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Abstract

Let L c S3 be a link. We study the Heegaard Floer homology of the branched double-cover
(L) of $3, branched alond.. When L is an alternating link, HF of its branched double-
cover has a particularly simple form, determined entirely by the determinant of the link. For the
general case, we derive a spectral sequence whdsterm is a suitable variant of Khovanov's
homology for the linkL, converging to the Heegaard Floer homology 2(L).
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Given a link L c $2, we can form its branched double cover, a new three-manifold
which we denote byX(L). In this paper, we study the Heegaard Floer homology of
this three-manifoldHF (2 (L)) (c.f. [21]).

The starting point for these investigations is a skein exact sequence which this link
invariantL — HF (X (L)) satisfies. Specifically, fix a projection af and letLo and L1
denote the two resolutions &f at a crossing for the projection, as illustrated in Fig. 1.
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Fig. 1. Skein moves. Given a link with a crossing as labeled iabove, we have two “resolutionsg
and L1, obtained by replacing the crossing by the two simplifications pictured above.

It is a quick consequence of the surgery long exact sequencﬁothat for any link
L c S8, the groupsHF (L), HF (Lo), and HF (L1) fit into a long exact sequence

. —— HF(2(Lo)) — HF(X(L1)) — HF(E(L)) — ... (1)

This skein exact sequence leads readily to a complete caIcuIatioﬁT’cQE(L)),
where L is any alternating link as explained in Secti@n In particular, it is shown
there that ifL is a link which admits a connected, alternating projection, then the rank
of HF(X(L)) agrees with the number of elements H?(Z(L); Z), i.e. thatX(L) is
what might be called an “ungraded Heegaard Floer homology lens space” or, in the
terminology of [20], anL-space.

WhenY is an arbitrary three-manifoldF (Y) has the structure of &/27-graded
Abelian group, and that is the structure we will be concerned with throughout most of
this paper. But in generaﬁF(Y) also comes with a natural splitting into summands
indexed by Spifi structures orY [21]. Indeed, wherY is a rational homology three-
sphere, the groups are further endowed with an absdlitgading [22].

By further elaborating on the calculations faZ) when L is alternating, we are
able to determine this extra structure explicitly from the alternating diagranh,feis
explained in Section 3. As explained in [22] (compare also [8]), this structure gives
constraints on the intersection forms of negative-definite four-manifolds which bound
>(L).

Turning back to the case of a general libkit is suggestive to compare the exact
sequence (1) with the work of Khovanov, c.f. [14] (for the reader’'s convenience, we
briefly review the construction in Section 5). Specifically, Khovanov introduces an
invariant for links in 2 whose Euler characteristic, in a suitable sense, is the Jones
polynomial (c.f. [12], see also [13]). By construction, his invariants satisfy a “skein
exact sequence” inspired by the skein relation for the Jones polynomial. In particular,
just like ﬁ(Z(L)), Khovanov’s invariants fit into a long exact sequence relating the
invariant for a link and its two resolutions:

. — Kh(r(Lg)) —— Kh(r(Ly)) —— Kh(r(L)) —— ..., 2)

where herer(L) denotes the mirror ot. (Note that our conventions ohg and L1
are opposite to Khovanov’s; this is why we use the mirror.) But unlik&(X (L)),
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Khovanov’s theory comes with extra gradings (which the maps in the exact sequence
respect), which allow one to extract the Jones polynomial from the Betti numbers.
The connection between the two link invariants is provided by the following result.

Theorem 1.1. Let L ¢ 3 be a link. There is a spectral sequence whdse term
consists of Khovanos reduced homology of the mirror of L with coefficientszif2Z,
and which converges t6{F (X (L); Z/27).

See Sectiorb for a precise statement (c.f. Theorem 6.3), and also the proof. Note
that in the above statement, we use here a “reduced” version of Khovanov’s homology,
which he introduced in [16], with coefficents iA/2Z7. Correspondingly, we also take
Heegaard Floer homology with coefficients #y27.

We have the following quick corollary (whose proof is spelled out in Section 6):

Corollary 1.2. Let L ¢ S be a link and letrk Kh(L) denote the rank of its reduced
Khovanov homology witlZ /27 coefficients. Thernwe have the inequalities

det(L) <rkz o7 HF (2(L); Z/27) <rkz,27 Kh(L),

where heredet(L) denotes the determinant of the link

Theoreml.1 is seen as a consequence of a “link surgeries spectral sequence” estab-
lished in Section 4, which holds in a more general setting (c.f. Theorem 4.1). To place
this result in context, recall that K C Y is a framed knot in a three-manifold, in [18],
it is shown that ifYy, Y1 denote the result of surgeries dhalong K (here, as usual,

Yo denotes surgery alonl§ in Y with respect to the given framing, whilE; denotes
surgery alongK in Y with respect to the framing obtained by adding a meridian to
the given framing), then there is a long exact sequence reIatﬁﬁgY) HF(YO) and
HF(Yl), compare also [7]. When the knot is replaced by a multi-component link, the
corresponding object is a spectral sequence relating the various surgeries on the various
components of the link. This spectral sequence, in turn, is established with the help of
the associativity properties of the pseudo-holomorphic polygon construction, see also
[5,9,26].

To establish Theorem 1.1 we specialize the link surgeries spectral sequence of
Section 4 to the case arising from the branched double cover of a link projection.
Given a projection ofL, X(L) comes equipped with a link, whose components cor-
respond to crossings in the projection, framed so that surgeries on these components
give branched double-covers of the resolutionsLofthis is the topological input for
establishing Eqg. (1)). With this said, the key observation leading to Theorem 1.1 is the
following. Consider the branched double cover of a collection of unlinks in the plane,
connected by cobordisms induced from the connected sums among (and within) the
circles. Applying HF (with coefficients inZ/27) to these objects and morphisms (as
required in theE! term coming from the link surgery spectral sequence), one recaptures
the (1 + 1)-dimensional topological quantum field theory which underpins Khovanov’'s
invariants. Armed with this observation, Theorem 1.1 follows quickly.
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1.1. Further remarks and speculation

It is interesting to note that the results from SectiBnon non-split alternating
links, can be interpreted as saying that the spectral sequence of Theorem 1.1 col-
lapses at theE? stage. (Note that it is clear from the more precise statement that
if L is an n-crossing link, then the spectral sequence always collapses afteE"the
stage.)

A rather striking example where there are non-trivial differentials beyond Rhe
stage is illustrated for torus knots. For example, Tgt, denotes the(p,q) torus
knot. When bothp and q are odd,X(7, ) is the Brieskorn homology sphere with
multiplicities 2, p, and g. In particular, X(735) is the Poincaré homology sphere, so
HF (2(Ts5; Z/27)) = 7/27 (c.f. [22] or [23]), while its reduced Khovanov homology
clearly has larger rank, as its Jones polynomial has three non-zero coefficients.

Results from this paper raise a humber of further questions, which further link Kho-
vanov’s essentially combinatorial theory with problems involving holomorphic disks.

As a first point, it is quite plausible that the link surgeries spectral sequence can
be made to work withZ, rather than onlyZ/2Z coefficients. This suggests afi?
term whoseZ/27 reduction agrees with Khovanov's reduced theory, but which differs
from the sign conventions as defined by Khovanov. It would be interesting to construct
such a theory, and to pin down the new sign conventions of this theory, not only from
the point of view of applications to Heegaard Floer homology (i.e. to give information
aboutHF over Z of the branched cover), but also from the point of view of Khovanov’s
theory, as it would give a link invariant witi-coefficients whose Euler characteristic
is the normalized Jones polynomial.

In another direction, it is reasonable to expect that the induced filtered quasi-
isomorphism type associated to the branched double cover spectral sequence from
Theorem 1.1 is also a link invariant, i.e. that is independent of the projection used
in its definition. This would, in principle, give a countable sequence of link invari-
ants, starting with Khovanov’s homology, and ending wiii of the branched double
cover.

This also raises the question of finding a combinatorial description of the higher
differentials for the spectral sequence. Although finding a combinatorial description of
the Heegaard Floer homology in general is a very interesting, if difficult problem, it is
perhaps easier when one specializes to the case of branched double covers of links in
the three-sphere.

Another question concerns naturality properties of Khovanov's homology. On the one
hand, it is known that a knot cobordisk from L, to L, induces a (combinatorially
defined) map between Khovanov homologies (c.f. [11,15]). Now, the branched double-
cover of X inside [1, 2] x $2 is a four-manifold X (X) Whic/h\gives a cobordism from
2(L1) to X(L2), and correspondingly induces a map &fF (c.f. [19]), defined by
counting holomorphic triangles. This map, in general, can be quite difficult to compute.
It is reasonable to expect that there is a well-defined map between the filtered complexes
which give rise to Theorem 1.1 and hence between spectral sequences whichE3t the
stage induces Khovanov's map, and at #i® stage induces the map diF induced
by 2(X).
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1.2. Organization

The skein exact sequence fd’ﬁ(Z(L)) is established in Sectio2; the results
for alternating links (with a sample calculation) are explained in Section 3. The link
surgeries spectral sequence is established in Section 4 (note that this general result
applies not only to branched double covers, considered in the rest of the paper). In
Section 5, we review Khovanov's link invariant (with/2Z coefficients), setting up
the notation for Section 6, where we establish the precise form of Theorem 1.1.

2. Skein moves and branched double covers

Let K be a framed knot in a three-manifoltl(i.e. a knot with a choice of longitude
A). Let Yo = Yo(K) denote the three-manifold obtained frokrframed surgery orY
along K, and letY; = Y1(K) denote the three-manifold obtained froimt u-framed
surgery onY along K (where hereu denotes the canonical meridian for the kot
We call the ordered tripl€Y, Yo, Y1) a triad of three-manifolds.

This relationship betweeW, Yy, and Y1 is symmetric under a cyclic permutation of
the three three-manifolds. Indeed, it is not difficult to see tfatYyp, Y1) fit into a
triad if and only if there is a single oriented three-maniféfd with torus boundary,
and three simple, closed curvesyg, andy, in 0M with

#(yNiypg) = #(yoNyp) =#(1Ny) =-1 (3

(where here the algebraic intersection number is calculatedMn oriented as the
boundary ofM), so thatY resp.Yp resp.Y:1 are obtained fromM by attaching a solid
torus along the boundary with meridignresp.yg resp.y;.

In [18], we established a long exact sequence connedihgfor any three three-
manifolds which fit into a triad:

. — HF(Y) —— HF(Yo) —— HF(Y1) — ... .

The skein exact sequence faiF (X(L)) (Eq. (1)) follows readily:

Proposition 2.1. Fix a crossing for a projection of a link. c $2, and letLg and L1 be
the two resolutions of that crossing as in Fij.Then the three-manifold5 (L), X (Lo),
2(L41)) form a triad. In particular there is an induced long exact sequence

. —— HF(2(Lo)) —— HF(2(L1)) — HF(X(L)) ——> ... .

Proof. Fix a sphereS meeting the linkL in four points, containing a baB which
contains two arcs ok, and in whose complemeht Lo, and L, agree. Clearly, letting
M be the branched double-cover §f — B branched along. — (L N B), we see that
2(L), 2(Lo), and X(L,) are all obtained fromM by attaching the branched double
cover of B branched along two arcs.
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Fig. 2. ObtainingX(L) from X(L1). The three-manifoldX(L) (corresponding to the branched double
cover of a link with the a crossing as illustrated on the right) is obtained féorhy) by surgery on
the knot obtained as a branched double cover of the dashed arc indicated in the picture on the left.

Now, it is easy to see that the branched double-coveB dfranched along two
standard, unknotted arcs is a solid torus. Indeed, a meridian for this solid torus can be
realized by pushing either of the two arcs out to the boundary, and taking its branched
double-cover. Thus, letting, yo, andy; denote curves obtained by pushing arcs out
into the boundary torus fok and its resolutiond.g and Ly, it is straightforward to
verify that these curves satisfy E@)(

Thus, (Z(L), X(Lo), Z(L1)) form a triad of three-manifolds. The exact sequence now
is a direct consequence of the aforementioned surgery long exact sequence
([18, Theorem 9.12]; see Theorem 4.5 below for another prodi).

In particular, we have seen that(L) is obtained as surgery on a knot XYLj).
This knot can be explicitly seen as the branched double cover of a standard arc inside
the three-balB containing the two resolved arcs ity. In turn, this arc can be pictured
in a knot projection ofL1 as an arcA which meetsL; in exactly two points, both of
which are on the boundary &, and which connect the two resolved strandsLin
as pictured in Fig. 2.

3. Alternating links

Let Y be an oriented three-manifold. Le#2(Y; Z)| denote the number of elements
in H2(Y; Z) provided thatb1(Y) = 0, and let|H2(Y; Z)| = 0 if by(Y) > 0. Now, if
L is a link in $3, the determinant of is defined by deiL) = |4, (—1)|, where here
Ar (T) denotes the Alexander polynomial bf It is well-known (see for example [17])
that detL) = |H2(X(L); Z)|. -

Recall that the Euler characteristic offF(Y) is given by |H?(Y;Z)| (c.f.
[18, Proposition 5.1]); in particular)H2(Y; Z)|<rkHF (Y). Three-manifolds with
b1(Y) = 0 for which |[H2(Y;Z)| = rkﬁ(Y) are calledL-spaces (c.f. [20]). This
special class of three-manifolds is closed under connected sums and includes all lens
spaces and, more generally, all Seifert fibered spaces with finite fundamental group;
other examples are given in [23,20]. We will prove thatiis a non-split, alternating
link, then X (L) is anL-space. Indeed, the class of links we work with here is wider.
To this end, we have the following:
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Definition 3.1. The setQ of quasi-alternating linkgs the smallest set of links which
satisfies the following properties:

1. the unknot is inQ
2. the setQ is closed under the following operation. Suppdséas any link which
admits a projection with a crossing with the following properties:
e both resolutionslLg, L1 € Q,
e det(Lo), det(Ly) # 0,
o det(L) = det(Lp) + det(L1);
thenL € Q.

Note that quasi-alternating in this sense is different from the notion of almost-
alternating, which appears in the literature (§iff).

Lemma 3.2. Every link which admits a connectedlternating projection is quasi-
alternating

Proof. Recall that a complement of a knot projection in the plane admits a checker-
board coloring. The collection of black regions can be given the structure of a planar
graph B(L), whose vertices correspond to black regions and edges correspond to ver-
tices which are corners of pairs of black regions. It is a classical r¢4lithat if
L admits an alternating projection, then the determinant d§ the total number of
maximal subtrees of the black graphlafTo fix orientation conventions, when coloring
an alternating link, we always use the coloring scheme indicated in Fig. 3.

We now induct on the determinant of the link. In the basic case where the determinant
is one, it follows at once that there is only one maximal subtree, and hence that the
knot is the unknot.

Fig. 3. Coloring conventions for alternating knots. We adopt the pictured convention when coloring an
alternating projection.
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Fig. 4. A quasi-alternating, but not alternating, knot. The pictured kngt 8 quasi-alternating: its
determinant is 29, and if we resolve the indicated crossing either way, we obtain (non-split) alternating
links with determinants 5 and 24.

For the inductive step, it is easy to see that for a reduced alternating projectign of
if we choose any crossing both resolutiond.g and L1 at x are connected, alternating
projections of links. Moreover, it is easy to see that(det= det(Lg) + det(L1):
maximal subtrees of the black graph bfwhich contain, resp. do not contain, the
edge corresponding tr are in one-to-one correspondence with the maximal subtrees
of the black graph ofZ;, respL;, where herei, j € {0,1} andi # j. Thus, by the
inductive hypothesis, the theorem has been established forllyoeind L1; and hence,
the inductive step follows. [

Of course, there are quasi-alternating links which are not alternating. For a picture
of one, see Fig4.

Proposition 3.3. If L is a quasi-alternating link (L) is an L-spacei.e.

HF (2(L)) ~ 790

Proof. The proposition is now established by induction on the determinarit. ¢
the basic case where the determinant is one, it follows at once that there is only one
maximal subtree, and hence that the knot is the unknoﬁE()Z(L)) = ﬁ?(S3) ~ /7.

The bound de{tL)grkﬁF(Z(L)) combined with the long exact sequence stated in
Proposition2.1 readily provides the inductive step (c.f. [20, Proposition 2.1[).
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We describe now the absolut®-grading on ITITT(Z(L)), when L is a non-split,
alternating link.

Let L be a link with a connected, alternating projection, and choose a maximal
subtreeT of the black graplB(L), and let{e;}!" ; denote the edges iy = B(L)—T.
Let V denote the lattice generated by these edges. We can ¥quith a bilinear form

0: VRV — 7

as follows (compare also Chapter 13[8f). Choose orientations for each edges Zr,
let C; denote the oriented circuit ifU{e; }; and if X is any subgraph oB(L), let E(X)
denote the number of edges X1 Note that the orientation o# induces an orientation
on the circuitC;. Given a pair of distinct edges;, ¢; € Zr with the property that
CiNCj #0, we let

Oei ®ej) =¢(, j)- E(CiNCj),
where heres(i, j) is given by

+1 if the orientation onC; N C; induced fromC;
e, j) = is opposite to the one induced froay;,
—1 otherwise

In particular, Q(e; ® ¢;) = —E(C;).

This quadratic formQ is the intersection form of a certain four-manifold which
boundsK. (Indeed,Q is equivalent under a suitable change of basis to the usual
Goeritz form ofK, c.f. [10].)

A characteristic vector foM is a vector in the lattic&k € V* with (K, v)+Q(v,v) =
0 (mod 2 for eachv € V. Two characteristic vector& and K’ are said to be
equivalent ifK — K’ =2Q(v®-) for somev € V.

Theorem 3.4. There is an identification i equivalence classes of characteristic vec-
tors for Q with Spirf structures overX(L). Moreover given an equivalence class of
characteristic vectorssE, HF (X(L),i(Z)) =~ Z is supported in dimension

_. Maxkez K2+b
d(5) = ===,

where herek? is the length of K with respect to the inner product B induced from
Q, and b is the number of edges #y (or, more invariantly the rank of H1(B(L); 7)).

Remark 3.5. We emphasize that we are using the coloring conventions pictured in

Fig. 3, which breaks the apparent symmetry between the “white” and “black” graphs. In

fact, using the white graph in place of the black graph to construct the form analogous
to Q, it is not difficult to see that we obtain the dimensions of the generators for

HF (—2(L)), whose sign is opposite to those féfF (2 (L)).

We break the proof into several pieces. First, we describe a four-marifpld/hich
boundsX'(L). To constructX, fix a projection for the link., and letn denote its num-
ber of crossings. If we form 1-resolutions at each intersection, we obtikicoanponent
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unlink. The branched double cover of this manifoldYis= #~1(52 x $1). Attaching

one two-handle for each crossing to “unresolve” the crossing (as in Propagifipnwe
obtain a cobordism fronYy to X(L). Indeed, by fillingYy by the boundary connected
sum of k — 1 copies of B3 x S, we obtain a four-manifoldt; which boundsY. (In

fact, one can check that we are describing here a two-handle decomposition of the
four-manifold from [10].)

Lemma 3.6. If L is a non-split alternating linkthe four-manifoldX; described above
is negative-definite. Indeethere is an identification of the form Q on the vector space
V described above with the intersection form on the two-dimensional homolagy.of

Proof. As we have described i is built from one zero-handlg — 1 one-handles,
and n two-handles. In fact, the tre€@ specifiesk — 1 two-handles which cancel the
one-handles; i.e. after attaching the two-handles from the tree, we obtain the branched
double cover of a single unknot, which &. Now, X; is obtained from the four-
ball by surgery on a link ins® (the branched double cover of the unknot) whose
components correspond to the remaining edgeB8(ih) — 7 (i.e. the link components
are the branched double covers of the arcs with boundary in the unknot, which are
associated to the edges B(L) — T). We claim that a choice of orientation on each
edgee; simultaneously orients all the components of this link, up to an overall sign.
To see this, we proceed as follows. L6t denote the unknot as specified by the
tree T. Let ¢ be a vector field normal t&) which is orthogonal to the kernel of the
projection map used in describing the knot projection. This vector figlef course,
specifies the blackboard framing &f. The vector field¢ has two possible lifts in
the branched double cover of the unknot (in the sense that there are two lifts in the
branched double cover of the knot obtained by displadingy ¢). Choose one, and
denote ithS (while the other is denotea/) Then, the knot corresponding & (thought
of as an arc connecting to y in the unknot) is oriented so that its tangent vectok at
agrees Wlthqb (as opposed tqﬁ ). We denote the oriented knot associatec:;tavith
its orientation byk;. (Note that the other lift of the blackboard framing has the effect
of reversing the induced orientations on all the kntsimultaneously.)
Next, we argue that the intersection form ®f is negative-definite. We prove this
by induction on the number of crossings. The basic case is obvious. Next, recall that

|H2(X(L); Z)| = |H*(Z(Lo); 2)| + |H*(2(L1); Z),

so it readily follows that the two-handle froli(L1) to X(L) (and also the one from
2(L) to X(Lg)) is negative-definite. Now, it is easily seen th#f is obtained by
attaching this negative-definite two-handle Xo,.

We show that the intersection form @ (X ; Z) is given byQ. To this end, observe
that if we attachm of the remaining two handlelg;}" ;, to $3, the number of elements
in H? of the boundary three-manifold (with coefficients) is given by the determinant
of the matrix (Q(e; ® ¢j))i, je(1,....n), Which in turn is obtained from the number of
maximal subtrees im" U {¢;}i—1

,,,,,

.....
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m right-handed~
" k\ half-twists
1 2
[ ] .
oM right-handed

half-twists

/

m right-handee\
“~  half-twists

Fig. 5. Standard picture for two crossings. ¢ and e» correspond to two closed circuits with

m = E(C1N C2) edges in common, then the unknot corresponding to the Tre¢ogether with the

two arcs associated te; and ey, is isotopic to the picture on the left (which depicts a projection of the
unknot with m right-handed half-twists in it, of which two have already been drawn, together with two
arcs which meet the unknot in the specified manner). Passing to the branched double cover of the unknot
(which in turn is best visualized by unwinding the twists on the unknot), at the expense of twisting the
arcs corresponding te; and ez, and then taking the branched double cover of these edges to obtain
knots k1 and k2, we obtain the picture shown on the right, where the solid line indicates the branched
locus.

In particular, sinceX; is negative-definite, it follows at once that if we choose a
basis for Ho(X; 7Z) given by the two-handles irX; (with any set of orientations),
then if [¢;] the homology class corresponding to an edgehen #e;1N[e;] = —E(C;)
(since the number of maximal subtrees of a circuit is the length of the circuit, and the
sign is forced by the negative-definiteness).

Wheni # j, #le;1N[e;] is given by the linking number of; with k;. This in turn
is calculated in a model case: consider the unknot corresponding to th€, tiegether
with the two arcs corresponding and e;. This is easily seen to be isotopic to an
unknot with two arcs attached, in a manner which has a standard projection depending
only on the integel® (C; NC}), as pictured in Fig5. Unwinding the unknot and taking
the branched double cover, we see that the branched double covers of the original arcs
become circles which are linkeld (C; N C;)| times. It is then straightforward to see
that the sign of this linking number is the one stated (once we choose a lift of the
blackboard framing for the unknot).C]

Proof of Theorem 3.4.With Lemma 3.6, the proof of the theorem now follows along
the lines of Section 2 of [23]. We sketch here the main points.@/etX ;) denote the
set of characteristic vectors for the intersection foFR(Xy: Z). We write K ~ K’

if there is an element € H2(X, 0Xr) with the property thatk = K’ + 2v. Next
(compare [23]), consider the subgroup

H(X.) Cc Hom(Ch(X1), Z),
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consisting of mapsp with the properties that
e ¢(K)=¢(K") if K~ K andQ(K,K)= Q(K', K
e ¢(K) =0 if there is someK’ ~ K with Q(K’, K') > Q(K, K).
Viewing X; as a cobordism from-X(L) to S3, we obtain a naturally induced map
(c.f. [19]) .
Ty, : HF(—=X(L)) — Hom(Ch(Xy), Z),

in view of the fact thatiF (S3) ~ Z.

Unless the diagram df represents the unknot, we can always find a double-gmint
whose two resolutions are connected diagrams. This gives the following commutative
diagram:

0

HF(-2(LQ)) ————  HF(-X(L) ———  HF(-31y) ———0

TXLo#ﬁZJ TXLJ TXLl J (4)

Hom(Ch(XLO#@Z).Z) — A Hom(Ch(Xp).7) — 2 Hom(Ch(X11). 7)),
where the top row is exact, the squares commute, the Mapad B are given by

A(o)(K) = > bo(Ko)

=2
{KoeCh(XLO#CP )‘KolHZ(XL:Z):K}

B(¢)(K1) = > P(K1).

(KEChXD)IK y20x, 7 =K1)

A straightforward induction on the number of crossings in the diagram shows that
the image ofTx, is contained inH(X.). The sphere with square-1 contained in
the composite cobordism from(Lg) to X(L1) through X(L) is used to show that
BoA = 0, and also thatA is injective (more details can be found in Sectiar8
of [24]). Straightforward homological algebra then shows that is an isomorphism,
again, by induction on the number of crossings, together with Diagram 4, and an
identification ﬁ(XLO) ~ ﬁ(XLO#WZ). (For a more detailed argument establishing an
analogous result, see also the proof of Lemma 2.10 of [23].)

EndowH (X ) with a grading, by declaring an element to be homogeneous of degree
d if it is supported on thos& € Ch(X) with

(KZ + rkHz(XL)) _y
4

Clearly, Ty, carries HF4(—2(L)) to Hg(X.) (c.f. [22]). Since HF4(—2(L)) =
I/-II\*“fd(Z(L)) (c.f. [22]), the result now follows. OJ

Note that the long exact sequence can be pushed slightly further than we have done
in the above discussion. For example, recall thatifis a cobordism between two
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R
A

Fig. 6. The knot Qo.

L-spaces WitW);— > 0, then the induced map oH F~ is trivial (c.f. [19]). This gives

at once the result that If differs from an alternating (or indeed quasi-alternating) knot
by at a single crossing, then all the eIementsbe,:d(Z(L)) have the same /27-
grading. Indeed, the map induced by a two-handle ftbtdg) to X(L1), where Lg

and L1 are both quasi-alternating, is determined purely by homological information.
This can be used to give information about the Heegaard Floer homology of

when its two resolutions are quasi-alternating. We do not pursue this any further here,

contenting ourselves instead with a sample calculation illustrating Theorem 3.4.
3.1. An example940

To illustrate Theorem 3.4, we calculaﬁl\?(Z(L)) where L is the alternating knot
with nine crossings £, pictured in Fig. 6.

The black graph of this knot is illustrated in Fig. 7. Using as our base Tréee
solid edges pictured in the figure, and the orientations of the remaining edges indicated,
the intersection form ofX; takes the form

It is a straightforward if tedious matter to find the maximal lengths of the characteris-
tic vectors forQ in its equivalence classes. Note that this is a finite search: it is easy to
see that all maximal characteristic vectors have the property| (tKatv/).Lg [O(v V)|,
and hence to determine the absolute gradings of the generatok& QL (L)) (this
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Fig. 7. Black graph for the knot49. All edges (including those which are dashed) are included in the
graph. The solid edges constitute the tfEeused for the matrix given in the text. The dashed edges,
when oriented, give rise to the matrix in the text.

and the further calculations in this section were all done with the help of Mathematica
[27]). We display the results below. The numbers are ordered as suggested by the group
structure of H3(X(L); Z) =~ 7 /57 & Z/15Z; i.e. having chosen such an isomorphism,

we have a naturally induced identification Sfib(L)) =~ 7Z/157 & 7/57Z (where we
choose as the origin the spin structure BaL); since H; has no two-torsion, this
structure is uniquely determined); i.e. the element in itherow (counting from 0 to

4) andjth column (counting from O to 14) is the absolute grading of the element in
the Spi structure corresponding 6, j) € Z/57 & 7/157.

1.4 1 7 _u 5 3 1 1 3 5_1 7 1 _1
2 30 30 10 30 6 10 0 30 10 6 30 10 30 30
1 1323 3 11 23 9 23 11 3 _2 13_1 _1 _1
10 30 30 10 30 30 10 30 0 10 30 30 10 30 30
_9 1.2 7 13 18 7 .23 1 _9 13 1 _1 1 13
10 30 30 10 30 30 10 30 30 10 30 30 10 30 30
_9 13 1 _1 1 18_9 1 23 7 13 138 7 _23 1
10 30 30 10 30 30 10 30 30 10 30 30 10 30 30
_4A 4 _1 1 13 _ 28 3 _11 _23_9 _23_ 11 3 _23 13
10 30 30 10 30 30 10 30 30 10 30 30 10 30 30

4. The link surgeries spectral sequence

In this section, we turn our attention away from branched double-covers, and consider
the case of a general three-manifofd Our aim here is to describe a generalization
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of the surgery long exact sequence (w27 coefficients) for the case of multi-
component links inY. In the course of making this generalization, we give a quick
(and slightly stronger) proof of the long exact sequence based on associativity properties
of the holomorphic polygon construction, combined with some homological algebra
discussed in Sectiod.1. But first, we introduce some notation.

Let L = K3 U---U K, be an¢-component, framed link in a three-manifold
A “multi-framing” is a vector I = (m1,...,m¢), where eachm; € {0, 1, co}. For a
multi-framing, there is a three-manifold(7), which is obtained fron¥ by performing
m;-framed surgery on the componekt for i = 1,...,n. As usual, whem; = oo,
this means no surgeryy; = 0 this meansi;-framed surgery, and whem; = 1, this
is surgery with framingu; + 4;.

We give the sef0, 1, oo}’ the lexicographical ordering (with the understanding that
0<1<o0) If Ie{0,1, 00}, we call I’ animmediate successaf | wherel =
(my,...,mg) and 1’ = (mf, ..., m}) if there is somg so that for alli # j, m; = m!,
while m; < m’;, excluding the case where; = 0 andm’; = co. Clearly, if /" is an
immediate successor ¢f there is a corresponding map on Floer homology

G-y HF(Y;Z/27) — HF(Y'; Z/27)

associated to the single two-handle addition, c.f. [19].
Consider a chain comple filtered by the cubg0, 1}¢ with its reverse lexicograph-
ical ordering, in the sense th@tis generated by subcomplexés c C with F; C Fy
if I > J (so that in particulalC = F). There is a naturally induced-filtration on C
obtained by “flattening” the cube (c.f. [14]). Specifically, givére {0, 1}¢, let
=3
iel

then for eachi € Z, let F; c C be the subcomplex

F = U Fy.

{1€{0,2)¢ ||1]=i}
In the corresponding Leray spectral sequefig, d’}, the E* term EL can be further

decomposed
1 o
Ej = @ I

{1€{0,1)¢|11|=i}
where here
E}=HF/ | F.
J>1
This spectral sequence convergesH¢C) (in the usual sense—it calculates the graded
object associated to the filtration &f (C) by the subobjectsd (F;)). Note, that this
spectral sequence collapses at the 1)th stage; i.ed” = 0 for all »r >¢+1, and hence

EE-‘rl: EZ+2 — .. = EOO‘

The reader is reminded that the subscript in the teBw}us‘or the spectral sequence
takes values in the cub@®, 1}¢, and should not be confused with the usual bigrading
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on the Leray spectral sequence ofZdfiltered complexC = C, with an internal Z-
grading. (Floer homology has an interndl2Z grading, and indeed it is not difficult to
work out how the terms in the spectral sequence behave with respect to this additional
structure; however, we will have no need for this in the present applications.)

With these preliminaries in place, we can now state the link surgeries spectral se-
quence alluded to in the introduction.

Theorem 4.1. Let Y be a closgdriented three-manifoldequipped with art-component
framed link L = K1 U---U Ky. Then there is an induced cubical filtration o6 F(Y)
whose corresponding Leray spectral sequence Bagerm given by

E'= P HF(Y(]); Z/2Z)
1€{0,1}¢

and 41 differential obtained by adding up all th@kl’ (where I’ is an immediate
successor of)l In particular, this spectral sequenc@vhich collapses at thé¢ + 1)th
stagg converges toHF (Y).

Although we have stated Theorefl for HF, the same result can be established
for HF' (again with Z/2Z-coefficients), with some notational changes.

Before proceeding to the proof, we indulge in a purely homological-algebraic di-
gression. The algebra here was inspired by a conversation with Paul Seidel, who com-
municated to us some version of Lemma 4.2.

4.1. Mapping cones

We begin with some terminology.
Let A; and A, be a pair of chain complexes @/27-vector spaces. A chain map

¢ AL — A

is called aquasi-isomorphisnif the induced map on homology is an isomorphism. Two
chain complexesA; and A, are said to bequasi-isomorphidf there is a third chain
complexB and a pair of quasi-isomorphisngs, : A1 — B and ¢,: A2 — B.

Recall that if we have a chain map between chain complgked; — Ao, we can
form its mapping coneM ( f1), whose underlying module is the direct sun @ Ao,
endowed with the differential

o— (al 0 )
\f1o2)°

where hered; denotes the differential for the chain compldx. Recall that there is a
short exact sequence of chain complexes

1

0 Az M(f1) —— A1 0.
This induces a long exact sequence, for which the connecting homomorphism is the
map on homology induced byj.

1The discussion from this section can be carried overZtocoefficients in a routine manner; we
suppress these signs, however, since the application at handZy&és coefficients.
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The mapping cylinder is natural in the following sense. Suppose that we have a
diagram of chain complexes

A1L>A2

i 2

B — . B,

which commutes up to homotopy, then there is an induced map

mWq, o) M(f1) — M(g1)

which fits into the following diagram, where the rows are exact and the squares are
homotopy-commutative:

0 Az M(f1) Ay 0
bo| )| 2
0 B> M (g1) B1 0.

Lemma 4.2. Let {A;}72, be a collection of chain maps and let
{fi: Ai — Aipilier

be a collection of chain maps satisfying the following two properties
(1) fi+10 f; is chain homotopically triviglby a chain homotopy

H A — Aiy2

(2) the map
W; = fiyzo Hi + Hiy10 fi 0 A — Aig3

is a quasi-isomorphism
Then M(f2) is quasi-isomorphic tod,.

Proof. Hypothesis 1) proves that the map
Vi = fiv2o Hi + Hit10 fit Ai — Aiys

is a chain map; and indeed that the square

fi
A —— A

i | L (5)

fi+3
Aiyz — Aigg

commutes up to homotopy.
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Next, definew; : M(f;) — A;12 by
ai(ai, ai+1) = Hi(a;) + fi+1(ai+1)
and fi;: A — M(fi+1) by
Bi(ai) = (fi(ai), Hi(a;)).
Now
%iv10 P =y,

which is a quasi-isomorphism.
Moreover, consider the diagram:

Ay — L Ay B M(f) —B Ay L 4

S L Y

Ap — oy B oA, L oag L 4 (6)
oW W 4 A

As —L s Ag s M(fs) —T2s As —L s Ag

The mapX : M(f2) — As defined by
X (a2, az) = Hs(a3)

gives a chain homotopy betwe@ o n3 and f4 o ap, while the mapY : A3 — M(fs)
defined by

Y (a3) = (Hzasz, 0)
gives a chain homotopy betweéh o f3 and g o 3. Thus, all the squares in Diagram
(6) commute up to homotopy, and the maps induced on homology on the top and
bottom rows are exact. From the five-lemma, it follows that the map induced on
homology f40 a2 is also an isomorphism. Thus (in view of the fact thato 5, is a
guasi-isomorphism), we conclug® and hencex, is a quasi-isomorphism.

It is useful to interpret Lemma 4.2 in the following terms. Under the hypotheses of
that lemma, we can form an ‘“iterated mapping co{ f1, f2, f3) whose underlying
module isA1 ® A» ® A3, and whose differential is given by the matrix

01 00
o=\ /1620 |. (7)
Hy f2 03

Indeed, Hypothesisl) guarantees thal determines a differential oM (f1, f2, f3).
Consider the short exact sequence

0 As M(f1, f2, f3) —> M(f1) —— 0.
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It is easy to see that its connecting homomorphism
H. (M (f1)) — H«(A3)

is the map on homology induced by the map in the above lemma. Thus, Lemma
4.2 can be interpreted as saying tHat(M (f1, f2, f3)) = 0.

4.2. Pseudo-holomorphic n-gons

With the above homological algebra in place, we proceed to the geometrical under-
pinnings of Theorem 4.1. We will make heavy use of the pseudo-holomorphic polygon
construction, c.f. [5,9,26] and its relationship with Heegaard Floer homology, as ex-
plained in Section 8 of [21]. We recall this construction very briefly here.

Let X be a connected, closed, oriented two-manifold of gemuand fix m + 1) g-
tuples of attaching circlegy' ;. Specifically, for each fixed the sety’ = {’}5_; is a
collection of g pairwise disjoint, homologically linearly independent, embedded curves
in ~. We choose also a reference pomtlisjoint from all thenj.. In the terminology
of [21], this data(Z, °, ..., #", z) is called a pointed Heegaare: + 1)-tuple or, less
precisely, a pointed Heegaard multi-diagram. We have a map of groups

i=1
where hereY,; ,; denotes the three-manifold described by the Heegaard diagram
(Z,q',5/). This map is obtained by counting pseudo-holomorphic+ 1)-gons in
Sym8(X) which are disjoint from the subvarietyt} x Syms=1(2).

More precisely, letl,; denote theg-dimensional toru91"1 SRR ;72 in the g-fold
symmetric productSym$(X). A Whitney (m + 1)-gon is a mapu from the standard
(m+1)-gon into Sym® (2) which maps theth edge intol,; (where here the edges are
labelled Q. .., m). Fixing x; € TNy andy € T,oNTym», we letma(Xq, ..., Xm, Y)
denote the set of homotopy classes of Whitriey+ 1)-gons which, fori = 1,...,m,
map the vertex between thg — 1)st and theith edge tox; and the vertex between
mth and Oth edges tg.

For fixedp € ma(X1, ..., X, Y), we let M(¢p) denote the se}\of pseudo-holomorphic
representatives fap. With this notation in place, then, the mgip _,» (whenm > 1)
is defined by

Firp 1 ® - ®@X) = Y > #M(@)) -y,

YeT,oNTym {QEm2(Xa, ... Xim V)| 1(@)=0,n:(¢)=0}

,,,,,

where heren,(¢) denotes the intersection number of with the subvariety{z} x
Sym&~1(X) ¢ Sym#(X), and u(¢) denotes the expected dimension of the moduli
spaceM (o) (i.e. the Maslov index ofp, c.f. [6,5]). In the special case whenme= 1,

we sum over homotopy classes witlip) = 1, and count points in the quotient space
M(@)/R. Thus, whenn = 1, the mapf,o 1 is simply the differential for the Heegaard

Floer chain complex fow,o ,1, and whenm = 2, fno 2 is the chain map induced

from the counts of pseudo-holomorphic triangles.

NN
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Strictly speaking, for the above map to be finite, we require that the Heegaard tuple
R " 1, 2) satisfy a suitable weak admissibility hypothesis. It is sufficient for our
purposes to assume that any multi-periodic domain—i.e. two-dham X which gives
a relation amongst homology classes chosen fromjthewhich hasn.(P) = 0—
has both positive and negative local multiplicities. This can always be arranged after
isotopies, compare Sectigh2.2 of [21].

These maps are well-known to satisfy a generalized associativity property, c.f. [9,25,5]:

Z T i+t i © Jgo, =t i = 0. (8)

0<i<j<m

For example, whenn = 1, the above associativity statement is equivalent to the
statement that the square of the differential t©F (Y,0,1) is trivial. Whenm = 2,
associativity asserts that the maps induced by holomorphic triangles are chain maps,
and whenm = 3, it states that the triangle pairing is associative, up to chain homotopy
(hence the name). Thinking of the tuplg®, ..., " as corresponding to edges of an
(m + 1)-gon, we see that for any pair of edges, there is a corresponding degeneration
of the (m + 1)-gon as a juxtaposition of a pair @ andb-gons, witha +b — 3 = m.
The above sum is a sum over all such degenerations of the corresponding composition
of maps.

We can construct Heegaard diagrams for ¥{¢) as follows. Giveny with the framed
link L, we can construct a Heegaard tripl&, «, f, y, z), where herefq, ..., f, are
meridians for the linksyq, ..., 7, are corresponding framing curves (apd.y, ..., 7,
are exact Hamiltonian translates @f, 4, ..., f8,). (For more on the construction of this
diagram, see Sectiod of [19]. In the terminology of that paper, the Heegaard triple
we are considering is the Heegaard triple subordinate to some bouquet for the framed
link L.) We also choose curved, ..., o, to be corresponding curves representing
the framings obtained by adding meridians to the original framings Gang, ..., d,
are exact Hamiltonian translates of tfig, 4, ..., f8,). Indeed, we choose these curves
so that the triply-periodic domain relating;, y;, d; has both positive and negative
local multiplicities. GivenI € {0, 1, co}t, let y(I) = {5y, ..., 1y} denote theg-tuple of
attaching circles, where here

p; if mj = o0,
n =139 if m=0,
o; if mj =1
Thus, a Heegaard diagram fan(/) is given by (2, a, y(I), z). The required admissi-

bility can be achieved by further winding the-curves if necessary.
Given a sequence of multi-framing® < - -- < I¥, there is an induced map

Do : CF(Y(1%) — CF(y (%)

<w<Jk -

defined by

Dyo_. k(&) = J};,n(lo) n(lk)(é ® @1® e ® @k)v 9)

.....
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where @i are cycles representing the canonical top-dimensional generatofﬁfcmf
Y, ji-1y ycriy Which is a connected sum of several copiesséfx S™.
We will be lax about distinguishing here between intersection pointd,jpy:) N

T, i+1, and generators of the homology groupl (#< (52 x S1); Z/27). In fact, if
we choose our Hamiltonian translates carefully (i.e. the perturbations gf;theed in
the construction of the Heegaard multi-diagram), we can arrange that for the induced
Heegaard diagram for this three-manifold, the differentials vanish, hence each homology
generator is represented by a unique intersection point. Recall alsHE#t (52 x s1);
7/27) = A*HY# (5% x §Y); 7/27), c.f. Section3.1 of [18], see also Proposition 6.1
below.) e

Let X = D ;c(0,1.00¢ CF Y (1)), endowed with the map

D: X — X,

pé=>" Y Dp_._p,
J {I=Il<..<Ik=J)}
where here the index set of the inner sum is the set of all increasing sequences
connectingl to J, with the property that for all =1, ...,k —1, I'*1 is an immediate
successor of'’.

defined by

Lemma 4.3. Fix I, J € {0, 1, co}t. We have that
Z EWO) 11(1")(@1®"-®@k) =0,

I=10<]1<...< k=]

where again the sum is taken over sequences with the property’thiais an immediate
successor of'.

Proof. We consider the case wheke> 2. In this case, there is a juxtaposition of
triangles representing

Tn®) a2 © Fa0,na2),na®) © =+ © Sya0),nanynai+y © 0 fya®), k-, ik

This juxtaposition gives rise to é& + 1)-gon ¢ € nz(@l, e @k, @), with D(¢) >0
and n (@) = 0, where here® € T, 0, N T, . By additivity of the Maslov index,
this k + 1-gon hasu(e) = k — 2. It is not difficult that for the chosen Heegaard multi-
diagram, there are nb + 1-gons¢’ € ng(@l, ...,@k, (?)/) (where 0 is any element
of T,0) N Tyyk)) With u(e’) = 0 and D(¢') >0, This follows from the fact that
D(¢) has small support relative to the multi-periodic domains for the given diagram
(2. 9%, ...q(I%), 2).

Consider now the case wheke= 2. In this case| andJ differ in at least one place,
and at most two.

If I andJ differ in one place, a direct inspection of the Heegaard triple (which leads
to the “blowup formula” in[19]) shows that the maps appear (and hence cancel) in
pairs. This is spelled out in Proposition 9.5 of [18].
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If they differ in two places, there are two choices drwith 7 = 1° < 11 < J = 12,
For each possiblé?, it is the case that

Tn®).n1.n12 (01 ® O2) = O3.
One can see this by explicitly drawing the Heegaard triple, which splits into torus
summands, as ifil9]. (See also Proposition 6.1 below.)

In the case wheré = 1, the stated relation is simply the one t@i is a cycle.
O

Proposition 4.4. The map D from Eq(9) satisfiesD? = 0.

Proof. This follows from the associativity formula (Eq. (8)) for the Heegaard tuple
(2, a,q(IY),.....,q(I%), z), together with Lemma 4.3. Specifically, according to that
lemma, the only degenerations in Eq. (8) which do not contribute O to the sum are
the ones which involver in both polygons. Those, in turn, are the various components
of 2. O

In view of Proposition 4.4, we can think of as a chain complex, endowed with
the differential D. We can define some other associated complexes as follows. If
Sc{0,1, 00} is a subset with the property that for ea¢hs € S, for all K <
{0, 1, 00}t with I < K < J, we also have thak < S, then we letX(S) denote the
group @,Esﬁ(Y(I)) endowed with the differential naturally induced By

With all the notational background, we are now ready to prove a strong form of the
surgery long exact sequence for a single knot in a three-manifold

Theorem 4.5. Let K be a framed knot in a three-manifolg ahd let
f: CF(Yo(K); Z/2Z) — CF(Yi(K); Z/2Z)

denote the chain map induced by the cobordism. Ttrenchain complefl\?(Y; 7/27)
is quasi-isomorphic to the mapping cone pf

Proof. To start, let(Z, a, f, y, 9, z) denote the associated Heegaard quintuple. In par-
ticular, Y, 43, Yu, Y, s describeY, Yo, and Y1, respectively, and the remaining three-
manifolds on the boundary describé #(52 x S1). Indeed, to fit precisely with the
hypotheses of that lemma, we choose infinitely many copies ofjttuples g, y, and

0 (denotedp®, y@, 5 for i e ), all of which are generic exact Hamiltonian per-
turbations of one another, in the interest of admissibility (in the sense of Setfiah

of [21]).

__In this case, the chain map we described eaMi@plits (as a module) a§77(Yo) @

CF (Y1) ® CF(Y), and its differential decomposes as

Do 0 0
0= | Dg<1 D1 0 . (20)
Do<1<00 Di<oo Do
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Letting C/‘I\V(Y), C/‘I\V(Yo), and 577(Y1) play the roles ofd;, A2, and A3 respectively,
the various components of the differential play the roles of theand H; (compare
Egs. @0) and (7)),

Indeed, A3; 11, Azi+2 and Az; 3 all represenff(Yo) ETV(Yl) and C/'TV(Y) respec-
tively, only now we use the various translates of thed, and f; in particular Az;;1
is the Floer complexC F(a, ).

Hypothesis (1) of Lemma 4.2 follows at once from the fact fBas a chain complex
(Proposition 4.4).

It remains to verify Hypothesis (2) of Lemma 4.2.

Let 0; be the chain homotopy equivalences induced by equivalences of Heegaard di-
agrams; e.g03;;1 is the chain mag F (a, 7)) — CF(a, yi*+D) obtained by product
with the canonical generatc@ 2D 4 +D -

We claim that

faoHi+ Hzo f1: A1 — A4

is chain homotopic td);, and the chain homotopy is given by
X fx,y,a,ﬁ,yw xX® @y,(s & @5,[1 ® @m,u)).
This in turn follows at once from associativity, together with the fact that

15.5,8.4 (@y,é ® @5,/3 ® @[f’y(l)) = @v,v‘”' (11)

This latter equality follows from a direct inspection of the Heegaard diagram for the
quadruple(Z, y, 8, B, v, z). (i.e. the count of pseudo-holomorphic quadrilaterals), as
illustrated in Figs.8 and 9.

In Fig. 8, we consider the special case where the ggnasl. In the picture, and in
the following discussiony1 is denotedy’ The four corners of the shaded quadrilat-
eral are the canonical generatc@g, S0 @51 By @ﬂ” , and@ n (read in clockwise
order). Indeed, it is straightforward to see (by passing to the universal cover), that the
shaded quadrilateral represents the only homotopy chasef Whitney quadrilaterals
with n;(p,) = 0 and all of whose local multiplicities are non-negative. By the Riemann
mapping theorem, now, this homotopy clagg has a unique holomorphic representa-
tive u1. (By contrast, we have also pictured here another Whitney quadrilateral with
hatchings, whose local multiplicities are all .1, and —1; +1 at the region where
the hatchings go in one direction ardl where they go in the other.)

For the general casg & 1), we take the connected sum of the case illustrated in Fig.
8 with g — 1 copies of the torus illustrated in Fig. 9. In this picture, we have illustrated
the four curvesy;, d;, p;, y; for i > 1, which are Hamiltonian translates of one another.
Now, there is a homotopy class of quadrilategal e ”2(@%5:" @(51.,/;1,, @ﬁi,‘/l" @v,’-ﬁ/i)'
and a forgetful mapM(¢) — M (D) which remembers only the conformal class
of the domain (where hergA(0J) denotes the moduli space of conformal classes of
disks with four marked boundary points, also referred to simply as quadrilaterals).
Both moduli spaces are one-dimensional (the first moduli space is parameterized by
the length of the cut into the region, while the second is parameterized by the ratio
of the length to the width, after the quadrilateral is uniformized to a rectangle). By
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7

Y

Fig. 8. A holomorphic quadrilateral. The shaded quadrilateral has a unique holomorphic representative
(by the Riemann mapping theorem), while the one indicated with the hatching does not, as it has both
positive and negative local multiplicities, as indicated by the two directions in the hatching.

Gromov’'s compactness theorem, the forgetful map is proper; and it is easy to see that
it has degree one, and hence for some generic conformal class of quadrilateral, there is
a unique pseudo-holomorphic quadrilateral whose domain has the specified conformal
class. Now, lettingu; (the pseudo-holomorphic representative of the homotopy class
¢4 described in the previous paragraph) determine the conformal class of the rectangle,
we letu; for i > 1 be the pseudo-holomorphic representativesgpmwhose domain
supports the same conformal class. Thermx - -- xug € @1 x--- x ¢, is easily seen to

be the unique holomorphic quadrilateralm(@},ﬁ, @5,/5’ @ﬁ,ﬂ, @«/,,), hence proving

Eq. (11) which, in turn, yields Hypothesis (2) of Lemma 4.2. The theorem now follows
directly from Lemma 4.2. [0

We now turn to Theorem 4.1.

Proof of Theorem 4.1. The theorem is established by induction on the number of
components of the link. The case where the link has a single component is a direct
consequence of Theorem 4.5.

We form the chain compleX as before. We claim first thatl,(X) = O.

Let

S =1{0,1}*"1 x {0, 1, c0}.

The complexX (S) can be filtered by the ordered s@ 1}~ so that its successive
quotients are of the fornk (s x {0, 1, oo}) (with s € {0, 1}*~1). By Theorem 4.5 (or,
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ez

P

Fig. 9. Other factors of the holomorphic quadrilateral. We have illustrated here a Heegaard quadruple (in
a genus one surface) whose four boundary component§%wsl. In the homotopy class indicated by

the shaded quadrilatergl; € n2(0, s, O 5, @,M./, @.},/Y.',), there is a moduli space of pseudo-holomorphic
quadrilaterals which is clearly one-dimensional, parameterized by a cut at the vertex wharel J;

meet. We take the connected sum @f- 1 copies of this picture (at the reference pomtwith the
picture illustrated in Fig.8 to obtain the general case of the quadrilateral considered in the proof of
Theorem4.5.

more precisely, the reformulation of the mapping cone lemma, Leddadescribed
after its proof), these successive quotients are acyclic, and henceX@)s In par-
ticular, if we let T = {0, 1}¢, we have a short exact sequence

0 —— X(T) —— x(5) —*— X0, 1}*1 x {o0}) —> 0

from which it follows at once that the connecting homomorphism induces an isomor-
phism in homology

Ho(X({0, 1} x {o0})) — Hu(X({0, 1}%)).

By our inductive hypothesis, it follows thall,(X{0, 1}*~1 x {co}) > HF(Y; Z/27),
completing the proof. O

5. Khovanov’s invariants

We briefly describe here Khovanov's categorification of the Jones polynomial; for
more details, see [14,2]. We make some simplifying assumptions here: we will use
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coefficients inZ/27 throughout, and we specialize to the case whete 0 (in Kho-
vanov’s sense). Our notation and exposition are tailored to fit neatly into the context of
the present paper. In particular, the groups we describe here are actually the Khovanov
homology of the mirror ofL.

Let X = S1U---US; be a collection of disjoint embedded, simple closed curves in the
plane. LetZ(X) denote theZ/27-vector space, formally generated by the components
[S1],....[Sk], and letV(X) denote exterior algebra

V(X) = A*Z(X),
i.e. this is the quotient of the polynomial algebra ov&t27 generated bys;], divided

out by the relationgs;12 =0 for i = 1, ..., k. (When comparing the notation used in
the discussion here with that {4], observe that the elemeffi]A---A[Sy,] € V(X),
where {mj}ﬁ.:l is a subsequence di, ..., k} corresponds to the element

vil®... ®U;:k7
where heres; € {£} is obtained by
. if ie {mj}jzl,
+ otherwise

in Khovanov’s notation, c.f. [14].)

Next, consider a pair of pants, thought of as a morphism fiom S1U- - -USUSk 41
to a new submanifold{’ = S U--- U S_1 U S,/C containing a componerﬂ;{ which is
obtained by merging; and Sx11. In this case, we have a natural identification

Z(X') = Z(X)/Sk] ~ [Sk+1]

and correspondingly natural isomorphisms

1R

o: (Sk+1— SK) A V(X) = V(X) and B:V(X) — V(X)/(Sk+1— SK) A V(X).
We then define the multiplication

m: V(X)) — V(X))
to be the composite

(Sk+1—SKIN-

V(X) =220 (S — S A V(X)) —— V(X)).

By reversing the orientation of the “pair of pants”, we have a morphism figno
X, instead. In this case, we have a comultiplication

4: V(X)) — V(X)
induced by the composition

B V(X) (Sk+1—S)N
(Sk+1=SK)AV(X)

V(X V(X).

Let L be a link, and fix a generic projection &f D, with £ double points. One can
form resolutions indexed by subsefse {0, 1}¢ (using the conventions from Fig. 1).
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NS

Fig. 10. Crossing conventions. Crossings of the first kind are positive, and those of the second kind are
negative.

Specifically, for eachl, D(I) is a disjoint union of circles in the plane. If is an
immediate successor of thenD(I’) differs from D(I) by a single pair of pants. We
have a map
Dy V(D)) — V(D)),

given by multiplication or co-multiplication, according to whetle(/’) has one fewer
or one more component thaf(7).

Fix a diagramD for an oriented link_, and letn (D) resp.n_ (D) denote the number
of positive resp. negative crossings for the lihkaccording to the usual conventions
(c.f. Fig. 10). Consider next the graded Abelian group

CKh(D,m) = &b V(D()),
{1€{0, 1)) |+n4+ (D)=m}
where|I| =), ; i. (Note that the roles of . (D) andn_(D) are the opposite to those

in [14]: this is because we are describing here the Khovanov homology of the mirror
of K.) This group is endowed with the differential

D: CKh(D,m) — CKh(D,m + 1)

whose restriction to/ (D(I)) Cc CKh(L, m) is the sum

D= Z b]<1/,

I<I’

where the sum is taken over all immediate succesgbmsf |. In each dimensiom,
CKh(D,m) is endowed with an additional grading, thg-grading”, defined by the
splitting

V(D) = @D Va(D(U)),

neZ

where

Va(D(D)) = A Z* (D))
and

n=dmZzZ(D)) — 2k —n_(D) + 2n, (D) — m.
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Correspondingly, we write
CKh(D)= @ CKh(D.m,n).
m,nez

Note thatd carriesCKh(D, m,n) to CKh(D,m + 1, n).
It is easy to see that’> = 0. Khovanov's homology of the mirror df is the Abelian

group
Kh(r(L)) = H.(CKh«(D), D),

thought of as bi-graded Abelian group
Kh(r(L)) = € Kh(D.m.n).

m,neZ

Note that the complexC K4 (D) depends on the projection &f Khovanov shows,
however, that the homology of this complex is independent of this choiceKheL)
is a link invariant. Moreover, he shows that these groups satisfy a skein exact sequence

. —— Kh(r(L)) ——> Kh(r(Lg)) ——> Kh(r(L1)) —> ...

Khovanov’s theory is related to the Jones polynomial by the formula
Tr(Ly) =Y (1" (rkKh(L,m,n)) -q",

where hereJ (L) € Z[q,q~1] is the un-normalized Jones polynomial of the likk
characterized by the formulas

J0) =1,
J((unknot)U L) = (¢ +¢~ Y - T(L),

Jr(L)) = T(r(Lo)) —q - J(r(L1)),

where in the last equatiorl,g and L are is taken with respect to the two resolutions
at any double-point of any projection &f and where forf, g € Z[g, ¢ 1], we write
f=gif f=¢q/ g for somej e Z.

In [16], Khovanov gives a modification of the above constructions to define a “re-
duced” theory Kh(L), which is related to the normalized Jones polynomidl)
defined by(q +¢~1)- J(L) = J(L). For the reduced theory, one marks a generic point
in the projection ofL, so that now in all the various resolutions, the/rg/is always a

distinguished circle. The reduced Khovanov complex is the quotienC&f (D) by
the subcomplex oC Kh(D) given by

P 1A v,
1€{0,1}¢

where hereS; is the component inD(/) which contains the marked point. This
gives a chain complex which splits into summands indexed! by {0, 1}¢, and the
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corresponding summand is denoted
V(D) = V(DU)/IS11 A V(D).
For this construction.
Jr(L) =Y (=D"(rk Kh(L,m,n))-q",
c.f. [16].

We have described Khovanov's construction withi2Z coefficients. In fact, Kho-
vanov’'s original definition from [14] makes sense with coefficientZinin this case,
however the reduced homology (described in [16]) depends on the link, together with
the distinguished component containing the marked point. If one takes coefficients in
Z7/27, as we have here, it is easy to see that the reduced theory is independent of this
additional choice, hence giving a link invariant.

6. The spectral sequence for a branched double cover

Throughout this section, we fix our coefficient ring to B¢27: i.e. if Y is a three-
manifold,l/-ITV(Y) will denote HF of Y with coefficients inZ/27, and similarly, H,(Y)
will denote singular homology with coefficients ifi/2Z.

In comparing Khovanov’s homology witlHiF', we rely on the following (fairly
straightforward) result about/F', proved in earlier papers. For the statement, note that
if Y is any three-manifold, the#/F(Y) is a module over the algebrd* H1(Y)/Tors.

Proposition 6.1. Let Y =~ # (52 x S1). Then fIE(\Y) is a rank one free module over
the ring A*H1(Y), generated by some clagd € HF (Y). Moreover if K C Y is a curve
which represents one of the circles in one of fex S* summandsthen the three-
manifold Y' = Yo(K) is diffeomorphic to#—1(52 x $1), with a natural identification

n: H(Y)/[K] — Hy(Y').
Under the cobordism W induced by the two-handhe map
Fy: HF(Y) — HF(Y))
is specified by
Fw(&-0)=mn()- 0,
where here®@’ is some fixed generator G/ﬁ“(Y/), and ¢ is any element oft* H1(Y).
Dually, if K CY is an unknot then Y” = Yo(K) =~ #+1(52 x 1), with a natural
inclusion
i Hi(Y) — Hi(Y").
Under the cobordisnW’ induced by the two-handle the map
Fw : HF(Y) — HF(Y")
is specified by
Fyi(&-0)=¢A[K"]- 0",

where her K] € H1(Y") is a generator in the kernel of the map (Y") — H1(W’).
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Proof. The identification ofI-/IF(Y) follows from a direct inspection of the Heegaard
diagram, as explained in Sectidhl of [18]. The fact thatFw (©) is a generator for

HF (Y') (which we denote by?’) follows from a direct inspection of a Heegaard triple
which naturally splits into genus one summands, c.f. [19]. (Alternately, one could use
the surgery exact sequence which in this case reads

. —— HF({Y') —— HF(Y) —> HF(Y') — ...

to deduce that the map frorITH\?(Y) to ﬁl\?(Y’), which in this case is induced by the
two-handleW equipped with its torsion Spinstructure, is surjective.) The more general
formula for Fy follows from naturality of the triangle maps under tii& action (c.f.
[19]). The case ofW’ follows similarly. See [19,1]. [

We can now link Khovanov’s construction (using notation from Section 5) \Rith

Proposition 6.2. Fix a projectionD for K. There is an isomorphism for each |

W(1): V(D)) — HE(E(DI))),

which is natural under cobordisms the following sense. If’ is an immediate succes-
sor of |, then there is a naturally induced cobordiginduced from a single two-handle
addition) from X(D(1)) to 2(D(I’)), and hence an induced map

Gip: HF(Z(I)) — HF(Z(I)).

Naturality of ¥ is captured in the following commutative diagramvhich is valid
whenever!’ is an immediate successor aof |

e D1<[’ i /
V(D) —— V(DU
n/z(l)l lw(m (12)

HE D)) 2= HE (D))

Proof. First, note that for each we can writeD(1) = SpU- - -U S;, where here thes;
are pairwise disjoint unknots, arid>0. In this caseX(D(I)) = #(5? x S1). Indeed,
we give a basi$[yi]}f:1 for H1(2(D(1))) as follows. Fori > 0, let[y;] € H1(2(D(1)))
be the homology class of the curve obtained as the branched double cover of an arc
from Sp to S; (recall that we are using herg/27 coefficients). This induces the
identification _
Z(D(I)) = H1(2(D())).
Combined with Propositio.1, we get a canonical identification
V(D)) = HF (X (D(I))).

Commutativity of Diagram (12) is proved in four cases, each of which follows from
Proposition 6.1. See Fig. 11 for an illustration.
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Suppose thatl’ is obtained froml by merging two circlesS; and S», neither of
which is marked. Then, we claim that in the cobordidmthe curvesy; andy, become
homologous; indeed, both are homologous to the new cyjv&€ommutativity of the
square now follows readily from Propositighl and the definition ob;_;.

Dually, when I’ is obtained froml by splitting an unmarked circldy into two
circles S, and Sy, the curvey; — y, is null-homologous in the induced cobordisi.
Again, commutativity of the claimed square now follows readily from Proposition 6.1.

The two corresponding cases involving a marked circle follow similarly (indeed, they
follow formally in the same manner, once we declgygl = 0). O

With these preliminaries in place, we can now state and prove the following precise
version of Theorem 1.1 in the introduction.

Theorem 6.3. Given a projectionD of a link L, there is a spectral sequence converg-
ing toﬁ(Z(L)) whose(EL, 1) complex is isomorphic to Khovarisvreduced chain
complex(for the mirror of L); i.e. there are isomorphismg™ making the following
diagram commutéFig. 11):

1

1 dm—nJr(D) 1
Em7n+(D) Em7n+(D)+1
l//m l//m+1J'

—

CKh(D(L).m) —>—s CK(D(L). m+1).

In particular, the E? term of this sequence is identified with Khovasokiomology
of L.

Proof. As explained in Section 2, a diagraf for a link K with £ crossings gives rise
toalinkL in Y = X(K) whose components correspond to the crossing3.dfloreover,

for each’ c {0, 1}¢, the three-manifold obtained by performing surgeries along these
components ol is the branched double cover 6P branched along the collection

Fig. 11. Homological relations in the cobordisms. The plane of the (un)-link projection is indicated by
the quadrilateral, on which we have the marked comporfgnttwo unlink componentsS; and S», and

an alternative componerff;, obtained by mergings; and S2. We have also illustrated the curves and

y2. The picture illustrates thap; and y, become homologous aftef; and S; are merged. Dually, it
illustrates that in the cobordism whef® is divided in two, it is the curved = y; — yo which becomes
null-homologous.
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of unknots D(I). We now apply Theorem#.1. The identification with Khovanov’s
(reduced) complex is now provided by Proposition 6.2. Note that the spectral sequence
coming from Theorem 4.1 is filtered by a cube, rather t@aiWe pass to &-filtered

object by “flattening” the cube as usualll

Proof of Corollary 1.2. The inequalities follow from déf) = |H?(X(L); Z)| (c.f.
[17]); but this agrees withly(HF (2(L))) (c.f. [18, Proposition 5.1]). It follows at once
that detL) <rkHF(2(L)). The other inequality follows from Theorem 6.3, together
with the straightforward inequality for spectral sequenceE™ <rkE2. O
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