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a b s t r a c t

The Fibonacci cube Γn is the subgraph of the n-cube induced by the binary strings that
contain no two consecutive 1’s. The Lucas cube Λn is obtained from Γn by removing
vertices that start and end with 1. It is proved that the number of vertices of degree k in
Γn andΛn is

∑k
i=0


n−2i
k−i

 
i+1

n−k−i+1


and

∑k
i=0


2


i

2i+k−n

 
n−2i−1

k−i


+


i−1

2i+k−n

 
n−2i
k−i


,

respectively. Both results are obtained in two ways, since each of the approaches yields
additional results on the degree sequences of these cubes. In particular, the number of
vertices of high resp. low degree in Γn is expressed as a sum of few terms, and the
generating functions are given from which the moments of the degree sequences of Γn
and Λn are easily computed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A Fibonacci string is a binary string that contains no two consecutive 1’s. The Fibonacci cubeΓn, n ≥ 0, is defined as follows.
Its vertices are all Fibonacci strings of length n, two vertices are adjacent if they differ in precisely one bit. In particular,
Γ0 = K1, Γ1 = K2, and Γ2 is the path on three vertices. Alternatively, Γn can be defined as the so-called simplex graph of
the complement of the path on n vertices, cf. [1].

Fibonacci cubes were introduced as a model for interconnection networks [7] and received a lot of attention afterwards.
For different studies of their structure we refer to [2,3,6,8,12,13]. These cubes also found an application in theoretical
chemistry. There, perfect matchings in hexagonal graphs reflect the stability of the corresponding benzenoid molecules
and the so-called resonance graphs capture the structure of the perfect matching. It is appealing that Fibonacci cubes are
precisely the resonance graphs of a special class of hexagonal graphs called fibonaccenes, the result proved in [10]. We also
mention that Fibonacci cubes led to the concept of the Fibonacci dimension of a graph [1] and that they can be recognized
in O(|E(G)| log |V (G)|) time [15].

Lucas cubes form a class of graphs closely related to Fibonacci cubes. The Lucas cube Λn, n ≥ 0, is the subgraph of the
n-cube induced by Fibonacci strings b1 . . . bn such that not both b1 and bn are 1. In particular, Λ0 = Λ1 = K1 and Λ2 = Γ2
is the path on three vertices. For different aspects of Lucas cubes see [2,6,8,9,11,16].

In this paper we are interested in the degree sequence of Fibonacci and Lucas cubes. One of our motivations is the fact
that several partial results were previously obtained in order to attack different problems on Fibonacci cubes. In the seminal
paper [7, Lemma 6] it was observed that the degrees ofΓn are at least ⌊(n+2)/3⌋ and (obviously) notmore than n. More than
ten years later, a recursive formula for computing the degree of any vertex of Γn is given in [3]. It depends on the recursive
structure of Γn and the value of the integer that represents the given vertex ( = binary number). This approach was further
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developed in [14] where the degrees are used to investigate the domination number of the Fibonacci cubes. In the main
result on the degrees [14, Theorem 2.6], vertices of degrees n, n− 1, n− 2, and n− 3 are explicitly described. However, the
approach in general does not give the number of vertices of Γn of a given degree, a fundamental property of a given family
of graphs.

For n, k ≥ 0 let fn,k denote the number of vertices of Γn having degree k. Then our first main result is:

Theorem 1.1. For all n ≥ k ≥ 0,

fn,k =

k−
i=0


n − 2i
k − i

 
i + 1

n − k − i + 1


. (1)

Note that only the termswith i between ⌈(n−k)/2⌉ andmin(k, n−k) are nonzerowhich could be usefulwhen evaluating
these numbers. An analogous remark holds for the subsequent summation formulas as well.

In the next section we prove Theorem 1.1 by deriving and solving a corresponding system of linear recurrences. Then,
in Section 3, several consequences of Theorem 1.1 are presented. A special emphasis is given on vertices of small and large
degrees. For instance, Corollary 3.4 in particular covers the degrees of the above-mentioned [14, Theorem 2.6]. In Section 4
we give a direct approach to Theorem 1.1 by considering degrees via the partition of V (Γn) into strings of a given weight.
In this way not only Theorem 1.1 is reproved, but (i) the vertices of a given degree and weight are enumerated thus giving
additional information on the Fibonacci semilattice [4] (and the Lucas semilattice [16]) and (ii) the way to our second main
theorem is paved.

Denoting by ℓn,k, n, k ≥ 0, the number of vertices of Λn having degree k, we prove in Section 5:

Theorem 1.2. For all n ≥ k ≥ 0 with n ≥ 2,

ℓn,k =

k−
i=0

[
2


i

2i + k − n

 
n − 2i − 1

k − i


+


i − 1

2i + k − n

 
n − 2i
k − i

]
. (2)

Finally, in Section 6, we reprove Theorem 1.2 by the method of generating functions. This approach is somewhat more
involved than the one taken in Section 5, however it can be further used to obtain several additional properties of the
sequence of degrees of the Fibonacci and Lucas cubes.

Throughout the paper, we follow the definition of binomial coefficients given in [5]. In particular,
m

0


= 1 and

m
k


= 0

for all m, k ∈ Z with k < 0. We find this remark important since not all currently used computer algebra systems follow
this convention.

2. Proof of Theorem 1.1

The vertex set of Γn naturally decomposes into the sets An and Bn consisting of those strings that start with a 1, and those
strings that do not start with a 1, respectively. Hence A0 = ∅, B0 = {λ} (where λ is the empty string), and for n ≥ 1,

An = {1α | α ∈ Bn−1} and Bn = {0α | α ∈ An−1 ∪ Bn−1}.

Since every vertex in An, n ≥ 2, necessarily starts with 10, An induces Γn−2 in Γn. On the other hand, Bn induces Γn−1 in Γn.
Moreover, each vertex 1α of An has exactly one neighbor in Bn, namely 0α.

We now give the key definition that will enable us to compute the degree sequence of Γn. For any n ≥ 1 and any
0 ≤ k ≤ n, let an,k, respectively bn,k, be the number of vertices of An, respectively Bn, of degree k. Consider a vertex x ∈ An of
degree k. Then it is of degree k− 1 in the subgraph Γn−2 of Γn induced by An. Since x lies in exactly one of the corresponding
sets An−2 and Bn−2, we get

an,k = an−2,k−1 + bn−2,k−1.

Similarly, a vertex y ∈ Bn either has a neighbor in An (if it starts with 00) or has no neighbor in An. In the first case, it is a
vertex of the corresponding set Bn−1, in the second case, a vertex of An−1. Therefore,

bn,k = bn−1,k−1 + an−1,k.

Hence the degree sequences in the subgraphs induced by An and Bn satisfy the system of linear recurrences and initial
conditions

an,k = an−2,k−1 + bn−2,k−1 (n ≥ 2, k ≥ 1), (3)

bn,k = bn−1,k−1 + an−1,k (n ≥ 1, k ≥ 1), (4)
a0,k = an,0 = 0 (n ≥ 0, k ≥ 0), a1,1 = 1, a1,k = 0 (k ≥ 2),
b0,0 = 1, b0,k = bn,0 = 0 (n ≥ 1, k ≥ 1).
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Their generating functions a(x, y) =
∑

n,k≥0 an,kx
nyk and b(x, y) =

∑
n,k≥0 bn,kx

nyk therefore satisfy the system of linear
algebraic equations

a(x, y) − xy = x2ya(x, y) + x2yb(x, y),
b(x, y) − 1 = xyb(x, y) + xa(x, y)

whose solution is

a(x, y) =
xy(1 + x − xy)

(1 − xy)(1 − x2y) − x3y
, (5)

b(x, y) =
1

(1 − xy)(1 − x2y) − x3y
.

Write u = 1 − xy, v = 1 − x2y. Then

b(x, y) =
1

uv − x3y
=

(uv)−1

1 − x3y(uv)−1
=

−
h≥0

x3hyh(uv)−h−1

=

−
h≥0

(xy)h

(1 − xy)h+1

(x2y)h

(1 − x2y)h+1
y−h

=

−
h≥0

−
i,j≥h


i
h

 
j
h


xi+2jyi+j−h.

In the last step we used the well-known expansion

xk

(1 − x)k+1
=

−
i≥k


i
k


xi.

Now replace summation variables h and i by n = i + 2j and k = i + j − h. Then i = n − 2j and h = n − k − j, so

b(x, y) =

−
n,k,j≥0


n − 2j

n − k − j

 
j

n − k − j


xnyk,

hence

bn,k =

k−
j=0


n − 2j
k − j

 
j

n − k − j


. (6)

From (3) and (4) (or, alternatively, from (5)) we obtain

an,k = bn−1,k−1 − bnk−2,k−2 + bn−2,k−1 (n ≥ 2, k ≥ 2). (7)

Denote

tn,k,j =


n − 2j
k − j

 
j

n − k − j


.

Then

tn−1,k−1,j − tn−2,k−2,j + tn−2,k−1,j =

[
n − 2j − 1
k − j − 1


−


n − 2j − 2
k − j − 2

] 
j

n − k − j


+ tn−2,k−1,j

=


n − 2j − 2
k − j − 1

 
j

n − k − j


+


n − 2j − 2
k − j − 1

 
j

n − k − j − 1


=


n − 2j − 2
k − j − 1

 
j + 1

n − k − j


by using Pascal’s identity twice, hence it follows from (6) and (7) that

an,k =

−
j≥0


n − 2j − 2
k − j − 1

 
j + 1

n − k − j



=

k−
j=0


n − 2j
k − j

 
j

n − k − j + 1


(n ≥ 2, k ≥ 2). (8)
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Here we replaced j by j − 1 and noted that
 n
k

 
0

n−k+1


= 0 for n ≠ −1. It is easy to check that (8) holds when k ∈ {0, 1}

or n ∈ {0, 1} as well. Finally, from (6) and (8) we obtain

fn,k = an,k + bn,k =

k−
j=0


n − 2j
k − j

 
j + 1

n − k − j + 1


by using Pascal’s identity once more.

3. Consequences of Theorem 1.1

Let Fn be the nth Fibonacci number: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2. Since |V (Γn)| = Fn+2, Theorem 1.1
immediately implies:

Corollary 3.1. For any n ≥ 0,

Fn+2 =

n−
k=0

k−
i=0


i + 1

n − k − i + 1

 
n − 2i
k − i


. (9)

We next give an alternative proof (avoiding Fibonacci cubes) of Corollary 3.1. Set F(n) =
∑n

k=0
∑k

i=0


i+1

n−k−i+1

 
n−2i
k−i


.

If k > n and i ≥ 1 then n − k − i + 1 < 0, thus


i+1
n−k−i+1


= 0. If k > n and i = 0, or if i > k, then


n−2i
k−i


= 0. Thus, after

interchanging the order of summation and using Vandermonde’s convolution,

F(n) =

∞−
i=0

∞−
k=0


i + 1

n − k − i + 1

 
n − 2i
k − i


=

∞−
i=0


n − i + 1
n − 2i + 1


.

Since for i > (n + 1)/2 we have


n−i+1
n−2i+1


= 0, we can restrict our summation range to, say, 0 ≤ i ≤ n + 1, and obtain

F(n) =

n+1−
i=0


n − i + 1
n − 2i + 1


=

n+1−
i=0


n − i + 1

i


,

where the last equality holds because n − i + 1 ≥ 0. Using the well-known identity
∑m

i=0


m−i
i


= Fm+1, see [5, p. 289,

Eq. (6.130)], we conclude that F(n) = Fn+2.
An interesting problem, useful for applications such as domination or coloring, is to determine for some fixed integer m

the number of vertices of degree ∆(Γn) − m and δ(Γn) + m. (As usually, ∆ and δ denote the maximum and the minimum
degree.)Whenm is small, the following two corollaries show that in both cases almost all the terms in the sumof Theorem1.1
vanish.

Corollary 3.2. For 0 ≤ m ≤ n,

fn,n−m =

m+1−
i=⌈m/2⌉


n − 2i

n − m − i

 
i + 1

m − i + 1


. (10)

Proof. By Theorem 1.1,

fn,n−m =

n−m−
i=0


n − 2i

n − m − i

 
i + 1

m − i + 1


.

Ifm − i + 1 < 0 we have


i+1
m−i+1


= 0, thus we can assume that i ≤ m + 1. If 2i < mwe havem − i + 1 > i + 1 and again

i+1
m−i+1


= 0. �

Corollary 3.3. Let δ = δ(Γn) =
 n+2

3


. For n > 0 and m ≤ n − δ,

fn,δ+m =

δ+m−
i=δ−⌊m

2 ⌋−1


n − 2i

δ + m − i

 
i + 1

δ + m + 2i − n


.
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Proof. We have i + 1 > 0, thus


i+1
n−k−i+1


=


i+1

k+2i−n


. Rewrite the sum in Theorem 1.1 for k = δ + m and observe that if

i ≤ δ−
m

2


−2 then δ+m+2i−n ≤ 3δ+m−2

m
2


−n−4 ≤ 3δ−n−3 ≤ −1. Hence in this case


i+1

δ+m+2i−n


= 0. �

Our last two results in particular give the asymptotic behavior of the number of vertices of degrees ∆(Γn) − m and
δ(Γn) + m when n → ∞.

Corollary 3.4. Let m ≥ 0 and let n ≥ 2m + 2. Then

fn,n−m =



1; m = 0,
2; m = 1,
n + 1; m = 2,
3n − 8; m = 3,
n2/2 + 3n/2 − 21; m = 4,
2n2

− 16n + 10; m = 5.

More generally, fn,n−m is a polynomial in n of degree ⌊m/2⌋. Its leading coefficient is 1
(m/2)! when m is even, and ⌈m/2⌉+1

⌊m/2⌋! when m
is odd.

Proof. When i ≤ m+ 1 and n ≥ 2m+ 2 we have n− 2i ≥ 0, thus


n−2i
n−m−i


=


n−2i
m−i


. Hence, having in mind Corollary 3.2,

the first values are thus obtained directly from
m−

i=⌈m/2⌉


n − 2i
m − i

 
i + 1

m − i + 1


.

Consider now this sum for some fixed m. For all i,


n−2i
m−i


is a polynomial in n with leading term nm−i

(m−i)! , and


i+1
m−i+1


is

independent of n. Thus fn,n−m is a polynomial in n. Its leading monomial is obtained from the term corresponding to the

minimal i such that


i+1
m−i+1


≠ 0, which is equivalent to 2i ≥ m and further to i ≥ ⌈m/2⌉. Hence the minimal such that i is

⌈m/2⌉, and deg fn,n−m = m − ⌈m/2⌉ = ⌊m/2⌋.

If m is even, then


i+1
m−i+1


= 1 when i = ⌈m/2⌉ = m/2, thus the leading term is 1

(m/2)!n
m/2. If m is odd, then

i+1
m−i+1


= ⌈m/2⌉ + 1 when i = ⌈m/2⌉, thus in this case the leading term is ⌈m/2⌉+1

⌊m/2⌋! n⌊m/2⌋. �

Corollary 3.5. Let δ = δ(Γn) =
 n+2

3


. Then

fn,δ+m =



1; m = 0, n = 3p,
1
2
(p + 1)(p + 4); m = 0, n = 3p + 1,

p + 2; m = 0, n = 3p + 2,
1
6
p(p + 1)(p + 8); m = 1, n = 3p,
1

120
p(p + 1)(p3 + 24p2 + 81p + 14); m = 1, n = 3p + 1,

1
24

(p + 1)(p + 2)(p2 + 15p + 12); m = 1, n = 3p + 2.

More generally, for all m ≥ 0, fn,δ+m is:

• a polynomial in p of degree 3m and leading coefficient 1
(3m)!

for n = 3p;

• a polynomial in p of degree 3m + 2 and leading coefficient 1
(3m+2)! for n = 3p + 1;

• a polynomial in p of degree 3m + 1 and leading coefficient 1
(3m+1)! for n = 3p + 2.

Proof. The first values are obtained by direct use of Corollary 3.3.
Let m be fixed and consider the general case when n = 3p for some fixed m. Then δ = p, and by introducing a new

summation variable j = i − p we can rewrite the sum of Corollary 3.3 as

f3p,p+m =

m−
j=−⌊m

2 ⌋−1


p − 2j
m − j

 
p + j + 1
2j + m


.
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Notice that


p−2j
m−j


is a polynomial in p of degree m − j, and


p+j+1
2j+m


is a polynomial in p of degree 2j + m, therefore their

product is of degree 2m + j. The maximum degree will be obtained when j is maximum, i.e., j = m. Then


p−2j
m−j


= 1 and

p+j+1
2j+m


=


p+m+1

3m


, thus the leading term is p3m

(3m)!
.

The cases n = 3p+ 1 and n = 3p+ 2 are treated similarly. The maximum degree is obtained when j is maximum, which
in these two cases is j = m + 1. When n = 3p + 1 we have


p−2j+1
m−j+1


= 1 and


p+j+1
2j+m


=


p+m+2
3m+2


, thus the leading term

is p3m+2

(3m+2)! . When n = 3p + 2 then


p−2j+2
m−j+1


= 1 and


p+j+1
2j+m−1


=


p+m+2
3m+1


, thus the leading term is p3m+1

(3m+1)! . �

4. Enumeration of vertices in Γn by weight

The purpose of this section is to determine the number of vertices in Γn with a given weight and degree, where the
weight of a binary string is the number of 1’s in it. This could be done by means of generating functions as in Section 2,
nevertheless we use a direct approach which along the way gives some additional information about Fibonacci strings. As
a consequence, we are able to give an alternative proof of Theorem 1.1 as well as a combinatorial interpretation of the
summation expression. From this approach we can also describe easily the set of vertices of a given weight and degree, and
deduce quickly the degree sequence of Lucas cubes. We leave the latter task for the next section and continue here with the
study of the structure of Fibonacci strings.

For n ≥ 0 denote

Fn = the set of all Fibonacci strings of length n,
Ln = the set of all Lucas strings of length n,
S i,jn = {α ∈ Fn; α starts with i and ends with j}, i, j ∈ {0, 1}, where S0,0n also includes the empty string λ.

Note that in the notation of Section 2, S1,1n ∪ S1,0n = An and S0,1n ∪ S0,0n = Bn. In addition, for any integerm ≥ 0 we introduce
the following Fibonacci strings:
• αm = (01)m0
• βm = (10)m
• γm = (01)m
• δm = (10)m1.

We call the strings δm degenerate Fibonacci strings.

Lemma 4.1. Every nondegenerate Fibonacci string can be uniquely decomposed as

βm00
l0αm10

l1αm20
l2 . . . αmp0

lpγmp+1 ,

where p ≥ 0, l0, . . . , lp ≥ 0,m1, . . . ,mp ≥ 1, and m0,mp+1 ≥ 0. Moreover, m0 and mp+1 determine to which of the sets
S1,1n , S1,0n , S0,1n , or S0,0n the string belongs.

Proof. The proof of the existence of such a decomposition is by induction on the length of the string. This is clearly true for
strings of length n ≤ 2.

Consider now a string s of length n > 2. Suppose first that s = 0s′, where s′ ∈ Fn−1. By induction, we have the following
possibilities for s′:
• s′ = βm00

l0αm10
l1 . . . αmp0

lpγmp+1 , hence s = αm00
l0αm10

l1 . . . αmp0
lpγmp+1 ;

• s′ = 0l0αm10
l1 . . . αmp0

lpγmp+1 , hence s = 0l0+1αm10
l1 . . . αmp0

lpγmp+1 ;
• s′ = αm10

l1 . . . αmp0
lpγmp+1 , hence s = 0αm10

l1 . . . αmp0
lpγmp+1 ;

• s′ = γm1 , thus now s = 0γm1 ;
• s′ = δm1 , and hence s = γm1+1.

Similarly, if s = 1s′, s′ ∈ Fn−1, we have the following cases:
• s′ = 0l0αm10

l1 . . . αmp0
lpγmp+1 , hence s = β10l0−1αm10

l1 . . . αmp0
lpγmp+1 ;

• s′ = αm10
l1αm20

l2 . . . αmp0
lpγmp+1 , hence s = βm1+10l1αm20

l2 . . . αmp0
lpγmp+1 ;

• s′ = γm1 , but then s = δm1 is degenerate.

Hence in each of the cases we have obtained a decomposition of s in the expected form.
It is immediate to verify that strings from S1,1n satisfy m0 > 0 and mp+1 > 0; strings from S1,0n satisfy m0 > 0 and

mp+1 = 0; strings from S0,1n satisfy m0 = 0 andmp+1 > 0; and strings from S0,0n satisfy m0 = 0 andmp+1 = 0.
To prove uniqueness, consider first a string βm00

l0αm10
l1 . . . αmp0

lpγmp+1 from S1,1n , thus with m0 > 0 and mp+1 > 0.
In the three possible cases (l0 > 0, l0 = 0 and m1 > 0, p = 0) such a string contains at least two consecutive 0’s, so the
string is not degenerate. On the other hand, it is clear that a nondegenerate string cannot be decomposed in two ways as
βm00

l0αm10
l1 . . . αmp0

lpγmp+1 . �
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Note also that the degenerate Fibonacci string δm is of length n = 2m + 1, weight w = m + 1, and the corresponding
vertex of Γn is of degree k = m + 1. For all the other strings we have:

Proposition 4.2. A Fibonacci string βm00
l0αm10

l1αm20
l2 . . . αmp0

lpγmp+1 is of length n =
∑p

i=0 li + 2
∑p+1

i=0 mi + p and weight
w =

∑p+1
i=0 mi, and the corresponding vertex of Γn is of degree k =

∑p
i=0 li +

∑p+1
i=0 mi.

Proof. The assertion for the length and the weight follows immediately from definitions. As for the degree, use the fact that
changing a 1 to 0 in a vertex from Fn gives a vertex in Fn, while a 0 can be changed to 1 only if it is not adjacent to 1, and
thus not inside a block of the form αm, βm, and γm. �

We will use the following classical results about the composition of integers.

Lemma 4.3. Let a, b ≥ 0. Then the number of solutions of x1 + x2 + · · · + xa = b, with x1, x2, . . . , xa nonnegative integers, is
b+a−1

b


.

Lemma 4.4. Let a, b ≥ 0. Then the number of solutions of x1 +x2 +· · ·+xa = b, with x1, x2, . . . , xa positive integers, is


b−1
b−a


.

In the rest we will use some more notation. Let

s1,1n,k, s
1,0
n,k, s

0,1
n,k , and s0,0n,k

be the number of vertices of degree k in

S1,1n , S1,0n , S0,1n , and S0,0n ,

respectively. Let in addition

S1,1n,w, S1,0n,w, S0,1n,w , and S0,0n,w ,

be the corresponding sets where each vertex is of weight w, and let

s1,1n,k,w, s1,0n,k,w, s0,1n,k,w , and s0,0n,k,w

be the number of vertices of degree k in these sets, respectively.

Lemma 4.5. For all integers k, n, w

s0,0n,k,w =


w − 1

2w + k − n

 
n − 2w
k − w


,

s0,1n,k,w = s1,0n,k,w =


w − 1

2w + k − n − 1

 
n − 2w
k − w


,

s1,1n,k,w =


w − 1

2w + k − n − 2

 
n − 2w
k − w


.

Proof. Assume first that w ≤ k ≤ n.
A string from S0,0n,w is decomposable as 0l0αm10

l1 . . . αmp0
lp where p ≥ 0, l0, l1, . . . , lp ≥ 0, and m1, . . . ,mp > 0. By

Proposition 4.2 there is a 1–1 mapping between S0,0n,w and the solutions ofp = n − k − w ≥ 0,
l0 + · · · + lp = k − w with l0, . . . , lp ≥ 0,
m1 + · · · + mp = w with m1, . . . ,mp ≥ 1.

(11)

A string from S1,0n,w is decomposable as βm00
l0αm10

l1αm20
l2 . . . αmp0

lp with p ≥ 0, l0, l1, . . . , lp ≥ 0, m0,m1, . . . ,mp > 0.
Thus there is a 1-1 mapping between S1,0n,w and the solutions ofp = n − k − w ≥ 0,

l0 + · · · + lp = k − w with l0, . . . , lp ≥ 0,
m0 + · · · + mp = w with m0, . . . ,mp ≥ 1.

(12)

A nondegenerate string from S1,1n,w is decomposable as βm00
l0αm10

l1αm20
l2 . . . αmp0

lpγmp+1 where p ≥ 0, l0, . . . , lp ≥

0,m0, . . . ,mp > 0. Thus there is a 1-1 mapping between these strings and the solutions ofp = n − k − w ≥ 0,
l0 + · · · + lp = k − w with l0, . . . , lp ≥ 0,
m0 + · · · + mp+1 = w with m0, . . . ,mp+1 ≥ 1.

(13)



S. Klavžar et al. / Discrete Mathematics 311 (2011) 1310–1322 1317

Assume that p = n−k−w ≥ 0, then by Lemmas 4.3 and 4.4 the number of solutions of (11)–(13) are


w−1
2w+k−n

 
n−2w
k−w


,

w−1
2w+k−n−1

 
n−2w
k−w


, and


w−1

2w+k−n−2

 
n−2w
k−w


, respectively.

Assume now that n − k − w < 0. Then there are no solutions of (11)–(13), thus there are no nondegenerate strings of
degree k in S0,0n,w, S1,0n,w and S1,1n,w . Notice that we have w ≥ 1 because w = 0 implies n − k < 0, a contradiction.

Suppose n − k − w ≤ −2. Then we can write

2w + k − n > 2w + k − n − 1 > 2w + k − n − 2 = w + (w + k − n − 2) ≥ w > w − 1 ≥ 0,

thus


w−1
2w+k−n


=


w−1

2w+k−n−1


=


w−1

2w+k−n−2


= 0.

Assume that n − k − w = −1. Then

2w + k − n > 2w + k − n − 1 = w > w − 1 ≥ 0,

therefore


w−1
2w+k−n


=


w−1

2w+k−n−1


= 0. Consider now


w−1

2w+k−n−2

 
n−2w
k−w


=


w−1
w−1

 
n−2w
k−w


=


n−2w
k−w


=


k−w−1
k−w


.

This number is zero if k > w. Otherwise (if k = w and n = 2k − 1) it is 1, which corresponds to the degenerate string δk−1.
By symmetry we have s0,1n,k,w = s1,0n,k,w .
A vertex of weight w has degree at least k, thus there are no vertices of degree k in the sets S1,1n,w, S1,0n,w, S0,1n,w, S0,0n,w if

w ≤ k ≤ n is not satisfied. It is immediately verified that the four formulas also hold. �

Let fn,k,w be the number of vertices of Γn having degree k and weight w. Then we have:

Theorem 4.6. For all integers k, n, w with k, w ≤ n,

fn,k,w =


w + 1

n − w − k + 1

 
n − 2w
k − w


.

Proof. Clearly, fn,k,w = s1,1n,k,w+s1,0n,k,w+s0,1n,k,w+s0,0n,k,w . Applying Lemma4.5 and (three times) the identity
 a
b


+

 a
b−1


=


a+1
b


,

we arrive at

fn,k,w =


w + 1

2w + k − n

 
n − 2w
k − w


.

Because w + 1 > 0, we have


w+1
2w+k−n


=


w+1

n−w−k+1


. �

Note that by the convention we are using for the binomial coefficients, fn,k,w = 0 when w > (n + 1)/2.
Theorem 1.1 immediately follows from Theorem 4.6.

5. Proof of Theorem 1.2

Let ℓn,k,w be the number of vertices ofΛn of degree k andweightw, and let ℓp,q
n,k,w , for p, q ∈ {0, 1}, be the number of such

strings in the set Sp,qn .

Lemma 5.1. For all n, k, w such that n ≥ 2, 1 ≤ k ≤ n and 0 ≤ w ≤ n,

ℓ
0,0
n,k,w = s0,0n−1,k−1,w + s1,0n−1,k,w,

ℓ
0,1
n,k,w = ℓ

1,0
n,k,w = s0,1n−1,k,w + s1,1n−1,k,w,

ℓ
1,1
n,k,w = 0.

Proof. A Lucas string that starts and endswith 0 can bewritten as 0s, where either s ∈ S0,0n−1,w is of degree k−1, or s ∈ S1,0n−1,w
is of degree k. This gives the first equality. Similarly we obtain the second equality, while the last one is obvious. �

Theorem 5.2. For all n, k, w such that n ≥ k, w ≥ 0 and n ≥ 2,

ℓn,k,w =


w − 1

2w + k − n

 
n − 2w
k − w


+ 2


w

2w + k − n

 
n − 2w − 1

k − w


. (14)
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Proof. Assume first that k ≥ 1. Since ℓn,k,w = ℓ
0,0
n,k,w + 2ℓ0,1

n,k,w , Lemmas 4.5 and 5.1 imply that

ℓn,k,w =


w − 1

2w + k − n

 
n − 2w − 1

k − w


+


w − 1

2w + k − n

 
n − 2w − 1
k − w − 1


+ 2


w − 1

2w + k − n − 1

 
n − 2w − 1

k − w


+ 2


w − 1

2w + k − n

 
n − 2w − 1

k − w


.

Using Pascal’s identity we can group the first term with one half of the third term, the second term with one half of the
fourth term, and the remaining half of the third term with the remaining half of the fourth term to obtain (14).

The only Lucas strings of degree k = 0 are λ and 0, hence ℓn,0,w = 0 when n ≥ 2. But in this case the right-hand side of
(14) evaluates to 0 as well. �

Note again that by the convention we are using for the binomial coefficients, ℓn,k,w = 0 when w > n/2.
Theorem 1.2 now follows immediately from Theorem 5.2.

Corollary 5.3. Let n ≥ 1. The number of vertices of weight w ≤ n in Ln is
n−

k=0

ℓn,k,w =


n − w

w


+


n − w − 1
n − 2w


.

Proof. Note first that the result is true when w ≤ 0 or n = 1. Assume now that w ≥ 1 and n ≥ 2. Then


w−1
2w+k−n


=

w−1
n−k−w−1


and


w

2w+k−n


=


w

n−k−w


. Hence we obtain from Theorem 5.2 by Vandermonde’s convolution

n−
k=0

ℓn,k,w =

n−
k=0

[
w − 1

n − k − w − 1

 
n − 2w
k − w


+ 2


w

n − k − w

 
n − 2w − 1

k − w

]
=


n − w − 1
n − 2w − 1


+ 2


n − w − 1
n − 2w


.

Using Pascal’s identity and
 n−w

n−2w


=

 n−w

w


we have the final expression. �

Similarly as Theorem 1.1 yields special cases for specific degrees in Fibonacci cubes, one can apply Theorem 1.2 to
obtain the number of vertices of certain degrees in Lucas cubes. For instance, ℓn,n = 1(n ≥ 2), ℓn,n−1 = 0(n ≥ 3), and
ℓn,n−2 = n(n ≥ 5). For the minimal degree, if n ≥ 2, then

ℓn,⌊(n+2)/3⌋ =

3; n ≡ 0(mod 3),
n(n + 5)/6; n ≡ 1(mod 3),
n; n ≡ 2(mod 3).

6. The method of generating functions

In this section we approach Theorem 1.2 using generating functions. It is relatively more complicated than the approach
from the previous two sections. On the other hand, it enables us to obtain many additional results as demonstrated at the
end of the section by several examples.

Clearly,

Fn = S1,1n ∪ S1,0n ∪ S0,1n ∪ S0,0n (for n ≥ 0), (15)

Ln = S1,0n ∪ S0,1n ∪ S0,0n (for n ≥ 0), (16)

S1,1n = 10Fn−401 (for n ≥ 4), (17)

S1,0n = 10Fn−30 (for n ≥ 3), (18)

S0,1n = 0Fn−301 (for n ≥ 3), (19)

S0,0n = 0Fn−20 (for n ≥ 2). (20)

Eq. (15) shows that V (Γn) = Fn can be partitioned into four blocks which, by (17)–(20), induce in Γn with n ≥ 4 a Γn−4, a
Γn−3, a Γn−3, and a Γn−2, respectively. By (15) again, each of these blocks can be further partitioned into four subblocks

S1,1n = 10S1,1n−401 ∪ 10S1,0n−401 ∪ 10S0,1n−401 ∪ 10S0,0n−401, (21)
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Fig. 1. Perfect matchings between subblocks and unions of subblocks of Γn .

S1,0n = 10S1,1n−30 ∪ 10S1,0n−30 ∪ 10S0,1n−30 ∪ 10S0,0n−30, (22)

S0,1n = 0S1,1n−301 ∪ 0S1,0n−301 ∪ 0S0,1n−301 ∪ 0S0,0n−301, (23)

S0,0n = 0S1,1n−20 ∪ 0S1,0n−20 ∪ 0S0,1n−20 ∪ 0S0,0n−20. (24)

Proposition 6.1. The set of those edges of Γn not contained within one of the four blocks in (15) equals
8

i=1 Mi where each Mi
is a perfect matching between a subblock and the union of a pair of subblocks of different blocks, as follows (see Fig. 1):

1. M1 is a perfect matching between 0S0,0n−20 and 0S0,0n−301 ∪ 0S0,1n−301,
2. M2 is a perfect matching between 0S1,0n−20 and 0S1,0n−301 ∪ 0S1,1n−301,
3. M3 is a perfect matching between 0S0,0n−301 and 10S0,0n−401 ∪ 10S1,0n−401,
4. M4 is a perfect matching between 0S0,1n−301 and 10S0,1n−401 ∪ 10S1,1n−401,
5. M5 is a perfect matching between 0S0,0n−20 and 10S0,0n−30 ∪ 10S1,0n−30,
6. M6 is a perfect matching between 0S0,1n−20 and 10S0,1n−30 ∪ 10S1,1n−30,
7. M7 is a perfect matching between 10S0,0n−30 and 10S0,0n−401 ∪ 10S0,1n−401,
8. M8 is a perfect matching between 10S1,0n−30 and 10S1,0n−401 ∪ 10S1,1n−401.

Proof. We need to analyze the external connections of each of the 16 subblocks of Γn. By way of example we do this for the
subblock 10S1,0n−30, in all the other cases the analysis is similar. Each string σ ∈ 10S1,0n−30 is of the form σ = 101τ00 where
τ ∈ Fn−5. So σ is adjacent to

• precisely one vertex 101τ01 ∈ S1,1n (if τ ends with 1 then 101τ01 ∈ 10S1,1n−401, otherwise 101τ01 ∈ 10S1,0n−401);
• no vertices in S0,1n , since each vertex of S1,0n is at a distance 2 or more from each vertex of S0,1n ;
• precisely one vertex in S0,0n , namely 001τ00 ∈ 0S0,0n−20.

When analyzing other subblocks, we find out in a similar way that

• each vertex in 10S1,1n−401 ∪ 10S1,0n−401 is adjacent to precisely one vertex in 10S1,0n−30;
• each vertex in 10S0,0n−30 is adjacent to precisely one vertex in 0S0,0n−20;
• each vertex in 0S0,0n−20 is adjacent to precisely one vertex in 10S1,0n−30 ∪ 10S0,0n−30.

Taken together, these facts imply that the external connections of the subblock 10S1,0n−30 are precisely the edges ofM5 ∪ M8

with one endpoint in 10S1,0n−30. �
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It follows from (21)–(24) and from Proposition 6.1 that

s1,1n,k = s1,1n−4,k−2 + s1,0n−4,k−2 + s0,1n−4,k−2 + s0,0n−4,k−2 (n ≥ 4, k ≥ 2),

s1,0n,k = s1,1n−3,k−1 + s1,0n−3,k−2 + s0,1n−3,k−1 + s0,0n−3,k−2 (n ≥ 3, k ≥ 2),

s0,1n,k = s1,1n−3,k−1 + s1,0n−3,k−1 + s0,1n−3,k−2 + s0,0n−3,k−2 (n ≥ 3, k ≥ 2),

s0,0n,k = s1,1n−2,k + s1,0n−2,k−1 + s0,1n−2,k−1 + s0,0n−2−2,k−2 (n ≥ 2, k ≥ 2).

Together with the corresponding initial conditions, this system of recurrences implies that the generating functions,

s1,1(x, y) =

−
n,k≥0

s1,1n,kx
nyk,

s1,0(x, y) =

−
n,k≥0

s1,0n,kx
nyk,

s0,1(x, y) =

−
n,k≥0

s0,1n,kx
nyk,

s0,0(x, y) =

−
n,k≥0

s0,0n,kx
nyk

satisfy the system of linear algebraic equations

s1,1(x, y) = xy + x3y2 + x4y2(s1,1(x, y) + s1,0(x, y) + s0,1(x, y) + s0,0(x, y)),
s1,0(x, y) = x2y + x3y(s1,1(x, y) + s0,1(x, y)) + x3y2(s1,0(x, y) + s0,0(x, y)),
s0,1(x, y) = x2y + x3y(s1,1(x, y) + s1,0(x, y)) + x3y2(s0,1(x, y) + s0,0(x, y)),
s0,0(x, y) = 1 + xy + x2s1,1(x, y) + x2y(s1,0(x, y) + s0,1(x, y)) + x2y2s0,0(x, y)

whose solution is

s1,1(x, y) =
xy(1 − xy)

(1 − xy)(1 − x2y) − x3y
, (25)

s1,0(x, y) = s0,1(x, y) =
x2y

(1 − xy)(1 − x2y) − x3y
, (26)

s0,0(x, y) =
1 − x2y

(1 − xy)(1 − x2y) − x3y
. (27)

Expanding these rational functions into power series we obtain

s1,1n,k =

k−
w=0


w − 1

2w + k − n − 2

 
n − 2w
k − w


,

s1,0n,k = s0,1n,k =

k−
w=0


w − 1

2w + k − n − 1

 
n − 2w
k − w


,

s0,0n,k =

k−
w=0


w − 1

2w + k − n

 
n − 2w
k − w


. (28)

By noting that fn,k = s1,1n,k + s1,0n,k + s0,1n,k + s0,0n,k and by using Pascal’s identity repeatedly, we obtain (1) again.
To recompute ℓn,k, note that for n ≥ 3,

Ln = 10Fn−30 ∪ 0Fn−1

= 10Fn−30 ∪ (0S1,1n−1 ∪ 0S1,0n−1 ∪ 0S0,1n−1 ∪ 0S0,0n−1).

Each σ ∈ 10Fn−30 is of the form σ = 10τ0 with τ ∈ Fn−3. Hence σ is adjacent to precisely one vertex in 0Fn−1, namely
00τ0 ∈ 0S0,0n−1. Conversely, each vertex 00τ0 ∈ 0S0,0n−1 is adjacent to 10τ0 ∈ 10Fn−30. So for n ≥ 3, k ≥ 1,

ℓn,k = fn−3,k−1 + s1,1n−1,k + s1,0n−1,k + s0,1n−1,k + s0,0n−1,k−1

= fn−3,k−1 + fn−1,k + s0,0n−1,k−1 − s0,0n−1,k. (29)

Using (1) and (28), this formula can be shown equivalent to (2).
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From (25)–(29) and the values ℓ0,0 = ℓ1,0 = 1, ℓ1,1 = 0 it is straightforward to compute the generating functions

f (x, y) =

−
n,k≥0

fn,kxnyk =
1 + xy + (1 − y)x2y

(1 − xy)(1 − x2y) − x3y
,

ℓ(x, y) =

−
n,k≥0

ℓn,kxnyk =
1 + (1 − y)x + x2y2 + (1 − y)x3y − (1 − y)2x4y

(1 − xy)(1 − x2y) − x3y

from which additional interesting information concerning the degree sequences ⟨fn,k⟩nk=0 and ⟨ℓn,k⟩
n
k=0 can be obtained

easily. For instance:

1. Since the generating functions f (x, y), ℓ(x, y), s1,1(x, y), s1,0(x, y), s0,1(x, y), s0,0(x, y) all have (1− xy)(1− x2y)− x3y =

1 − xy − x2y2 − x3y + x3y2 as their denominator, each of the sequences sn,k ∈ {fn,k, ℓn,k, s
1,1
n,k, s

1,0
n,k, s

0,1
n,k, s

0,0
n,k} satisfies the

same recurrence

sn,k = sn−1,k−1 + sn−2,k−1 + sn−3,k−1 − sn−3,k−2

for all large enough n and k.
2. From −

n≥0

xn
n−

k=0

fn,k = f (x, y)|y=1 =
1 + x

1 − x − x2
=

−
n≥0

Fn+2xn

it follows that |V (Γn)| = Fn+2, and from−
n≥0

xn
n−

k=0

ℓn,k = ℓ(x, y)|y=1 =
1 + x2

1 − x − x2
=

−
n≥0

Lnxn − 1

it follows that |V (Λ0)| = L0 − 1 = 1, |V (Λn)| = Ln for n ≥ 1.
3. From −

n≥0

xn
n−

k=0

kfn,k =
∂

∂y
f (x, y)|y=1

=
2x

(1 − x − x2)2
= 2

−
n≥0

nFn+1 + 2(n + 1)Fn
5

xn

it follows that |E(Γn)| = (nFn+1 + 2(n + 1)Fn)/5, and from−
n≥0

xn
n−

k=0

kℓn,k =
∂

∂y
ℓ(x, y)|y=1 =

2(2 − x)x2

(1 − x − x2)2
=

−
n≥0

2nFn−1xn

it follows that |E(Λn)| = nFn−1.
4. More generally, for each p ≥ 0 one can easily compute the generating functions of the sequences of the p-th moments∑n

k=0 k
pfn,k

∞
n=0 resp.

∑n
k=0 k

pℓn,k
∞
n=0 of the degree sequences ⟨fn,k⟩nk=0 resp. ⟨ℓn,k⟩

n
k=0 from the higher derivatives of

f (x, y) resp. ℓ(x, y). Since

∂p

∂yp
f (x, y)|y=1 =

−
n≥0

xn
n−

k=0

kpfn,k

where kp =
∏p−1

j=0 (k − j) is the p-th falling power of k, we have−
n≥0

xn
n−

k=0

kpfn,k =

−
n≥0

xn
n−

k=0

p−
j=0

Sp,jkjfn,k

=

p−
j=0

Sp,j
−
n≥0

xn
n−

k=0

kjfn,k =

p−
j=0

Sp,j
∂ j

∂yj
f (x, y)|y=1

where Sp,j denotes Stirling numbers of the second kind. Similarly,−
n≥0

xn
n−

k=0

kpℓn,k =

p−
j=0

Sp,j
∂ j

∂yj
ℓ(x, y)|y=1.
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