For the
general case, we derive a spectral sequence whoseE2 term is a suitable variant of Khovanov’s
homology for the linkL, converging to the Heegaard Floer homology of�(L).
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Given a linkL⊂ S3, we can form its branched double cover, a new three-manifold
which we denote by�(L). In this paper, we study the Heegaard Floer homology of
this three-manifold̂HF(�(L)) (c.f. [21]).

The starting point for these investigations is a skein exact sequence which this link
invariantL �→ ĤF (�(L)) satisfies. Specifically, fix a projection ofL, and letL0 andL1
denote the two resolutions ofL at a crossing for the projection, as illustrated in Fig. 1.
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Fig. 1. Skein moves. Given a link with a crossing as labeled inL above, we have two “resolutions”L0
and L1, obtained by replacing the crossing by the two simplifications pictured above.

It is a quick consequence of the surgery long exact sequence forĤF that for any link
L⊂ S3, the groupŝHF(L), ĤF (L0), and ĤF (L1) fit into a long exact sequence

... −−−−→ ĤF (�(L0)) −−−−→ ĤF (�(L1)) −−−−→ ĤF (�(L)) −−−−→ ... . (1)

This skein exact sequence leads readily to a complete calculation ofĤF (�(L)),
where L is any alternating link as explained in Section2. In particular, it is shown
there that ifL is a link which admits a connected, alternating projection, then the rank
of ĤF (�(L)) agrees with the number of elements inH 2(�(L);Z), i.e. that�(L) is
what might be called an “ungraded Heegaard Floer homology lens space” or, in the
terminology of [20], anL-space.

WhenY is an arbitrary three-manifold,̂HF(Y ) has the structure of aZ/2Z-graded
Abelian group, and that is the structure we will be concerned with throughout most of
this paper. But in general,̂HF(Y ) also comes with a natural splitting into summands
indexed by Spinc structures onY [21]. Indeed, whenY is a rational homology three-
sphere, the groups are further endowed with an absoluteQ-grading [22].

By further elaborating on the calculations for�(L) when L is alternating, we are
able to determine this extra structure explicitly from the alternating diagram forL, as
explained in Section 3. As explained in [22] (compare also [8]), this structure gives
constraints on the intersection forms of negative-definite four-manifolds which bound
�(L).

Turning back to the case of a general linkL, it is suggestive to compare the exact
sequence (1) with the work of Khovanov, c.f. [14] (for the reader’s convenience, we
briefly review the construction in Section 5). Specifically, Khovanov introduces an
invariant for links in S3 whose Euler characteristic, in a suitable sense, is the Jones
polynomial (c.f. [12], see also [13]). By construction, his invariants satisfy a “skein
exact sequence” inspired by the skein relation for the Jones polynomial. In particular,
just like ĤF (�(L)), Khovanov’s invariants fit into a long exact sequence relating the
invariant for a link and its two resolutions:

... −−−−→ Kh(r(L0)) −−−−→ Kh(r(L1)) −−−−→ Kh(r(L)) −−−−→ ... , (2)

where herer(L) denotes the mirror ofL. (Note that our conventions onL0 and L1
are opposite to Khovanov’s; this is why we use the mirror.) But unlikêHF(�(L)),
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Khovanov’s theory comes with extra gradings (which the maps in the exact sequence
respect), which allow one to extract the Jones polynomial from the Betti numbers.

The connection between the two link invariants is provided by the following result.

Theorem 1.1. Let L⊂ S3 be a link. There is a spectral sequence whoseE2 term
consists of Khovanov’s reduced homology of the mirror of L with coefficients inZ/2Z,
and which converges tôHF(�(L);Z/2Z).

See Section6 for a precise statement (c.f. Theorem 6.3), and also the proof. Note
that in the above statement, we use here a “reduced” version of Khovanov’s homology,
which he introduced in [16], with coefficents inZ/2Z. Correspondingly, we also take
Heegaard Floer homology with coefficients inZ/2Z.

We have the following quick corollary (whose proof is spelled out in Section 6):

Corollary 1.2. Let L⊂ S3 be a link, and let rk K̃h(L) denote the rank of its reduced
Khovanov homology withZ/2Z coefficients. Then, we have the inequalities

det(L)�rkZ/2ZĤF (�(L);Z/2Z)�rkZ/2Z K̃h(L),

where heredet(L) denotes the determinant of the link.

Theorem1.1 is seen as a consequence of a “link surgeries spectral sequence” estab-
lished in Section 4, which holds in a more general setting (c.f. Theorem 4.1). To place
this result in context, recall that ifK ⊂Y is a framed knot in a three-manifold, in [18],
it is shown that ifY0, Y1 denote the result of surgeries onY alongK (here, as usual,
Y0 denotes surgery alongK in Y with respect to the given framing, whileY1 denotes
surgery alongK in Y with respect to the framing obtained by adding a meridian to
the given framing), then there is a long exact sequence relatingĤF (Y ), ĤF (Y0), and
ĤF (Y1), compare also [7]. When the knot is replaced by a multi-component link, the
corresponding object is a spectral sequence relating the various surgeries on the various
components of the link. This spectral sequence, in turn, is established with the help of
the associativity properties of the pseudo-holomorphic polygon construction, see also
[5,9,26].

To establish Theorem 1.1 we specialize the link surgeries spectral sequence of
Section 4 to the case arising from the branched double cover of a link projection.
Given a projection ofL, �(L) comes equipped with a link, whose components cor-
respond to crossings in the projection, framed so that surgeries on these components
give branched double-covers of the resolutions ofL (this is the topological input for
establishing Eq. (1)). With this said, the key observation leading to Theorem 1.1 is the
following. Consider the branched double cover of a collection of unlinks in the plane,
connected by cobordisms induced from the connected sums among (and within) the
circles. ApplyingĤF (with coefficients inZ/2Z) to these objects and morphisms (as
required in theE1 term coming from the link surgery spectral sequence), one recaptures
the (1+ 1)-dimensional topological quantum field theory which underpins Khovanov’s
invariants. Armed with this observation, Theorem 1.1 follows quickly.
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1.1. Further remarks and speculation

It is interesting to note that the results from Section3 on non-split alternating
links, can be interpreted as saying that the spectral sequence of Theorem 1.1 col-
lapses at theE2 stage. (Note that it is clear from the more precise statement that
if L is an n-crossing link, then the spectral sequence always collapses after theEn

stage.)
A rather striking example where there are non-trivial differentials beyond theE2

stage is illustrated for torus knots. For example, letTp,q denotes the(p, q) torus
knot. When bothp and q are odd,�(Tp,q) is the Brieskorn homology sphere with
multiplicities 2, p, and q. In particular,�(T3,5) is the Poincaré homology sphere, so
ĤF (�(T3,5;Z/2Z))� Z/2Z (c.f. [22] or [23]), while its reduced Khovanov homology
clearly has larger rank, as its Jones polynomial has three non-zero coefficients.

Results from this paper raise a number of further questions, which further link Kho-
vanov’s essentially combinatorial theory with problems involving holomorphic disks.

As a first point, it is quite plausible that the link surgeries spectral sequence can
be made to work withZ, rather than onlyZ/2Z coefficients. This suggests anE2

term whoseZ/2Z reduction agrees with Khovanov’s reduced theory, but which differs
from the sign conventions as defined by Khovanov. It would be interesting to construct
such a theory, and to pin down the new sign conventions of this theory, not only from
the point of view of applications to Heegaard Floer homology (i.e. to give information
aboutĤF over Z of the branched cover), but also from the point of view of Khovanov’s
theory, as it would give a link invariant withZ-coefficients whose Euler characteristic
is the normalized Jones polynomial.

In another direction, it is reasonable to expect that the induced filtered quasi-
isomorphism type associated to the branched double cover spectral sequence from
Theorem 1.1 is also a link invariant, i.e. that is independent of the projection used
in its definition. This would, in principle, give a countable sequence of link invari-
ants, starting with Khovanov’s homology, and ending witĥHF of the branched double
cover.

This also raises the question of finding a combinatorial description of the higher
differentials for the spectral sequence. Although finding a combinatorial description of
the Heegaard Floer homology in general is a very interesting, if difficult problem, it is
perhaps easier when one specializes to the case of branched double covers of links in
the three-sphere.

Another question concerns naturality properties of Khovanov’s homology. On the one
hand, it is known that a knot cobordismX from L1 to L2 induces a (combinatorially
defined) map between Khovanov homologies (c.f. [11,15]). Now, the branched double-
cover ofX inside [1,2] × S3 is a four-manifold�(X) which gives a cobordism from
�(L1) to �(L2), and correspondingly induces a map on̂HF (c.f. [19]), defined by
counting holomorphic triangles. This map, in general, can be quite difficult to compute.
It is reasonable to expect that there is a well-defined map between the filtered complexes
which give rise to Theorem 1.1 and hence between spectral sequences which at theE2

stage induces Khovanov’s map, and at theE∞ stage induces the map on̂HF induced
by �(X).
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1.2. Organization

The skein exact sequence for̂HF(�(L)) is established in Section2; the results
for alternating links (with a sample calculation) are explained in Section 3. The link
surgeries spectral sequence is established in Section 4 (note that this general result
applies not only to branched double covers, considered in the rest of the paper). In
Section 5, we review Khovanov’s link invariant (withZ/2Z coefficients), setting up
the notation for Section 6, where we establish the precise form of Theorem 1.1.

2. Skein moves and branched double covers

Let K be a framed knot in a three-manifoldY (i.e. a knot with a choice of longitude
�). Let Y0 = Y0(K) denote the three-manifold obtained from�-framed surgery onY
along K, and letY1 = Y1(K) denote the three-manifold obtained from� + �-framed
surgery onY along K (where here� denotes the canonical meridian for the knotK).
We call the ordered triple(Y, Y0, Y1) a triad of three-manifolds.

This relationship betweenY, Y0, andY1 is symmetric under a cyclic permutation of
the three three-manifolds. Indeed, it is not difficult to see that(Y, Y0, Y1) fit into a
triad if and only if there is a single oriented three-manifoldM with torus boundary,
and three simple, closed curves�, �0, and �1 in �M with

#(�∩ �0) = #(�0∩ �1) = #(�1∩ �) = −1 (3)

(where here the algebraic intersection number is calculated in�M, oriented as the
boundary ofM), so thatY resp.Y0 resp.Y1 are obtained fromM by attaching a solid
torus along the boundary with meridian� resp.�0 resp.�1.

In [18], we established a long exact sequence connectingĤF for any three three-
manifolds which fit into a triad:

... −−−−→ ĤF (Y ) −−−−→ ĤF (Y0) −−−−→ ĤF (Y1) −−−−→ ... .

The skein exact sequence for̂HF(�(L)) (Eq. (1)) follows readily:

Proposition 2.1. Fix a crossing for a projection of a linkL⊂ S3, and letL0 andL1 be
the two resolutions of that crossing as in Fig.1. Then the three-manifolds(�(L),�(L0),

�(L1)) form a triad. In particular, there is an induced long exact sequence

... −−−−→ ĤF (�(L0)) −−−−→ ĤF (�(L1)) −−−−→ ĤF (�(L)) −−−−→ ... .

Proof. Fix a sphereS meeting the linkL in four points, containing a ballB which
contains two arcs ofL, and in whose complementL, L0, andL1 agree. Clearly, letting
M be the branched double-cover ofS3 − B branched alongL− (L ∩ B), we see that
�(L), �(L0), and �(L1) are all obtained fromM by attaching the branched double
cover ofB branched along two arcs.
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LL1

Fig. 2. Obtaining�(L) from �(L1). The three-manifold�(L) (corresponding to the branched double
cover of a link with the a crossing as illustrated on the right) is obtained from�(L1) by surgery on
the knot obtained as a branched double cover of the dashed arc indicated in the picture on the left.

Now, it is easy to see that the branched double-cover ofB branched along two
standard, unknotted arcs is a solid torus. Indeed, a meridian for this solid torus can be
realized by pushing either of the two arcs out to the boundary, and taking its branched
double-cover. Thus, letting�, �0, and �1 denote curves obtained by pushing arcs out
into the boundary torus forL and its resolutionsL0 and L1, it is straightforward to
verify that these curves satisfy Eq. (3).

Thus,(�(L),�(L0),�(L1)) form a triad of three-manifolds. The exact sequence now
is a direct consequence of the aforementioned surgery long exact sequence
([18, Theorem 9.12]; see Theorem 4.5 below for another proof).�

In particular, we have seen that�(L) is obtained as surgery on a knot in�(L1).
This knot can be explicitly seen as the branched double cover of a standard arc inside
the three-ballB containing the two resolved arcs inL1. In turn, this arc can be pictured
in a knot projection ofL1 as an arcA which meetsL1 in exactly two points, both of
which are on the boundary ofA, and which connect the two resolved strands inL1,
as pictured in Fig. 2.

3. Alternating links

Let Y be an oriented three-manifold. Let|H 2(Y ;Z)| denote the number of elements
in H 2(Y ;Z) provided thatb1(Y ) = 0, and let|H 2(Y ;Z)| = 0 if b1(Y ) > 0. Now, if
L is a link in S3, the determinant ofL is defined by det(L) = |�L(−1)|, where here
�L(T ) denotes the Alexander polynomial ofL. It is well-known (see for example [17])
that det(L) = |H 2(�(L);Z)|.

Recall that the Euler characteristic of̂HF(Y ) is given by |H 2(Y ;Z)| (c.f.
[18, Proposition 5.1]); in particular,|H 2(Y ;Z)|�rkĤF (Y ). Three-manifolds with
b1(Y ) = 0 for which |H 2(Y ;Z)| = rkĤF (Y ) are calledL-spaces (c.f. [20]). This
special class of three-manifolds is closed under connected sums and includes all lens
spaces and, more generally, all Seifert fibered spaces with finite fundamental group;
other examples are given in [23,20]. We will prove that ifL is a non-split, alternating
link, then �(L) is an L-space. Indeed, the class of links we work with here is wider.
To this end, we have the following:
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Definition 3.1. The setQ of quasi-alternating linksis the smallest set of links which
satisfies the following properties:

1. the unknot is inQ
2. the setQ is closed under the following operation. SupposeL is any link which

admits a projection with a crossing with the following properties:
• both resolutionsL0, L1 ∈ Q,
• det(L0),det(L1) �= 0,
• det(L) = det(L0)+ det(L1);
thenL ∈ Q.

Note that quasi-alternating in this sense is different from the notion of almost-
alternating, which appears in the literature (c.f.[1]).

Lemma 3.2. Every link which admits a connected, alternating projection is quasi-
alternating.

Proof. Recall that a complement of a knot projection in the plane admits a checker-
board coloring. The collection of black regions can be given the structure of a planar
graphB(L), whose vertices correspond to black regions and edges correspond to ver-
tices which are corners of pairs of black regions. It is a classical result[4] that if
L admits an alternating projection, then the determinant ofL is the total number of
maximal subtrees of the black graph ofL. To fix orientation conventions, when coloring
an alternating link, we always use the coloring scheme indicated in Fig. 3.

We now induct on the determinant of the link. In the basic case where the determinant
is one, it follows at once that there is only one maximal subtree, and hence that the
knot is the unknot.

Fig. 3. Coloring conventions for alternating knots. We adopt the pictured convention when coloring an
alternating projection.
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Fig. 4. A quasi-alternating, but not alternating, knot. The pictured knot 947 is quasi-alternating: its
determinant is 29, and if we resolve the indicated crossing either way, we obtain (non-split) alternating
links with determinants 5 and 24.

For the inductive step, it is easy to see that for a reduced alternating projection ofL,
if we choose any crossingx, both resolutionsL0 andL1 at x are connected, alternating
projections of links. Moreover, it is easy to see that det(L) = det(L0) + det(L1):
maximal subtrees of the black graph ofL which contain, resp. do not contain, the
edge corresponding tox are in one-to-one correspondence with the maximal subtrees
of the black graph ofLi , respLj , where herei, j ∈ {0,1} and i �= j . Thus, by the
inductive hypothesis, the theorem has been established for bothL0 andL1; and hence,
the inductive step follows. �

Of course, there are quasi-alternating links which are not alternating. For a picture
of one, see Fig.4.

Proposition 3.3. If L is a quasi-alternating link, �(L) is an L-space, i.e.

ĤF (�(L))� Zdet(L).

Proof. The proposition is now established by induction on the determinant ofL. In
the basic case where the determinant is one, it follows at once that there is only one
maximal subtree, and hence that the knot is the unknot, soĤF (�(L)) = ĤF (S3)� Z.

The bound det(L)�rkĤF (�(L)) combined with the long exact sequence stated in
Proposition2.1 readily provides the inductive step (c.f. [20, Proposition 2.1]).�
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We describe now the absoluteQ-grading on ĤF (�(L)), when L is a non-split,
alternating link.

Let L be a link with a connected, alternating projection, and choose a maximal
subtreeT of the black graphB(L), and let{ei}mi=1 denote the edges inZT = B(L)−T .
Let V denote the lattice generated by these edges. We can equipV with a bilinear form

Q : V ⊗V −→ Z

as follows (compare also Chapter 13 of[3]). Choose orientations for each edgeei ∈ ZT ,
let Ci denote the oriented circuit inT ∪{ei}; and ifX is any subgraph ofB(L), let E(X)
denote the number of edges inX. Note that the orientation onei induces an orientation
on the circuitCi . Given a pair of distinct edgesei, ej ∈ ZT with the property that
Ci ∩ Cj �= ∅, we let

Q(ei ⊗ ej ) = �(i, j) · E(Ci ∩Cj ),
where here�(i, j) is given by

�(i, j) =


+1 if the orientation onCi ∩ Cj induced fromCi

is opposite to the one induced fromCj ,
−1 otherwise.

In particular,Q(ei ⊗ ei) = −E(Ci).
This quadratic formQ is the intersection form of a certain four-manifold which

boundsK. (Indeed,Q is equivalent under a suitable change of basis to the usual
Goeritz form ofK, c.f. [10].)

A characteristic vector forM is a vector in the latticeK ∈ V ∗ with 〈K, v〉+Q(v, v) ≡
0 (mod 2) for each v ∈ V . Two characteristic vectorsK and K ′ are said to be
equivalent ifK −K ′ = 2Q(v⊗ ·) for somev ∈ V .

Theorem 3.4. There is an identification i equivalence classes of characteristic vec-
tors for Q with Spinc structures over�(L). Moreover, given an equivalence class of
characteristic vectors�, ĤF (�(L), i(�))� Z is supported in dimension

d(�) = maxK∈�K2+ b

4
,

where hereK2 is the length of K with respect to the inner product onV ∗ induced from
Q, and b is the number of edges inZT (or, more invariantly, the rank ofH1(B(L);Z)).

Remark 3.5. We emphasize that we are using the coloring conventions pictured in
Fig. 3, which breaks the apparent symmetry between the “white” and “black” graphs. In
fact, using the white graph in place of the black graph to construct the form analogous
to Q, it is not difficult to see that we obtain the dimensions of the generators for
ĤF (−�(L)), whose sign is opposite to those for̂HF(�(L)).

We break the proof into several pieces. First, we describe a four-manifoldXL which
bounds�(L). To constructXL, fix a projection for the linkL, and letn denote its num-
ber of crossings. If we form 1-resolutions at each intersection, we obtain ak-component
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unlink. The branched double cover of this manifold isY0 = #k−1(S2 × S1). Attaching
one two-handle for each crossing to “unresolve” the crossing (as in Proposition2.1), we
obtain a cobordism fromY0 to �(L). Indeed, by fillingY0 by the boundary connected
sum of k − 1 copies ofB3 × S1, we obtain a four-manifoldXL which boundsY. (In
fact, one can check that we are describing here a two-handle decomposition of the
four-manifold from [10].)

Lemma 3.6. If L is a non-split alternating link, the four-manifoldXL described above
is negative-definite. Indeed, there is an identification of the form Q on the vector space
V described above with the intersection form on the two-dimensional homology ofXL.

Proof. As we have described it,XL is built from one zero-handle,k− 1 one-handles,
and n two-handles. In fact, the treeT specifiesk − 1 two-handles which cancel the
one-handles; i.e. after attaching the two-handles from the tree, we obtain the branched
double cover of a single unknot, which isS3. Now, XL is obtained from the four-
ball by surgery on a link inS3 (the branched double cover of the unknot) whose
components correspond to the remaining edges inB(L)− T (i.e. the link components
are the branched double covers of the arcs with boundary in the unknot, which are
associated to the edges inB(L) − T ). We claim that a choice of orientation on each
edgeei simultaneously orients all the components of this link, up to an overall sign.

To see this, we proceed as follows. LetU denote the unknot as specified by the
tree T. Let � be a vector field normal toU which is orthogonal to the kernel of the
projection map used in describing the knot projection. This vector field�, of course,
specifies the blackboard framing ofU. The vector field� has two possible lifts in
the branched double cover of the unknot (in the sense that there are two lifts in the
branched double cover of the knot obtained by displacingU by �). Choose one, and
denote it�̃ (while the other is denoted̃�

′
). Then, the knot corresponding toei (thought

of as an arc connectingx to y in the unknot) is oriented so that its tangent vector atx

agrees with̃�x (as opposed tõ�
′
x). We denote the oriented knot associated toei with

its orientation byki . (Note that the other lift of the blackboard framing has the effect
of reversing the induced orientations on all the knotski simultaneously.)

Next, we argue that the intersection form ofXL is negative-definite. We prove this
by induction on the number of crossings. The basic case is obvious. Next, recall that

|H 2(�(L);Z)| = |H 2(�(L0);Z)| + |H 2(�(L1);Z)|,

so it readily follows that the two-handle from�(L1) to �(L) (and also the one from
�(L) to �(L0)) is negative-definite. Now, it is easily seen thatXL is obtained by
attaching this negative-definite two-handle toXL1.

We show that the intersection form onH2(XL;Z) is given byQ. To this end, observe
that if we attachm of the remaining two handles{ei}mi=1, to S3, the number of elements
in H 2 of the boundary three-manifold (withZ coefficients) is given by the determinant
of the matrix (Q(ei ⊗ ej ))i,j∈{1,...,n}, which in turn is obtained from the number of
maximal subtrees inT ∪ {ei}i=1,...,m.
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Fig. 5. Standard picture for two crossings. Ife1 and e2 correspond to two closed circuits with
m = E(C1 ∩ C2) edges in common, then the unknot corresponding to the treeT, together with the
two arcs associated toe1 and e2, is isotopic to the picture on the left (which depicts a projection of the
unknot with m right-handed half-twists in it, of which two have already been drawn, together with two
arcs which meet the unknot in the specified manner). Passing to the branched double cover of the unknot
(which in turn is best visualized by unwinding the twists on the unknot), at the expense of twisting the
arcs corresponding toe1 and e2, and then taking the branched double cover of these edges to obtain
knots k1 and k2, we obtain the picture shown on the right, where the solid line indicates the branched
locus.

In particular, sinceXL is negative-definite, it follows at once that if we choose a
basis forH2(XL;Z) given by the two-handles inXL (with any set of orientations),
then if [ei] the homology class corresponding to an edgeei , then #[ei]∩[ei] = −E(Ci)
(since the number of maximal subtrees of a circuit is the length of the circuit, and the
sign is forced by the negative-definiteness).

When i �= j , #[ei] ∩ [ej ] is given by the linking number ofki with kj . This in turn
is calculated in a model case: consider the unknot corresponding to the treeT, together
with the two arcs correspondingei and ej . This is easily seen to be isotopic to an
unknot with two arcs attached, in a manner which has a standard projection depending
only on the integerE(Ci ∩Cj ), as pictured in Fig.5. Unwinding the unknot and taking
the branched double cover, we see that the branched double covers of the original arcs
become circles which are linked|E(Ci ∩ Cj )| times. It is then straightforward to see
that the sign of this linking number is the one stated (once we choose a lift of the
blackboard framing for the unknot).�

Proof of Theorem 3.4.With Lemma 3.6, the proof of the theorem now follows along
the lines of Section 2 of [23]. We sketch here the main points. LetCh(XL) denote the
set of characteristic vectors for the intersection formH 2(XL;Z). We write K ∼ K ′
if there is an elementv ∈ H 2(XL, �XL) with the property thatK = K ′ + 2v. Next
(compare [23]), consider the subgroup

Ĥ(XL)⊂Hom(Ch(XL),Z),



12 P. Ozsváth, Z. Szabó /Advances in Mathematics 194 (2005) 1–33

consisting of maps� with the properties that
• �(K) = �(K ′) if K ∼ K ′ andQ(K,K) = Q(K ′,K ′)
• �(K) = 0 if there is someK ′ ∼ K with Q(K ′,K ′) > Q(K,K).
Viewing XL as a cobordism from−�(L) to S3, we obtain a naturally induced map
(c.f. [19])

TXL
: ĤF (−�(L)) −→ Hom(Ch(XL),Z),

in view of the fact that̂HF(S3)� Z.
Unless the diagram ofL represents the unknot, we can always find a double-pointp

whose two resolutions are connected diagrams. This gives the following commutative
diagram:

0 −−−−−−−→ ĤF (−�(L0)) −−−−−−−→ ĤF (−�(L)) −−−−−−−→ ĤF (−�(L1)) −−−−−−−→ 0

T
XL0

#CP
2

� TXL

� TXL1

�
Hom(Ch(XL0

#CP
2
),Z)

A−−−−−−−→ Hom(Ch(XL),Z)
B−−−−−−−→ Hom(Ch(XL1

),Z)),

(4)

where the top row is exact, the squares commute, the mapsA and B are given by

A(�0)(K) =
∑

{K0∈Ch(XL0#CP
2
)|K0|H2(XL;Z)=K}

�0(K0)

B(�)(K1) =
∑

{K∈Ch(XL)|K|H2(XL1
;Z)=K1}

�(K1).

A straightforward induction on the number of crossings in the diagram shows that
the image ofTXL

is contained inĤ(XL). The sphere with square−1 contained in
the composite cobordism from�(L0) to �(L1) through �(L) is used to show that
B ◦A = 0, and also thatA is injective (more details can be found in Section2.8
of [24]). Straightforward homological algebra then shows thatTXL

is an isomorphism,
again, by induction on the number of crossings, together with Diagram 4, and an

identificationĤ(XL0)� Ĥ(XL0#CP
2
). (For a more detailed argument establishing an

analogous result, see also the proof of Lemma 2.10 of [23].)
EndowĤ(XL) with a grading, by declaring an element to be homogeneous of degree

d if it is supported on thoseK ∈ Ch(XL) with

−
(
K2+ rkH 2(XL)

4

)
= d.

Clearly, TXL
carries ĤF d(−�(L)) to Ĥd(XL) (c.f. [22]). Since ĤF d(−�(L))�

ĤF
−d
(�(L)) (c.f. [22]), the result now follows. �

Note that the long exact sequence can be pushed slightly further than we have done
in the above discussion. For example, recall that ifW is a cobordism between two



P. Ozsváth, Z. Szabó /Advances in Mathematics 194 (2005) 1–33 13

Fig. 6. The knot 940.

L-spaces withb+2 > 0, then the induced map onHF+ is trivial (c.f. [19]). This gives
at once the result that ifL differs from an alternating (or indeed quasi-alternating) knot
by at a single crossing, then all the elements ofHF+red(�(L)) have the sameZ/2Z-
grading. Indeed, the map induced by a two-handle from�(L0) to �(L1), whereL0
and L1 are both quasi-alternating, is determined purely by homological information.
This can be used to give information about the Heegaard Floer homology of�(L)
when its two resolutions are quasi-alternating. We do not pursue this any further here,
contenting ourselves instead with a sample calculation illustrating Theorem 3.4.

3.1. An example:940

To illustrate Theorem 3.4, we calculatêHF(�(L)) whereL is the alternating knot
with nine crossings 940, pictured in Fig. 6.

The black graph of this knot is illustrated in Fig. 7. Using as our base treeT the
solid edges pictured in the figure, and the orientations of the remaining edges indicated,
the intersection form ofXL takes the form

QL =



−3 −2 −1 −1
−2 −5 −2 −3
−1 −2 −4 −3
−1 −3 −3 −5


 .

It is a straightforward if tedious matter to find the maximal lengths of the characteris-
tic vectors forQ in its equivalence classes. Note that this is a finite search: it is easy to
see that all maximal characteristic vectors have the property that|〈K, v〉|� |Q(v⊗ v)|,
and hence to determine the absolute gradings of the generators ofĤF (�(L)) (this
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Fig. 7. Black graph for the knot 940. All edges (including those which are dashed) are included in the
graph. The solid edges constitute the treeT used for the matrix given in the text. The dashed edges,
when oriented, give rise to the matrix in the text.

and the further calculations in this section were all done with the help of Mathematica
[27]). We display the results below. The numbers are ordered as suggested by the group
structure ofH 2(�(L);Z)� Z/5Z⊕ Z/15Z; i.e. having chosen such an isomorphism,
we have a naturally induced identification Spinc(�(L))� Z/15Z ⊕ Z/5Z (where we
choose as the origin the spin structure on�(L); since H1 has no two-torsion, this
structure is uniquely determined); i.e. the element in theith row (counting from 0 to
4) and j th column (counting from 0 to 14) is the absolute grading of the element in
the Spinc structure corresponding to(i, j) ∈ Z/5Z⊕ Z/15Z.

−1
2 −11

30
1
30

7
10 −11

30
5
6

3
10

1
30

1
30

3
10
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7
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1
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1
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13
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7
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1
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10
13
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3
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30
3
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30
13
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4. The link surgeries spectral sequence

In this section, we turn our attention away from branched double-covers, and consider
the case of a general three-manifoldY. Our aim here is to describe a generalization
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of the surgery long exact sequence (withZ/2Z coefficients) for the case of multi-
component links inY. In the course of making this generalization, we give a quick
(and slightly stronger) proof of the long exact sequence based on associativity properties
of the holomorphic polygon construction, combined with some homological algebra
discussed in Section4.1. But first, we introduce some notation.

Let L = K1 ∪ · · · ∪ K& be an &-component, framed link in a three-manifoldY.
A “multi-framing” is a vector I = (m1, . . . , m&), where eachmi ∈ {0,1,∞}. For a
multi-framing, there is a three-manifoldY (I), which is obtained fromY by performing
mi-framed surgery on the componentKi for i = 1, . . . , n. As usual, whenmi = ∞,
this means no surgery,mi = 0 this means�i-framed surgery, and whenmi = 1, this
is surgery with framing�i + �i .

We give the set{0,1,∞}& the lexicographical ordering (with the understanding that
0 < 1 < ∞). If I ∈ {0,1,∞}&, we call I ′ an immediate successorof I where I =
(m1, . . . , m&) and I ′ = (m′1, . . . , m′&) if there is somej so that for alli �= j , mi = m′i ,
while mj < m′j , excluding the case wheremj = 0 andm′j = ∞. Clearly, if I ′ is an
immediate successor ofI, there is a corresponding map on Floer homology

ĜI<I ′ : ĤF (Y ;Z/2Z) −→ ĤF (Y ′;Z/2Z)

associated to the single two-handle addition, c.f. [19].
Consider a chain complexC filtered by the cube{0,1}& with its reverse lexicograph-

ical ordering, in the sense thatC is generated by subcomplexesFI ⊂C with FI ⊂ FJ
if I > J (so that in particularC = F0& ). There is a naturally inducedZ-filtration onC
obtained by “flattening” the cube (c.f. [14]). Specifically, givenI ∈ {0,1}&, let

|I | =
∑
i∈I

i,

then for eachi ∈ Z, let Fi ⊂C be the subcomplex

Fi =
⋃

{I∈{0,1}& ||I |=i}
FI .

In the corresponding Leray spectral sequence{Er, dr}, theE1 termE1∗ can be further
decomposed

E1
i =

⊕
{I∈{0,1}&||I |=i}

E1
I ,

where here
E1
I = H(FI /

⋃
J>I

FJ ).

This spectral sequence converges toH(C) (in the usual sense—it calculates the graded
object associated to the filtration ofH(C) by the subobjectsH(FI )). Note, that this
spectral sequence collapses at the(&+1)th stage; i.e.dr ≡ 0 for all r�&+1, and hence

E&+1 = E&+2 = · · · = E∞.

The reader is reminded that the subscript in the termsE1
I for the spectral sequence

takes values in the cube{0,1}&, and should not be confused with the usual bigrading
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on the Leray spectral sequence of aZ-filtered complexC = C∗ with an internalZ-
grading. (Floer homology has an internalZ/2Z grading, and indeed it is not difficult to
work out how the terms in the spectral sequence behave with respect to this additional
structure; however, we will have no need for this in the present applications.)

With these preliminaries in place, we can now state the link surgeries spectral se-
quence alluded to in the introduction.

Theorem 4.1. Let Y be a closed, oriented three-manifold, equipped with an&-component
framed linkL = K1 ∪ · · · ∪K&. Then, there is an induced cubical filtration on̂CF(Y )
whose corresponding Leray spectral sequence hasE1 term given by

E1 =
⊕

I∈{0,1}&
ĤF (Y (I );Z/2Z)

and d1 differential obtained by adding up all thêGI<I ′ (where I ′ is an immediate
successor of I). In particular, this spectral sequence(which collapses at the(&+ 1)th
stage) converges tôHF(Y ).

Although we have stated Theorem4.1 for ĤF , the same result can be established
for HF+ (again withZ/2Z-coefficients), with some notational changes.

Before proceeding to the proof, we indulge in a purely homological-algebraic di-
gression. The algebra here was inspired by a conversation with Paul Seidel, who com-
municated to us some version of Lemma 4.2.

4.1. Mapping cones

We begin with some terminology.
Let A1 andA2 be a pair of chain complexes ofZ/2Z-vector spaces.1 A chain map

� : A1 −→ A2

is called aquasi-isomorphismif the induced map on homology is an isomorphism. Two
chain complexesA1 andA2 are said to bequasi-isomorphicif there is a third chain
complexB and a pair of quasi-isomorphisms�1 : A1 −→ B and �2 : A2 −→ B.

Recall that if we have a chain map between chain complexesf1:A1 −→ A2, we can
form its mapping coneM(f1), whose underlying module is the direct sumA1 ⊕ A2,
endowed with the differential

� =
(

�1 0
f1 �2

)
,

where here�i denotes the differential for the chain complexAi . Recall that there is a
short exact sequence of chain complexes

0 −−−−→ A2
	−−−−→ M(f1)


−−−−→ A1 −−−−→ 0.

This induces a long exact sequence, for which the connecting homomorphism is the
map on homology induced byf1.

1 The discussion from this section can be carried over toZ coefficients in a routine manner; we
suppress these signs, however, since the application at hand usesZ/2Z coefficients.
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The mapping cylinder is natural in the following sense. Suppose that we have a
diagram of chain complexes

A1
f1−−−−→ A2

�1

� ��2

B1
g1−−−−→ B2

which commutes up to homotopy, then there is an induced map

m(�1,�2) : M(f1) −→ M(g1)

which fits into the following diagram, where the rows are exact and the squares are
homotopy-commutative:

0 −−−−→ A2 −−−−→ M(f1) −−−−→ A1 −−−−→ 0

�2

� m(�1,�2)

� ��1

0 −−−−→ B2 −−−−→ M(g1) −−−−→ B1 −−−−→ 0.

Lemma 4.2. Let {Ai}∞i=1 be a collection of chain maps and let

{fi : Ai −→ Ai+1}i∈Z

be a collection of chain maps satisfying the following two properties:
(1) fi+1 ◦ fi is chain homotopically trivial, by a chain homotopy

Hi : Ai −→ Ai+2

(2) the map
�i = fi+2 ◦Hi +Hi+1 ◦ fi : Ai −→ Ai+3

is a quasi-isomorphism.
Then, M(f2) is quasi-isomorphic toA4.

Proof. Hypothesis (1) proves that the map

�i = fi+2 ◦Hi +Hi+1 ◦ fi : Ai −→ Ai+3

is a chain map; and indeed that the square

Ai
fi−−−−→ Ai+1

�i

� ��i+1

Ai+3
fi+3−−−−→ Ai+4

(5)

commutes up to homotopy.
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Next, define�i : M(fi) −→ Ai+2 by

�i (ai, ai+1) = Hi(ai)+ fi+1(ai+1)

and 
i : Ai −→ M(fi+1) by


i (ai) = (fi(ai),Hi(ai)).

Now
�i+1 ◦
i = �i ,

which is a quasi-isomorphism.
Moreover, consider the diagram:

A2
f2−−−−→ A3

	3−−−−→ M(f2)

3−−−−→ A2

f2−−−−→ A3

=
� =

� �2

� �2

� �3

�
A2

f2−−−−→ A3
f3−−−−→ A4

f4−−−−→ A5
f5−−−−→ A6

�2

� �3

� 
4

� =
� =

�
A5

f5−−−−→ A6
	6−−−−→ M(f5)


5−−−−→ A5
f5−−−−→ A6

(6)

The mapX : M(f2) −→ A5 defined by

X(a2, a3) = H3(a3)

gives a chain homotopy between�2 ◦ 
3 andf4 ◦ �2, while the mapY : A3 −→ M(f5)

defined by
Y (a3) = (H3a3,0)

gives a chain homotopy between
4 ◦ f3 and 	6 ◦�3. Thus, all the squares in Diagram
(6) commute up to homotopy, and the maps induced on homology on the top and
bottom rows are exact. From the five-lemma, it follows that the map induced on
homology
4 ◦ �2 is also an isomorphism. Thus (in view of the fact that�5 ◦ 
4 is a
quasi-isomorphism), we conclude
4 and hence�2 is a quasi-isomorphism.�

It is useful to interpret Lemma 4.2 in the following terms. Under the hypotheses of
that lemma, we can form an “iterated mapping cone”M(f1, f2, f3) whose underlying
module isA1⊕ A2⊕ A3, and whose differential is given by the matrix

� =

 �1 0 0
f1 �2 0
H1 f2 �3


 . (7)

Indeed, Hypothesis (1) guarantees that� determines a differential onM(f1, f2, f3).
Consider the short exact sequence

0 −−−−→ A3 −−−−→ M(f1, f2, f3) −−−−→ M(f1) −−−−→ 0.
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It is easy to see that its connecting homomorphism

H∗(M(f1)) −→ H∗(A3)

is the map on homology induced by the map�1 in the above lemma. Thus, Lemma
4.2 can be interpreted as saying thatH∗(M(f1, f2, f3)) = 0.

4.2. Pseudo-holomorphic n-gons

With the above homological algebra in place, we proceed to the geometrical under-
pinnings of Theorem 4.1. We will make heavy use of the pseudo-holomorphic polygon
construction, c.f. [5,9,26] and its relationship with Heegaard Floer homology, as ex-
plained in Section 8 of [21]. We recall this construction very briefly here.

Let � be a connected, closed, oriented two-manifold of genusg, and fix (m+ 1) g-
tuples of attaching circles{�i}mi=1. Specifically, for each fixedi, the set�i = {�ij }gj=1 is a
collection ofg pairwise disjoint, homologically linearly independent, embedded curves
in �. We choose also a reference pointz disjoint from all the�ij . In the terminology

of [21], this data(�, �0, . . . , �m, z) is called a pointed Heegaard(m+ 1)-tuple or, less
precisely, a pointed Heegaard multi-diagram. We have a map of groups

f̂�0,...,�m :
m⊗
i=1

ĈF (Y�i−1,�i ) −→ ĈF (Y�0,�m),

where hereY�i ,�j denotes the three-manifold described by the Heegaard diagram
(�, �i , �j ). This map is obtained by counting pseudo-holomorphic(m + 1)-gons in
Symg(�) which are disjoint from the subvariety{z} × Symg−1(�).

More precisely, letT�i denote theg-dimensional torus�i1 × · · · × �ig in the g-fold
symmetric productSymg(�). A Whitney (m + 1)-gon is a mapu from the standard
(m+1)-gon intoSymg(�) which maps theith edge intoT�i (where here the edges are
labelled 0, . . . , m). Fixing xi ∈ T�i−1∩T�i andy ∈ T�0∩T�m , we let
2(x1, . . . , xm, y)
denote the set of homotopy classes of Whitney(m+ 1)-gons which, fori = 1, . . . , m,
map the vertex between the(i − 1)st and theith edge toxi and the vertex between
mth and 0th edges toy.

For fixed� ∈ 
2(x1, . . . , xm, y), we letM(�) denote the set of pseudo-holomorphic
representatives for�. With this notation in place, then, the map̂f�0,...,�m (whenm > 1)
is defined by

f̂�0,...,�m(x1⊗ · · · ⊗ xm) =
∑

y∈T�0∩T�m

∑
{�∈
2(x1,...,xm,y)|�(�)=0,nz(�)=0}

(#M(�)) · y,

where herenz(�) denotes the intersection number of� with the subvariety{z} ×
Symg−1(�) ⊂ Symg(�), and �(�) denotes the expected dimension of the moduli
spaceM(�) (i.e. the Maslov index of�, c.f. [6,5]). In the special case wherem = 1,
we sum over homotopy classes with�(�) = 1, and count points in the quotient space
M(�)/R. Thus, whenm = 1, the mapf̂�0,�1 is simply the differential for the Heegaard

Floer chain complex forY�0,�1, and whenm = 2, f̂�0,�1,�2 is the chain map induced
from the counts of pseudo-holomorphic triangles.
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Strictly speaking, for the above map to be finite, we require that the Heegaard tuple
(�, {�i}mi=1, z) satisfy a suitable weak admissibility hypothesis. It is sufficient for our
purposes to assume that any multi-periodic domain—i.e. two-chainP in � which gives
a relation amongst homology classes chosen from the�i , which hasnz(P ) = 0—
has both positive and negative local multiplicities. This can always be arranged after
isotopies, compare Section4.2.2 of [21].

These maps are well-known to satisfy a generalized associativity property, c.f. [9,25,5]:

∑
0� i<j �m

f̂�i ,�i+1,...�j ◦ f̂�0,...�i−1,�i ,�j ,...,�m = 0. (8)

For example, whenm = 1, the above associativity statement is equivalent to the
statement that the square of the differential for̂CF(Y�0�1) is trivial. When m = 2,
associativity asserts that the maps induced by holomorphic triangles are chain maps,
and whenm = 3, it states that the triangle pairing is associative, up to chain homotopy
(hence the name). Thinking of the tuples�0, . . . , �m as corresponding to edges of an
(m+ 1)-gon, we see that for any pair of edges, there is a corresponding degeneration
of the (m+ 1)-gon as a juxtaposition of a pair ofa- andb-gons, witha + b− 3= m.
The above sum is a sum over all such degenerations of the corresponding composition
of maps.

We can construct Heegaard diagrams for theY (I) as follows. GivenYwith the framed
link L, we can construct a Heegaard triple(�, �,�, �, z), where here
1, . . . ,
& are
meridians for the links,�1, . . . , �& are corresponding framing curves (and�&+1, . . . , �g
are exact Hamiltonian translates of
&+1, . . . ,
g). (For more on the construction of this
diagram, see Section4 of [19]. In the terminology of that paper, the Heegaard triple
we are considering is the Heegaard triple subordinate to some bouquet for the framed
link L.) We also choose curves�1, . . . , �& to be corresponding curves representing
the framings obtained by adding meridians to the original framings (and�&+1, . . . , �g
are exact Hamiltonian translates of the
&+1, . . . ,
g). Indeed, we choose these curves
so that the triply-periodic domain relating
i , �i , �i has both positive and negative
local multiplicities. GivenI ∈ {0,1,∞}&, let �(I ) = {�1, . . . , �g} denote theg-tuple of
attaching circles, where here

�i =




i if mi = ∞,

�i if mi = 0,
�i if mi = 1.

Thus, a Heegaard diagram forY (I) is given by (�, �, �(I ), z). The required admissi-
bility can be achieved by further winding the�i-curves if necessary.

Given a sequence of multi-framingsI0 < · · · < Ik, there is an induced map

DI0<···<Ik : ĈF (Y (I0)) −→ ĈF (Y (I k))

defined by

DI0<···<Ik (�) = f̂�,�(I0),...,�(I k)(�⊗ �̂1⊗ · · · ⊗ �̂k), (9)
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where �̂i are cycles representing the canonical top-dimensional generators forĤF of
Y�(I i−1),�(I i ) which is a connected sum of several copies ofS2× S1.

We will be lax about distinguishing here between intersection points inT�(I i ) ∩
T�(I i+1) and generators of the homology groupŝHF(#k(S2 × S1);Z/2Z). In fact, if
we choose our Hamiltonian translates carefully (i.e. the perturbations of the
i used in
the construction of the Heegaard multi-diagram), we can arrange that for the induced
Heegaard diagram for this three-manifold, the differentials vanish, hence each homology
generator is represented by a unique intersection point. Recall also thatĤF (#k(S2×S1);
Z/2Z)��∗H 1(#k(S2× S1);Z/2Z), c.f. Section3.1 of [18], see also Proposition 6.1
below.)

Let X =⊕
I∈{0,1,∞}& ĈF (Y (I )), endowed with the map

D : X −→ X,

defined by

D� =
∑
J

∑
{I=I1<···<Ik=J }

DI1<···<Ik (�),

where here the index set of the inner sum is the set of all increasing sequences
connectingI to J, with the property that for alli = 1, . . . , k− 1, I i+1 is an immediate
successor ofI i .

Lemma 4.3. Fix I, J ∈ {0,1,∞}&. We have that∑
I=I0<I1<···<Ik=J

f̂�(I0),...,�(I k)(�̂1⊗ · · · ⊗ �̂k) ≡ 0,

where again the sum is taken over sequences with the property thatI i+1 is an immediate
successor ofI i .

Proof. We consider the case wherek > 2. In this case, there is a juxtaposition of
triangles representing

f̂�(I0),�(I1)�(I2) ◦ f̂�(I0),�(I2),�(I3) ◦ · · · ◦ f̂�(I0),�(I i ),�(I i+1) ◦ · · · ◦ f̂�(I0),�(I k−1),�(I k).

This juxtaposition gives rise to a(k + 1)-gon � ∈ 
2(�̂1, . . . , �̂k, �̂), with D(�)�0
and nz(�) = 0, where here� ∈ T�(I0) ∩ T�(I k). By additivity of the Maslov index,
this k+ 1-gon has�(�) = k− 2. It is not difficult that for the chosen Heegaard multi-
diagram, there are nok + 1-gons�′ ∈ 
2(�̂1, . . . , �̂k, �̂

′
) (where �̂

′
is any element

of T�(I0) ∩ T�(I k)) with �(�′) = 0 and D(�′)�0, This follows from the fact that
D(�) has small support relative to the multi-periodic domains for the given diagram
(�, �(I0), . . . �(I k), z).

Consider now the case wherek = 2. In this case,I andJ differ in at least one place,
and at most two.

If I andJ differ in one place, a direct inspection of the Heegaard triple (which leads
to the “blowup formula” in [19]) shows that the maps appear (and hence cancel) in
pairs. This is spelled out in Proposition 9.5 of [18].
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If they differ in two places, there are two choices forI1 with I = I0 < I1 < J = I2.
For each possibleI1, it is the case that

f̂�(I0),�(I1),�(I2)(�̂1⊗ �̂2) = �̂3.

One can see this by explicitly drawing the Heegaard triple, which splits into torus
summands, as in[19]. (See also Proposition 6.1 below.)

In the case wherek = 1, the stated relation is simply the one that�̂1 is a cycle.
�

Proposition 4.4. The map D from Eq.(9) satisfiesD2 = 0.

Proof. This follows from the associativity formula (Eq. (8)) for the Heegaard tuple
(�, �, �(I1), . . . ., �(I k), z), together with Lemma 4.3. Specifically, according to that
lemma, the only degenerations in Eq. (8) which do not contribute 0 to the sum are
the ones which involve� in both polygons. Those, in turn, are the various components
of D2. �

In view of Proposition 4.4, we can think ofX as a chain complex, endowed with
the differential D. We can define some other associated complexes as follows. If
S⊂{0,1,∞}& is a subset with the property that for eachI, J ∈ S, for all K ∈
{0,1,∞}& with I < K < J , we also have thatK ∈ S, then we letX(S) denote the
group

⊕
I∈S ĈF (Y (I )) endowed with the differential naturally induced byD.

With all the notational background, we are now ready to prove a strong form of the
surgery long exact sequence for a single knot in a three-manifoldY.

Theorem 4.5. Let K be a framed knot in a three-manifold Y, and let

f̂ : ĈF (Y0(K);Z/2Z) −→ ĈF (Y1(K);Z/2Z)

denote the chain map induced by the cobordism. Then, the chain complex̂CF(Y ;Z/2Z)

is quasi-isomorphic to the mapping cone of̂f .

Proof. To start, let(�, �,�, �, �, z) denote the associated Heegaard quintuple. In par-
ticular, Y�,
, Y�,� Y�,� describeY, Y0, and Y1, respectively, and the remaining three-
manifolds on the boundary describe #g−1(S2 × S1). Indeed, to fit precisely with the
hypotheses of that lemma, we choose infinitely many copies of theg-tuples�, �, and
� (denoted�(i), �(i), �(i) for i ∈ Z), all of which are generic exact Hamiltonian per-
turbations of one another, in the interest of admissibility (in the sense of Section4.2.2
of [21]).

In this case, the chain map we described earlierX splits (as a module) aŝCF(Y0)⊕
ĈF (Y1)⊕ ĈF (Y ), and its differential decomposes as

� =

D0 0 0
D0<1 D1 0
D0<1<∞ D1<∞ D∞


 . (10)
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Letting ĈF (Y ), ĈF (Y0), andĈF (Y1) play the roles ofA1, A2, andA3 respectively,
the various components of the differential play the roles of thefi and Hi (compare
Eqs. (10) and (7)),

Indeed,A3i+1, A3i+2 andA3i+3 all represent̂CF(Y0), ĈF (Y1) and ĈF (Y ), respec-
tively, only now we use the various translates of the�, �, and �; in particularA3i+1
is the Floer complex̂CF(�, �(i)).

Hypothesis (1) of Lemma 4.2 follows at once from the fact thatD is a chain complex
(Proposition 4.4).

It remains to verify Hypothesis (2) of Lemma 4.2.
Let �i be the chain homotopy equivalences induced by equivalences of Heegaard di-

agrams; e.g.�3i+1 is the chain map̂CF(�, �(i)) −→ ĈF (�, �(i+1)) obtained by product
with the canonical generator̂��(i),�(i+1) .

We claim that
f3 ◦H1+H2 ◦ f1 : A1 −→ A4

is chain homotopic to�1, and the chain homotopy is given by

x �→ f�,�,�,
,�(1) (x⊗ �̂�,�⊗ �̂�,
 ⊗ �̂
,�(1) ).

This in turn follows at once from associativity, together with the fact that

f�,�,
,�(1) (�̂�,�⊗ �̂�,
⊗ �̂
,�(1) ) = �̂�,�(1) . (11)

This latter equality follows from a direct inspection of the Heegaard diagram for the
quadruple(�, �, �,�, �(1), z). (i.e. the count of pseudo-holomorphic quadrilaterals), as
illustrated in Figs.8 and 9.

In Fig. 8, we consider the special case where the genusg = 1. In the picture, and in
the following discussion,�(1)1 is denoted�′1. The four corners of the shaded quadrilat-
eral are the canonical generatorŝ��1,�1, �̂�1,
1

, �̂
1,�
′
1
, and �̂�′1,�1

(read in clockwise
order). Indeed, it is straightforward to see (by passing to the universal cover), that the
shaded quadrilateral represents the only homotopy class�1 of Whitney quadrilaterals
with nz(�1) = 0 and all of whose local multiplicities are non-negative. By the Riemann
mapping theorem, now, this homotopy class�1 has a unique holomorphic representa-
tive u1. (By contrast, we have also pictured here another Whitney quadrilateral with
hatchings, whose local multiplicities are all 0,+1, and−1; +1 at the region where
the hatchings go in one direction and−1 where they go in the other.)

For the general case (g > 1), we take the connected sum of the case illustrated in Fig.
8 with g−1 copies of the torus illustrated in Fig. 9. In this picture, we have illustrated
the four curves�i , �i , 
i , �′i for i > 1, which are Hamiltonian translates of one another.
Now, there is a homotopy class of quadrilateral�i ∈ 
2(�̂�i ,�i , �̂�i ,
i , �̂
i ,�

′
i
, �̂�′i ,�i ),

and a forgetful mapM(�) −→ M( ) which remembers only the conformal class
of the domain (where hereM( ) denotes the moduli space of conformal classes of
disks with four marked boundary points, also referred to simply as quadrilaterals).
Both moduli spaces are one-dimensional (the first moduli space is parameterized by
the length of the cut into the region, while the second is parameterized by the ratio
of the length to the width, after the quadrilateral is uniformized to a rectangle). By
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Fig. 8. A holomorphic quadrilateral. The shaded quadrilateral has a unique holomorphic representative
(by the Riemann mapping theorem), while the one indicated with the hatching does not, as it has both
positive and negative local multiplicities, as indicated by the two directions in the hatching.

Gromov’s compactness theorem, the forgetful map is proper; and it is easy to see that
it has degree one, and hence for some generic conformal class of quadrilateral, there is
a unique pseudo-holomorphic quadrilateral whose domain has the specified conformal
class. Now, lettingu1 (the pseudo-holomorphic representative of the homotopy class
�1 described in the previous paragraph) determine the conformal class of the rectangle,
we let ui for i > 1 be the pseudo-holomorphic representatives for�i whose domain
supports the same conformal class. Thenu1×· · ·×ug ∈ �1×· · ·×�g is easily seen to

be the unique holomorphic quadrilateral in
2(�̂�,�, �̂�,
, �̂
,�′ , �̂�′,�), hence proving
Eq. (11) which, in turn, yields Hypothesis (2) of Lemma 4.2. The theorem now follows
directly from Lemma 4.2. �

We now turn to Theorem 4.1.

Proof of Theorem 4.1. The theorem is established by induction on the number of
components of the link. The case where the link has a single component is a direct
consequence of Theorem 4.5.

We form the chain complexX as before. We claim first thatH∗(X) = 0.
Let

S = {0,1}&−1× {0,1,∞}.
The complexX(S) can be filtered by the ordered set{0,1}&−1 so that its successive
quotients are of the formX(s × {0,1,∞}) (with s ∈ {0,1}&−1). By Theorem 4.5 (or,
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i
 

i i
,γ i

z

γ δ β

Fig. 9. Other factors of the holomorphic quadrilateral. We have illustrated here a Heegaard quadruple (in
a genus one surface) whose four boundary components areS2× S1. In the homotopy class indicated by
the shaded quadrilateral�i ∈ 
2(�̂�,�, �̂�,
, �̂
,�′ , �̂�′,�), there is a moduli space of pseudo-holomorphic
quadrilaterals which is clearly one-dimensional, parameterized by a cut at the vertex where�i and �i
meet. We take the connected sum ofg − 1 copies of this picture (at the reference pointz) with the
picture illustrated in Fig.8 to obtain the general case of the quadrilateral considered in the proof of
Theorem4.5.

more precisely, the reformulation of the mapping cone lemma, Lemma4.2, described
after its proof), these successive quotients are acyclic, and hence so isX(S). In par-
ticular, if we let T = {0,1}&, we have a short exact sequence

0 −−−−→ X(T )
f−−−−→ X(S)

g−−−−→ X({0,1}&−1× {∞}) −−−−→ 0

from which it follows at once that the connecting homomorphism induces an isomor-
phism in homology

H∗(X({0,1}&−1× {∞})) �−→ H∗(X({0,1}&)).
By our inductive hypothesis, it follows thatH∗(X{0,1}&−1 × {∞})�ĤF (Y ;Z/2Z),
completing the proof. �

5. Khovanov’s invariants

We briefly describe here Khovanov’s categorification of the Jones polynomial; for
more details, see [14,2]. We make some simplifying assumptions here: we will use
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coefficients inZ/2Z throughout, and we specialize to the case wherec = 0 (in Kho-
vanov’s sense). Our notation and exposition are tailored to fit neatly into the context of
the present paper. In particular, the groups we describe here are actually the Khovanov
homology of the mirror ofL.

Let X = S1∪· · ·∪Sk be a collection of disjoint embedded, simple closed curves in the
plane. LetZ(X) denote theZ/2Z-vector space, formally generated by the components
[S1], . . . , [Sk], and letV (X) denote exterior algebra

V (X) = �∗Z(X),
i.e. this is the quotient of the polynomial algebra overZ/2Z generated by[Si], divided
out by the relations[Si]2 = 0 for i = 1, . . . , k. (When comparing the notation used in
the discussion here with that of[14], observe that the element[S1]∧· · ·∧[Sm&

] ∈ V (X),
where {mj }&j=1 is a subsequence of{1, . . . , k} corresponds to the element

v
�1
1 ⊗ · · · ⊗ v

�k
k ,

where here�i ∈ {±} is obtained by

�i =
{− if i ∈ {mj }&j=1,

+ otherwise

in Khovanov’s notation, c.f. [14].)
Next, consider a pair of pants, thought of as a morphism fromX = S1∪· · ·∪Sk∪Sk+1

to a new submanifoldX′ = S1 ∪ · · · ∪ Sk−1 ∪ S′k containing a componentS′k which is
obtained by mergingSk and Sk+1. In this case, we have a natural identification

Z(X′) = Z(X)/[Sk] ∼ [Sk+1]
and correspondingly natural isomorphisms

� : (Sk+1− Sk) ∧ V (X) �−→ V (X′) and 
 : V (X′)
�−→ V (X)/(Sk+1− Sk) ∧ V (X).

We then define the multiplication

m : V (X) −→ V (X′)
to be the composite

V (X)
(Sk+1−Sk)∧·−−−−−−−→ (Sk+1− Sk) ∧ V (X) �−−−−→ V (X′).

By reversing the orientation of the “pair of pants”, we have a morphism fromX′ to
X, instead. In this case, we have a comultiplication

� : V (X′) −→ V (X)

induced by the composition

V (X′) 
−−−−→ V (X)
(Sk+1−Sk)∧V (X)

(Sk+1−Sk)∧−−−−−−−→ V (X).

Let L be a link, and fix a generic projection ofL, D, with & double points. One can
form resolutions indexed by subsetsI ∈ {0,1}& (using the conventions from Fig. 1).
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Fig. 10. Crossing conventions. Crossings of the first kind are positive, and those of the second kind are
negative.

Specifically, for eachI, D(I ) is a disjoint union of circles in the plane. IfI ′ is an
immediate successor ofI, thenD(I ′) differs from D(I ) by a single pair of pants. We
have a map

dI<I ′ : V (D(I )) −→ V (D(I ′)),
given by multiplication or co-multiplication, according to whetherD(I ′) has one fewer
or one more component thanD(I ).

Fix a diagramD for an oriented linkL, and letn+(D) resp.n−(D) denote the number
of positive resp. negative crossings for the linkL, according to the usual conventions
(c.f. Fig. 10). Consider next the graded Abelian group

CKh(D,m) =
⊕

{I∈{0,1}&||I |+n+(D)=m}
V (D(I )),

where|I | =∑
i∈I i. (Note that the roles ofn+(D) andn−(D) are the opposite to those

in [14]: this is because we are describing here the Khovanov homology of the mirror
of K.) This group is endowed with the differential

d : CKh(D,m) −→ CKh(D,m+ 1)

whose restriction toV (D(I ))⊂CKh(L,m) is the sum

d =
∑
I<I ′

dI<I ′ ,

where the sum is taken over all immediate successorsI ′ of I. In each dimensionm,
CKh(D,m) is endowed with an additional grading, the “q-grading”, defined by the
splitting

V (D(I )) =
⊕
n∈Z

Vn(D(I )),

where

Vn(D(I )) = �kZ∗(D(I ))
and

n = dimZ(D(I ))− 2k − n−(D)+ 2n+(D)−m.
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Correspondingly, we write

CKh(D) =
⊕
m,n∈Z

CKh(D,m, n).

Note thatd carriesCKh(D,m, n) to CKh(D,m+ 1, n).
It is easy to see thatd2 = 0. Khovanov’s homology of the mirror ofL is the Abelian

group
Kh(r(L)) = H∗(CKh∗(D), d),

thought of as bi-graded Abelian group

Kh(r(L)) =
⊕
m,n∈Z

Kh(D,m, n).

Note that the complexCKh(D) depends on the projection ofL. Khovanov shows,
however, that the homology of this complex is independent of this choice, i.e.Kh(L)

is a link invariant. Moreover, he shows that these groups satisfy a skein exact sequence

.. −−−−→ Kh(r(L)) −−−−→ Kh(r(L0)) −−−−→ Kh(r(L1)) −−−−→ ... .

Khovanov’s theory is related to the Jones polynomial by the formula

Ĵ (r(L)) =
∑
m,n

(−1)m(rkKh(L,m, n)) · qn,

where hereĴ (L) ∈ Z[q, q−1] is the un-normalized Jones polynomial of the linkK,
characterized by the formulas

Ĵ (∅) = 1,

Ĵ ((unknot)∪ L) =̇ (q + q−1) · Ĵ (L),
Ĵ (r(L)) =̇ Ĵ (r(L0))− q · Ĵ (r(L1)),

where in the last equation,L0 andL1 are is taken with respect to the two resolutions
at any double-point of any projection ofL, and where forf, g ∈ Z[q, q−1], we write
f =̇g if f = qj · g for somej ∈ Z.

In [16], Khovanov gives a modification of the above constructions to define a “re-
duced” theory K̃h(L), which is related to the normalized Jones polynomialJ (L)

defined by(q+q−1) ·J (L) = Ĵ (L). For the reduced theory, one marks a generic point
in the projection ofL, so that now in all the various resolutions, there is always a

distinguished circle. The reduced Khovanov complex is the quotient of̃CKh(D) by
the subcomplex ofCKh(D) given by⊕

I∈{0,1}&
[SI ] ∧ V (D(I )),

where hereSI is the component inD(I ) which contains the marked point. This
gives a chain complex which splits into summands indexed byI ∈ {0,1}&, and the
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corresponding summand is denoted

Ṽ (D(I )) = V (D(I ))/[SI ] ∧ V (D(I )).
For this construction.

J (r(L)) =
∑
m,n

(−1)m(rk K̃h(L,m, n)) · qn,

c.f. [16].
We have described Khovanov’s construction withZ/2Z coefficients. In fact, Kho-

vanov’s original definition from [14] makes sense with coefficients inZ. In this case,
however the reduced homology (described in [16]) depends on the link, together with
the distinguished component containing the marked point. If one takes coefficients in
Z/2Z, as we have here, it is easy to see that the reduced theory is independent of this
additional choice, hence giving a link invariant.

6. The spectral sequence for a branched double cover

Throughout this section, we fix our coefficient ring to beZ/2Z: i.e. if Y is a three-
manifold, ĤF (Y ) will denote ĤF of Y with coefficients inZ/2Z, and similarly,H∗(Y )
will denote singular homology with coefficients inZ/2Z.

In comparing Khovanov’s homology witĥHF , we rely on the following (fairly
straightforward) result about̂HF , proved in earlier papers. For the statement, note that
if Y is any three-manifold, then̂HF(Y ) is a module over the algebra�∗H1(Y )/Tors.

Proposition 6.1. Let Y � #k(S2× S1). Then, ĤF (Y ) is a rank one, free module over
the ring�∗H1(Y ), generated by some class� ∈ ĤF (Y ). Moreover, if K ⊂Y is a curve
which represents one of the circles in one of theS2 × S1 summands, then the three-
manifold Y ′ = Y0(K) is diffeomorphic to#k−1(S2× S1), with a natural identification


 : H1(Y )/[K] −→ H1(Y
′).

Under the cobordism W induced by the two-handle, the map

FW : ĤF (Y ) −→ ĤF (Y ′)
is specified by

FW(� ·�) = 
(�) ·�′,

where here�′ is some fixed generator of̂HF(Y ′), and � is any element of�∗H1(Y ).
Dually, if K ⊂Y is an unknot, then Y ′′ = Y0(K)� #k+1(S2 × S1), with a natural
inclusion

i : H1(Y ) −→ H1(Y
′′).

Under the cobordismW ′ induced by the two-handle the map
FW ′ : ĤF (Y ) −→ ĤF (Y ′′)

is specified by
FW ′(� ·�) = � ∧ [K ′′] ·�′′,

where here[K ′′] ∈ H1(Y
′′) is a generator in the kernel of the mapH1(Y

′′) −→ H1(W
′).
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Proof. The identification ofĤF (Y ) follows from a direct inspection of the Heegaard
diagram, as explained in Section3.1 of [18]. The fact thatFW(�) is a generator for
ĤF (Y ′) (which we denote by�′) follows from a direct inspection of a Heegaard triple
which naturally splits into genus one summands, c.f. [19]. (Alternately, one could use
the surgery exact sequence which in this case reads

... −−−−→ ĤF (Y ′) −−−−→ ĤF (Y ) −−−−→ ĤF (Y ′) −−−−→ ...

to deduce that the map from̂HF(Y ) to ĤF (Y ′), which in this case is induced by the
two-handleW equipped with its torsion Spinc structure, is surjective.) The more general
formula for FW follows from naturality of the triangle maps under theH1 action (c.f.
[19]). The case ofW ′ follows similarly. See [19,1]. �

We can now link Khovanov’s construction (using notation from Section 5) witĥHF :

Proposition 6.2. Fix a projectionD for K. There is an isomorphism for each I

�(I ) : Ṽ (D(I )) �−→ ĤF (�(D(I ))),
which is natural under cobordisms, in the following sense. IfI ′ is an immediate succes-
sor of I, then there is a naturally induced cobordism(induced from a single two-handle
addition) from �(D(I )) to �(D(I ′)), and hence an induced map

ĜI<I ′ : ĤF (�(I )) −→ ĤF (�(I ′)).
Naturality of � is captured in the following commutative diagram, which is valid
wheneverI ′ is an immediate successor of I:

Ṽ (D(I )) dI<I ′−−−−→ Ṽ (D(I ′))
�(I )

� ��(I ′)

ĤF (�(D(I ))) GI<I ′−−−−→ ĤF (�(D(I ′)))

(12)

Proof. First, note that for eachI, we can writeD(I ) = S0∪· · ·∪Sk, where here theSi
are pairwise disjoint unknots, andk�0. In this case,�(D(I ))� #k(S2× S1). Indeed,
we give a basis{[�i]}ki=1 for H1(�(D(I ))) as follows. Fori > 0, let [�i] ∈ H1(�(D(I )))
be the homology class of the curve obtained as the branched double cover of an arc
from S0 to Si (recall that we are using hereZ/2Z coefficients). This induces the
identification

Z̃(D(I ))�H1(�(D(I ))).
Combined with Proposition6.1, we get a canonical identification

Ṽ (D(I ))� ĤF (�(D(I ))).
Commutativity of Diagram (12) is proved in four cases, each of which follows from
Proposition 6.1. See Fig. 11 for an illustration.
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Suppose thatI ′ is obtained fromI by merging two circlesS1 and S2, neither of
which is marked. Then, we claim that in the cobordismW, the curves�1 and�2 become
homologous; indeed, both are homologous to the new curve�′1. Commutativity of the
square now follows readily from Proposition6.1 and the definition ofdI<I ′ .

Dually, when I ′ is obtained fromI by splitting an unmarked circleT1 into two
circles S1 and S2, the curve�1− �2 is null-homologous in the induced cobordismW ′.
Again, commutativity of the claimed square now follows readily from Proposition 6.1.

The two corresponding cases involving a marked circle follow similarly (indeed, they
follow formally in the same manner, once we declare[�0] = 0). �

With these preliminaries in place, we can now state and prove the following precise
version of Theorem 1.1 in the introduction.

Theorem 6.3.Given a projectionD of a link L, there is a spectral sequence converg-
ing toĤF (�(L)) whose(E1, d1) complex is isomorphic to Khovanov’s reduced chain
complex(for the mirror of L); i.e. there are isomorphisms�m making the following
diagram commute(Fig. 11):

E1
m−n+(D)

d1
m−n+(D)−−−−−→ E1

m−n+(D)+1

�m

� �m+1

�
C̃Kh(D(L),m) dm−−−−→ C̃Kh(D(L),m+ 1).

In particular, the E2 term of this sequence is identified with Khovanov’s homology
of L.

Proof. As explained in Section 2, a diagramD for a link K with & crossings gives rise
to a link L in Y = �(K) whose components correspond to the crossings ofD. Moreover,
for eachI ⊂{0,1}&, the three-manifold obtained by performing surgeries along these
components ofL is the branched double cover ofS3 branched along the collection

 γ
2S0 γ1

S
1

1

T
S2

δ

Fig. 11. Homological relations in the cobordisms. The plane of the (un)-link projection is indicated by
the quadrilateral, on which we have the marked componentS0, two unlink componentsS1 and S2, and
an alternative componentT1, obtained by mergingS1 and S2. We have also illustrated the curves�1 and
�2. The picture illustrates that�1 and �2 become homologous afterS1 and S2 are merged. Dually, it
illustrates that in the cobordism whereT1 is divided in two, it is the curve� = �1− �2 which becomes
null-homologous.
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of unknots D(I ). We now apply Theorem4.1. The identification with Khovanov’s
(reduced) complex is now provided by Proposition 6.2. Note that the spectral sequence
coming from Theorem 4.1 is filtered by a cube, rather thanZ. We pass to aZ-filtered
object by “flattening” the cube as usual.�

Proof of Corollary 1.2. The inequalities follow from det(L) = |H 2(�(L);Z)| (c.f.
[17]); but this agrees with�(ĤF (�(L))) (c.f. [18, Proposition 5.1]). It follows at once
that det(L)�rkĤF (�(L)). The other inequality follows from Theorem 6.3, together
with the straightforward inequality for spectral sequencesrkE∞�rkE2. �
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