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Abstract

Let ‖ · ‖ be a unitarily invariant norm on matrices. For matrices A,B,X with A,B positive
semidefinite and X arbitrary, we prove that the function t �→ ‖ |AtXB1−t |r ‖ · ‖ |A1−tXBt |r‖
is convex on [0, 1] for each r > 0. This convexity result interpolates the matrix Cauchy–
Schwarz inequality ‖ |A1/2XB1/2|r ‖2 � ‖ |AX|r ‖ · ‖ |XB|r ‖ due to R. Bhatia and C. Davis
[Linear Algebra Appl. 223/224 (1995) 119], and also it generalizes A.W. Marshall and I.
Olkin’s [Pacific J. Math. 15 (1965) 241] result that the condition number ‖As‖ · ‖A−s‖ is
increasing in s > 0. We prove that if f (t) is a nonnegative operator monotone function on
[0,∞) and ‖ · ‖ is a normalized unitarily invariant norm, then f (‖X‖) � ‖f (|X|)‖ for every
matrix X. The special case when f (t) = tr (0 < r � 1) is used to consider the monotonicity of
p �→ ‖Ap + Bp‖1/p as well as p �→ ‖(Ap + Bp)1/p‖. Furthermore, we obtain some norm
inequalities of Hölder and Minkowski types related to the expression ‖ |A|p + |B|p ‖1/p . For
example, comparisons are made between ‖C∗A+D∗B‖ and ‖ |A|p + |B|p ‖1/p · ‖ |C|q +
|D|q ‖1/q , where p−1 + q−1 = 1. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let Mn be the space of n× n complex matrices. A norm ‖ · ‖ on Mn is called
unitarily invariant if ‖UAV ‖ = ‖A‖ for all A,U, V with U,V unitary. Examples in
this class are Schatten p-norms and Ky Fan k-norms. For basic properties of unitarily
invariant norms see [4,8]. The matrix Cauchy–Schwarz inequality proved by Horn
and Mathias [9,10] is

‖ |A∗B|r ‖2 � ‖(A∗A)r‖ · ‖(B∗B)r‖ (1)

for all A,B ∈ Mn, any real number r > 0 and every unitarily invariant norm, where
|Y | ≡ (Y ∗Y )1/2. Bhatia and Davis [5] (see also [4, Theorem IX.5.2] and [7, p. 174])
generalized this to the form

‖ |A∗XB|r ‖2 � ‖ |AA∗X|r ‖ · ‖ |XBB∗|r ‖
for all A,B,X ∈ Mn and any r > 0, which is obviously equivalent to

‖ |A1/2XB1/2|r ‖2 � ‖ |AX|r ‖ · ‖ |XB|r ‖ (2)

for positive semidefinite A,B and arbitrary X. We remark that the following more
general Hölder type inequality was proved in [11, Theorem 3]:

‖ |AXB|r ‖ � ‖ |ApX|r ‖1/p · ‖ |XBq |r ‖1/q (3)

for positive semidefinite A,B, arbitrary X, and positive real numbers r, p, q with
p−1 + q−1 = 1.

On the other hand, for positive real numbers ai, bi (i = 1, . . . , n) and real num-
bers u, x, Callebaut [6] gave the following interesting refinement of the classical
Cauchy–Schwarz inequality: The expression(

n∑
i=1

au+xi bu−xi

)(
n∑
i=1

au−xi bu+xi

)
(4)

increases as |x| increases. See [13] for a simple proof. To see the effect just consider
the case u = 1, −1 � x � 1 in (4). In the same spirit, in Section 2 we will prove the
matrix analog by considering the convexity of a norm function (Theorem 1).

Given a norm ‖ · ‖ on Mn, the condition number of an invertible matrix A is
defined as

c(A) = ‖A‖ · ‖A−1‖.
This is one of the basic concepts in numerical analysis; it serves as measures of the
difficulty in solving a system of linear equations. Marshall and Olkin [12, Theorem
3.2] proved that for positive definite A and every unitarily invariant norm

c(As) = ‖As‖ · ‖A−s‖ (5)
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is increasing in s > 0. We generalize this result in Section 2.
In Section 3 we first prove that the inequality

f (‖A‖) � ‖f (|A|)‖ (6)

holds when f (t) is a nonnegative operator monotone function on [0,∞) and ‖ · ‖
is a unitarily invariant norm normalized as ‖diag(1, 0, . . . , 0)‖ = 1. Furthermore,
the reverse inequality is shown when ‖ · ‖ is normalized as ‖I‖ = 1. We next use
the special case of (6) when f (t) = t r (0 < r � 1) to discuss the monotonicity of
p �→ ‖Ap + Bp‖1/p.

Finally in Section 4 we obtain some norm inequalities of Hölder and Minkow-
ski types. Similar kinds of norm inequalities related to the expression ‖(|A|p +
|B|p)1/p‖ were discussed in [2]. However, in this paper we mostly treat the different
expression ‖ |A|p + |B|p ‖1/p. It seems that the latter expression is somewhat easier
to handle than the former. The forms of the inequalities obtained are

α‖C∗A+D∗B‖ � ‖ |A|p + |B|p ‖1/p · ‖ |C|q + |D|q ‖1/q

(for p−1 + q−1 = 1),

β‖ |A1 + A2|p + |B1 + B2|p ‖1/p

� ‖ |A1|p + |B1|p ‖1/p + ‖ |A2|p + |B2|p ‖1/p,

where α, β are constants depending on p (also the norm ‖ · ‖). Unlike the scalar case
it turns out that the constants α, β strictly smaller than 1 are indispensable except the
case p = 2.

2. Convexity of certain functions involving unitarily invariant norms

In this section we treat some functions of a real variable involving unitarily in-
variant norms. We prove the convexity of those functions refining the known norm
inequalities of Cauchy–Schwarz type.

Theorem 1. Let A,B,X ∈ Mn with A,B positive semidefinite and X arbitrary. For
every positive real number r and every unitarily invariant norm, the function

φ(t) = ‖ |AtXB1−t |r ‖ · ‖ |A1−tXBt |r ‖
is convex on the interval [0, 1] and attains its minimum at t = 1/2. Consequently, it
is decreasing on [0, 1/2] and increasing on [1/2, 1].

Proof. Since φ(t) is continuous and symmetric with respect to t = 1/2, all the
conclusions will follow after we show that

φ(t) � {φ(t + s)+ φ(t − s)} /2 (7)

for t ± s ∈ [0, 1]. By (2) we have
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‖ |AtXB1−t |r ‖=‖ |As(At−sXB1−t−s)Bs |r ‖
�

{
‖ |At+sXB1−(t+s)|r ‖ · ‖ |At−sXB1−(t−s)|r ‖

}1/2

and

‖ |A1−tXBt |r ‖=‖ |As(A1−t−sXBt−s)Bs |r ‖
�

{
‖ |A1−(t−s)XBt−s |r ‖ · ‖ |A1−(t+s)XBt+s |r ‖

}1/2
.

Upon multiplication of the above two inequalities we obtain
‖ |AtXB1−t |r ‖ · ‖ |A1−tXBt |r ‖ � {φ(t + s)φ(t − s)}1/2 . (8)

Applying the arithmetic–geometric mean inequality to the right-hand side of (8)
yields (7). This completes the proof. �

An immediate consequence of Theorem 1 interpolates the Cauchy–Schwarz in-
equality (2) as follows.

Corollary 2. Let A,B,X ∈ Mn be as in Theorem 1. For every r > 0 and every
unitarily invariant norm,

‖ |A1/2XB1/2|r ‖2 � ‖ |AtXB1−t |r ‖ · ‖ |A1−tXBt |r ‖
� ‖ |AX|r ‖ · ‖ |XB|r ‖

holds for 0 � t � 1.

Corollary 3. Let A,B,X ∈ Mn with A,B positive definite and X arbitrary. For
every r > 0 and every unitarily invariant norm, the function

g(s) = ‖ |AsXBs |r ‖ · ‖ |A−sXB−s |r ‖ (9)
is convex on (−∞,∞), attains its minimum at s = 0, and hence it is decreasing on
(−∞, 0) and increasing on (0,∞).

Proof. In Theorem 1, replacing A,B,X and t by A2, B−2, A−1XB and (1 + s)/2
respectively, we see that g(s) is convex on (−1, 1), decreasing on (−1, 0), increas-
ing on (0, 1) and attains its minimum at s = 0 when −1 � s � 1. Next replacing
A,B by their appropriate powers it is easily seen that the above convexity and
monotonicity of g(s) on those intervals are equivalent to the same properties on
(−∞,∞), (−∞, 0) and (0,∞) respectively. �

Note that Marshall and Olkin’s [12] monotonicity result on the condition number
in (5) corresponds to the case r = 1, X = B = I (the identity matrix) of g(s) in (9).

To see that Callebaut’s result on (4) is indeed a special case of Corollary 3, in (9)
put r = 1, s = x,A = diag(a1, . . . , an),B=diag(b−1

1 , . . . , b−1
n ),X=diag((a1b1)

u,

. . . , (anbn)
u), and let ‖ · ‖ be the trace norm.



F. Hiai, X. Zhan / Linear Algebra and its Applications 341 (2002) 151–169 155

The following is another example of convex functions involving unitarily invari-
ant norms.

Theorem 4. Let Ai ∈ Mn (i = 1, . . . , k) be positive semidefinite. For every posi-
tive real number r and every unitarily invariant norm, the function t �→‖(∑k

i=1 A
t
i)
r‖

is convex on (0,∞).

Proof. It suffices to show∥∥∥∥∥∥
(

k∑
i=1

A
(s+t)/2
i

)r
∥∥∥∥∥∥ �

∥∥∥(∑k
i=1 A

s
i

)r∥∥∥ +
∥∥∥(∑k

i=1 A
t
i

)r∥∥∥
2

(10)

for all s, t > 0. In inequality (1) setting

A =




A
s/2
1 0 · · · 0

A
s/2
2 0 · · · 0
...

... · · · ...

A
s/2
k 0 · · · 0


 , B =



A
t/2
1 0 · · · 0

A
t/2
2 0 · · · 0
...

... · · · ...

A
t/2
k 0 · · · 0


 ,

we obtain∥∥∥∥∥∥
(

k∑
i=1

A
(s+t)/2
i

)r
∥∥∥∥∥∥ �



∥∥∥∥∥∥
(

k∑
i=1

As
i

)r
∥∥∥∥∥∥ ·

∥∥∥∥∥∥
(

k∑
i=1

At
i

)r
∥∥∥∥∥∥



1/2

. (11)

Applying the arithmetic–geometric mean inequality to the right-hand side of (11)
gives (10). �

3. A norm inequality for operator monotone functions with applications

For Hermitian matrices H,K we write H � K or K � H to mean that K–H is
positive semidefinite. A real-valued continuous function f (t) on [0,∞) is said to
be operator monotone if 0 � A � B implies f (A) � f (B) for any A,B ∈ Mn of
all orders n. Here f (A) is defined by the usual functional calculus on A. Familiar
examples of operator monotone functions are tp (0 < p � 1) and log(t + 1).

A norm on Mn is said to be normalized if ‖diag(1, 0, . . . , 0)‖ = 1. All the Ky Fan
k-norms (k = 1, . . . , n) and Schatten p-norms (1 � p � ∞) are normalized. Given a
norm ‖ · ‖ onMn, the dual norm of ‖ · ‖ with respect to the Frobenius inner product is

‖A‖D ≡ max
{|trAX∗| : X ∈ Mn, ‖X‖ = 1

}
.

If ‖ · ‖ is a unitarily invariant norm on Mn and A � 0, then by the duality theorem
we have (see [8, Theorem 3.5.5] for an equivalent result)
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‖A‖ = max
{
trAB : B � 0, ‖B‖D = 1, B ∈ Mn

}
. (12)

The following result is a norm inequality for operator monotone functions. The spe-
cial case when f (t) = t r (0 < r � 1) will be used later.

Theorem 5. Let f (t) be a nonnegative operator monotone function on [0,∞) and
‖ · ‖ be a normalized unitarily invariant norm on Mn. Then for every A ∈ Mn,

f (‖A‖) � ‖f (|A|)‖. (13)

Proof. Since ‖A‖ = ‖ |A| ‖, it suffices to prove (13) for the case when A is posi-
tive semidefinite. We now make this assumption. By (12) there exists a B � 0 with
‖B‖D = 1 such that

‖A‖ = trAB. (14)

Denote by ‖ · ‖∞ and ‖ · ‖1 the operator (spectral) norm and the trace norm respec-
tively. Every normalized unitarily invariant norm satisfies

‖X‖∞ � ‖X‖ � ‖X‖1 (X ∈ Mn)

(see [4, p. 93]). Since ‖ · ‖ is normalized, ‖ · ‖D is also a normalized unitarily invari-
ant norm. Hence

1 = ‖B‖D � ‖B‖1 = trB. (15)

From ‖A‖∞ � ‖A‖ and (14) we have

s‖A‖
s + ‖A‖ � s‖A‖

s + ‖A‖∞
= tr

sAB

s + ‖A‖∞

= trB1/2 sA

s + ‖A‖∞
B1/2

� trB1/2{sA(sI + A)−1}B1/2

= tr sA(sI + A)−1B (16)

for any real number s > 0. In the above latter inequality we have used the fact that
sA/(s + ‖A‖∞) � sA(sI + A)−1.

It is well known (e.g., [4]) that for each nonnegative operator monotone function
f (t) on [0,∞) there are unique constants α, β � 0 and a positive measure µ(·) on
(0,∞) such that

f (t) = α + βt +
∫ ∞

0

st

s + t
dµ(s) (0 � t < ∞). (17)

Using this integral representation, (15), (14), (16) and (12) we compute

f (‖A‖)=α + β‖A‖ +
∫ ∞

0

s‖A‖
s + ‖A‖ dµ(s)

�αtrB + βtrAB +
∫ ∞

0
tr sA(sI + A)−1B dµ(s)
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= tr

{
αI + β A+

∫ ∞

0
sA(sI + A)−1dµ(s)

}
B

= tr f (A)B

�‖f (A)‖,

completing the proof. �

We say that a norm ‖ · ‖ is strictly increasing if 0 � A � B and ‖A‖ = ‖B‖ im-
ply A = B. For instance, the Schatten p-norm ‖ · ‖p is strictly increasing for all
1 � p < ∞. We now consider the equality case of (13).

Theorem 6. Let f (t) be a nonnegative operator monotone function on [0,∞) and
assume that f (t) is non-linear. Let ‖ · ‖ be a strictly increasing normalized unitarily
invariant norm and A ∈ Mn with n � 2. Then f (‖A‖) = ‖f (|A|)‖ if and only if
f (0) = 0 and rankA � 1.

Proof. First assume that f (0) = 0 and |A| = λP with a projection P of rank 1. Then
‖A‖ = λ‖P ‖ = λ by the normalization assumption and ‖f (|A|)‖ = ‖f (λ)P ‖ =
f (λ) = f (‖A‖). Conversely, assume f (‖A‖) = ‖f (|A|)‖. IfA = 0, then since ‖ · ‖
is normalized and strictly increasing we must have f (0) = 0. Next suppose A /= 0.
Let µ be the measure in the integral representation (17) of f (t). Since f (t) is non-
linear, µ /= 0. From the proof of Theorem 5 we know that f (‖A‖) = ‖f (|A|)‖
implies ‖A‖∞ = ‖A‖ or equivalently

‖diag(s1, 0, . . . , 0)‖ = ‖diag(s1, s2, . . . , sn)‖,
where s1 � s2 � · · · � sn are the singular values of A. Now the strict increasing-
ness of ‖ · ‖ forces s2 = · · · = sn = 0, that is, rankA = 1. So write |A| = λP with
a projection P of rank 1. Since f (‖A‖) = ‖f (|A|)‖ means

‖f (λ)P ‖ = ‖f (λ)P + f (0)(I − P)‖,
we have f (0) = 0 due to I − P /= 0 and the strict increasingness of ‖ · ‖ again. �

Theorem 5 can be complemented by the following reverse inequality for unitarily
invariant norms with different normalization.

Theorem 7. Let f (t) be a nonnegative operator monotone function on [0,∞) and
‖ · ‖ be a unitarily invariant norm on Mn with ‖I‖ = 1. Then for every A ∈ Mn,

‖f (|A|)‖ � f (‖A‖).

Proof. We may assume that A is positive semidefinite. Since
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f (A) = αI + βA+
∫ ∞

0
sA(sI + A)−1 dµ(s)

as in the proof of Theorem 5, we have

‖f (A)‖ � α + β‖A‖ +
∫ ∞

0
‖sA(sI + A)−1‖ dµ(s)

due to ‖I‖ = 1. Hence it suffices to show

‖A(sI + A)−1‖ � ‖A‖
s + ‖A‖ (s > 0). (18)

For each s > 0, since

x

s + x
� t2 + (1 − t)2

x

s

for all x > 0 and 0 < t < 1, we get

A(sI + A)−1 � t2I + (1 − t)2s−1A

so that

‖A(sI + A)−1‖ � ‖t2I + (1 − t)2s−1A‖ � t2 + (1 − t)2s−1‖A‖. (19)

Minimize the right-hand side of (19) over t ∈ (0, 1) to obtain (18). This completes
the proof. �

Denote E ≡ diag(1, 0, . . . , 0). Combining the inequalities in Theorems 5 and 7,
we can write

‖E‖ · f
(‖A‖

‖E‖
)

� ‖f (|A|)‖ � ‖I‖ · f
(‖A‖

‖I‖
)

for every nonnegative operator monotone function f (t) on [0,∞) and for every
unitarily invariant norm ‖ · ‖. As an immediate consequence of this we have:

Corollary 8. Let g(t) be a strictly increasing function on [0,∞) such that g(0) = 0,
g(∞) = ∞ and the inverse function g−1 on [0,∞) is operator monotone. Let ‖ · ‖
be an arbitrary unitarily invariant norm. Then for every A ∈ Mn,

‖I‖ · g
(‖A‖

‖I‖
)

� ‖g(|A|)‖ � ‖E‖ · g
(‖A‖

‖E‖
)
.

Given a unitarily invariant norm ‖ · ‖ on Mn, for p > 0 define

‖X‖(p) ≡ ‖ |X|p ‖1/p (X ∈ Mn). (20)
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Then it is known [4, p. 95] (or [7, Lemma 2.13]) that when p � 1, ‖ · ‖(p) is also a
unitarily invariant norm.

Corollary 9. Let ‖ · ‖ be a normalized unitarily invariant norm on Mn. Then for
any A ∈ Mn, the function p �→ ‖A‖(p) is decreasing on (0,∞) and

lim
p→∞ ‖A‖(p) = ‖A‖∞.

The above limit formula remains valid without the normalization condition on ‖ · ‖.

Proof. The monotonicity part is the special case of Theorem 5 when f (t) = t r ,

0 < r � 1, but we may give a short direct proof. It suffices to consider the case
when A is positive semidefinite, and now we make this assumption. We first show

‖Ar‖ � ‖A‖r (0 < r � 1), (21)

‖Ar‖ � ‖A‖r (1 � r < ∞). (22)

Since ‖A‖∞ � ‖A‖, for r � 1 we get

‖Ar‖=‖AAr−1‖ � ‖A‖ ‖Ar−1‖∞
=‖A‖ ‖A‖r−1∞ � ‖A‖ ‖A‖r−1 = ‖A‖r ,

proving (22). Inequality (21) follows from (22): For 0 < r � 1, ‖A‖ = ‖(Ar)1/r‖ �
‖Ar‖1/r .

If 0 < p < q, then

‖Ap‖ = ‖(Aq)p/q‖ � ‖Aq‖p/q
so that ‖Ap‖1/p � ‖Aq‖1/q . Moreover,

‖A‖∞ = ‖Ap‖1/p∞ � ‖Ap‖1/p � ‖Ap‖1/p
1 = ‖A‖p −→ ‖A‖∞

as p → ∞, where ‖ · ‖p is the Schatten p-norm. When ‖ · ‖ is not normalized, we
just apply the normalized case to ‖ · ‖/‖diag(1, 0, . . . , 0)‖. �

When f (t) is a nonnegative operator monotone function on [0,∞), the inequality

‖f (X + Y )‖ � ‖f (X)+ f (Y )‖
was proved in [3] for all positive semidefinite X, Y ∈ Mn and for every unitarily
invariant norm. Also, for a function g(t) as in Corollary 8 the reverse inequality

‖g(X + Y )‖ � ‖g(X)+ g(Y )‖
was proved there. Special cases of these are

‖(X + Y )r‖ � ‖Xr + Y r‖ (0 < r � 1), (23)

‖(X + Y )r‖ � ‖Xr + Y r‖ (1 � r < ∞), (24)

which will be repeatedly used in the sequel of the paper.
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Next we consider the monotonicity of the functions p �→ ‖(Ap + Bp)1/p‖ and
p �→ ‖Ap + Bp‖1/p. We denote by A ∨ B the supremum of two positive semidefi-
nite matrices A,B in the sense of Kato (see [1, Lemma 6.15]).

Theorem 10. Let A,B ∈ Mn be positive semidefinite. For every unitarily invariant
norm, the function p �→ ‖(Ap + Bp)1/p‖ is decreasing on (0, 1]. For every nor-
malized unitarily invariant norm, the function p �→ ‖Ap + Bp‖1/p is decreasing on
(0,∞) and

lim
p→∞ ‖Ap + Bp‖1/p = ‖A ∨ B‖∞.

The above limit formula remains valid without the normalization condition.

Proof. Let 0 < p < q � 1. Set r = q/p (> 1), X = Ap, Y = Bp in (24) to get

‖(Ap + Bp)q/p‖ � ‖Aq + Bq‖. (25)

Using a majorization principle [8, Lemma 3.3.8] together with Ky Fan’s dominance
principle [4, 8], we can apply a convex and increasing function t1/q on [0,∞) to
(25) and get

‖(Ap + Bp)1/p‖ � ‖(Aq + Bq)1/q‖
which shows the first assertion.

To show the second assertion we must prove

‖Ap + Bp‖1/p � ‖Aq + Bq‖1/q, (26)

for 0 < p < q. It is easily seen that (26) is equivalent to

‖A+ B‖r � ‖Ar + Br‖
for all r � 1 and all positive semidefinite A,B ∈ Mn, which follows from (22) and
(24):

‖A+ B‖r � ‖(A+ B)r‖ � ‖Ar + Br‖.
For p � 1,

‖(Ap + Bp)1/p‖∞ =‖Ap + Bp‖1/p∞
�‖Ap + Bp‖1/p

�‖Ap + Bp‖1/p
1

=‖(Ap + Bp)1/p‖p
�‖(Ap + Bp)1/p − (A ∨ B)‖p + ‖A ∨ B‖p
�‖(Ap + Bp)1/p − (A ∨ B)‖1 + ‖A ∨ B‖p.

Since
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lim
p→∞(Ap + Bp)1/p = lim

p→∞

(
Ap + Bp

2

)1/p

= A ∨ B

(see [1, Lemma 6.15]) and

lim
p→∞ ‖A ∨ B‖p = ‖A ∨ B‖∞,

we obtain

lim
p→∞ ‖Ap + Bp‖1/p = ‖A ∨ B‖∞.

This completes the proof. �

We remark that there are some unitarily invariant norms for which p �→ ‖(Ap +
Bp)1/p‖ is not decreasing on (1,∞). Consider the trace norm (here it is just trace
since the matrices involved are positive semidefinite). In fact, for the 2 × 2 matrices

A =
[

1 0
0 0

]
, Bt =

[
t2 t

√
1 − t2

t
√

1 − t2 1 − t2

]
(0 < t < 1),

it was proved in [2, Lemma 3.3] that for any p0 > 2 there exists a t ∈ (0, 1) such that
p �→ tr

{
(Ap + B

p
t )

1/p
}

is strictly increasing on [p0,∞). Also consider the example
ψ(p) = tr

{
(Ap + Bp)1/p

}
with

A =
[

1 2
2 5

]
, B =

[
1 −6

−6 50

]
.

Then ψ(1.5)− ψ(8) ≈ −1.5719. Thus ψ(1.5) � ψ(8). Hence ψ(p) is not decreas-
ing on [1.5, 8].

4. Norm inequalities of Hölder and Minkowski types

Let 1 � p, q � ∞ with p−1 + q−1 = 1. It is known [4, p. 95] (also [7, p. 174])
that the Hölder inequality

‖X∗Y‖ � ‖ |X|p ‖1/p · ‖ |Y |q ‖1/q
(
= ‖X‖(p) · ‖Y‖(q)

)
(27)

holds for all X, Y ∈ Mn and every unitarily invariant norm, where ‖ |X|p ‖1/p for
p = ∞ is understood as the operator norm ‖X‖∞ (see Corollary 9). Actually, this
is a special case of the Hölder inequality (3) mentioned in Section 1. Here note
that ‖ |X∗|r ‖ = ‖ |X|r ‖ for r > 0. The results in this section may be regarded as
applications of inequalities (23), (24) and (27).

In what follows ‖ |A|p + |B|p ‖1/p for p = ∞ will be understood as ‖ |A| ∨
|B| ‖∞ due to Theorem 10. We will use the following simple fact several times: Let A
and B be positive semidefinite matrices having the eigenvalues α1 � · · · � αn (� 0)
and β1 � · · · � βn (� 0), respectively. If αi � βi (i = 1, . . . , n) (in particular, if
A � B), then there exists a unitary U such that Ar � UBrU∗ for all r > 0.
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Theorem 11. Let 1 � p, q � ∞ with p−1 + q−1 = 1. For all A,B,C,D ∈ Mn

and every unitarily invariant norm,

2−|1/p−1/2|‖C∗A+D∗B‖ � ‖ |A|p + |B|p ‖1/p · ‖ |C|q + |D|q ‖1/q . (28)

Moreover, the constant 2−|1/p−1/2| is best possible.

Proof. Since∣∣∣∣ 1

p
− 1

2

∣∣∣∣ =
∣∣∣∣ 1

q
− 1

2

∣∣∣∣
and the inequality is symmetric with respect to p and q, we may assume 1 � p �
2 � q � ∞. Note that[

C 0
D 0

]∗ [
A 0
B 0

]
=

[
C∗A+D∗B 0

0 0

]
.

From (27) it follows that

‖C∗A+D∗B‖=
∥∥∥∥
[
C 0
D 0

]∗ [
A 0
B 0

] ∥∥∥∥
�

∥∥∥∥
∣∣∣∣
[
A 0
B 0

]∣∣∣∣
p ∥∥∥∥

1/p

·
∥∥∥∥
∣∣∣∣
[
C 0
D 0

]∣∣∣∣
q ∥∥∥∥

1/q

=‖(|A|2 + |B|2)p/2‖1/p · ‖(|C|2 + |D|2)q/2‖1/q .

Since 1 � p � 2, (23) implies

‖(|A|2 + |B|2)p/2‖ � ‖ |A|p + |B|p‖.
Since the operator concavity of t2/q gives

|C|2 + |D|2
2

�
( |C|q + |D|q

2

)2/q

,

by the remark proceding the theorem we get( |C|2 + |D|2
2

)q/2

� U

( |C|q + |D|q
2

)
U∗

for some unitary U. Therefore, we have

‖(|C|2 + |D|2)q/2‖1/q � 21/2−1/q‖ |C|q + |D|q ‖1/q

= 21/p−1/2‖ |C|q + |D|q ‖1/q .

Thus the desired inequality (28) follows.
The best possibility of the constant is seen from the following example:

A = C = D =
[

1 0
0 0

]
, B =

[
0 1
0 0

]
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with the operator norm ‖ · ‖∞. �

In particular, the case p = q = 2 of (28) is

‖C∗A+D∗B‖ � ‖ |A|2 + |B|2‖1/2 · ‖ |C|2 + |D|2‖1/2.

We now consider Schatten norms.

Theorem 12. Let 1 � r � ∞ and 1 � p, q � ∞ with p−1+ q−1 = 1. For allA,B,
C,D ∈ Mn,

21/r−1‖C∗A+D∗B‖r � ‖ |A|p + |B|p‖1/p
r · ‖ |C|q + |D|q‖1/q

r . (29)

Proof. By (27) for every unitarily invariant norm we have

‖C∗A+D∗B‖�‖C∗A‖ + ‖D∗B‖
�‖ |A|p‖1/p · ‖ |C|q‖1/q + ‖ |B|p‖1/p · ‖ |D|q‖1/q

�
(‖ |A|p‖ + ‖ |B|p‖)1/p · (‖ |C|q‖ + ‖ |D|q‖)1/q

.

When ‖ · ‖ = ‖ · ‖r ,
‖ |A|p‖r + ‖ |B|p‖r =

(
tr |A|pr)1/r + (

tr |B|pr)1/r

�21−1/r (tr(|A|pr + |B|pr))1/r

=21−1/r‖(|A|pr + |B|pr)1/r‖r
�21−1/r‖ |A|p + |B|p ‖r

and similarly for ‖ |C|q‖r + ‖ |D|q‖r . In the last inequality above we have used (23).
Thus we get the required inequality (29). �

Theorem 12 is meaningful only for 1 � r � 2 because in the case 2 < r � ∞ it
is weaker than Theorem 11. In particular, for r = 1,

‖C∗A+D∗B‖1 � ‖ |A|p + |B|p‖1/p
1 · ‖ |C|q + |D|q‖1/q

1 .

Next we consider norm inequalities of Minkowski type.

Theorem 13. Let 1 � p < ∞. For Ai, Bi ∈ Mn (i = 1, 2) and every unitarily in-
variant norm,

2−|1/p−1/2|‖ |A1 + A2|p + |B1 + B2|p ‖1/p

� ‖ |A1|p + |B1|p ‖1/p + ‖ |A2|p + |B2|p ‖1/p.

Proof. Since

‖( |A|2 + |B|2)p/2‖1/p =
∥∥∥∥
∣∣∣∣
[
A 0
B 0

]∣∣∣∣
p ∥∥∥∥

1/p
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is a norm in (A,B), we have

‖(|A1 + A2|2 + |B1 + B2|2)p/2‖1/p

� ‖(|A1|2 + |B1|2)p/2‖1/p + ‖(|A2|2 + |B2|2)p/2‖1/p. (30)

When 1 � p � 2, (23) implies

‖(|Ai |2 + |Bi |2)p/2‖ � ‖ |Ai |p + |Bi |p‖ (i = 1, 2). (31)

By the operator concavity of tp/2 we get

|A1 + A2|p + |B1 + B2|p
2

�
( |A1 + A2|2 + |B1 + B2|2

2

)p/2

(32)

so that

2p/2−1‖ |A1 + A2|p + |B1 + B2|p‖
� ‖(|A1 + A2|2 + |B1 + B2|2)p/2‖. (33)

Combining (33), (30) and (31) we have

21/2−1/p‖ |A1 + A2|p + |B1 + B2|p‖1/p

� ‖ |A1|p + |B1|p‖1/p + ‖ |A2|p + |B2|p‖1/p.

When p � 2, (24) implies

‖ |A1 + A2|p + |B1 + B2|p‖ � ‖(|A1 + A2|2 + |B1 + B2|2)p/2‖. (34)

Since, as in the proof of Theorem 11,( |Ai |2 + |Bi |2
2

)p/2

� Ui

( |Ai |p + |Bi |p
2

)
U∗
i

for some unitary Ui, we have

21−p/2‖(|Ai |2 + |Bi |2)p/2‖ � ‖ |Ai |p + |Bi |p‖ (i = 1, 2). (35)

Combining (34), (30) and (35) yields

21/p−1/2‖ |A1 + A2|p + |B1 + B2|p ‖1/p

� ‖ |A1|p + |B1|p ‖1/p + ‖ |A2|p + |B2|p ‖1/p.

This completes the proof. �

The inequality in Theorem 13 holds for p = ∞ as well; however the sharper
inequality

‖ |A1 + A2| ∨ |B1 + B2| ‖∞ � ‖ |A1| ∨ |B1| ‖∞ + ‖ |A2| ∨ |B2| ‖∞ (36)

is valid. This is seen from Theorem 14 below, but a direct proof is also easy since
‖ |A| ∨ |B| ‖∞ = max{‖A‖∞, ‖B‖∞}.
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The example

A1 =
[

1 0
0 0

]
, A2 =

[
0 1
0 0

]
, B1 =

[
0 0
0 1

]
, B2 =

[
0 0
1 0

]
with the operator norm shows that when 1 � p � 2 is fixed and ‖ · ‖ is arbitrary, the
constant 21/2−1/p in Theorem 13 is best possible.

When Ai, Bi (i = 1, 2) are positive semidefinite matrices, there is a possibility to
obtain a sharper inequality. When ‖ · ‖ = ‖ · ‖∞ and 1 � p � 2, it is proved in [2,
Proposition 3.7] that

‖(A1 + A2)
p + (B1 + B2)

p‖1/p∞ � ‖Ap

1 + B
p

1 ‖1/p∞ + ‖Ap

2 + B
p

2 ‖1/p∞ .

We also have

21/p−1‖(A1 + A2)
p + (B1 + B2)

p‖1/p � ‖Ap

1 + B
p

1 ‖1/p + ‖Ap

2 + B
p

2 ‖1/p

for every unitarily invariant norm and 1 � p � 2. (The constant 21/p−1 is better than
2−|1/p−1/2| for 1 � p < 4/3.) Indeed, since the operator convexity of tp gives

21−p(A1 + A2)
p � A

p

1 + A
p

2 , 21−p(B1 + B2)
p � B

p

1 + B
p

2 ,

we get

21/p−1‖(A1 + A2)
p + (B1 + B2)

p‖1/p

� ‖Ap

1 + A
p

2 + B
p

1 + B
p

2 ‖1/p

� (‖Ap

1 + B
p

1 ‖ + ‖Ap

2 + B
p

2 ‖)1/p
� ‖Ap

1 + B
p

1 ‖1/p + ‖Ap

2 + B
p

2 ‖1/p.

For Schatten norms we have:

Theorem 14. For 1 � p, r � ∞ and Ai, Bi ∈ Mn (i = 1, 2),

2(1/p)(1/r−1)‖ |A1 + A2|p + |B1 + B2|p ‖1/p
r

� ‖ |A1|p + |B1|p ‖1/p
r + ‖ |A2|p + |B2|p ‖1/p

r .

Proof. Both limit cases p = ∞ and r = ∞ follow by taking the limits of the cases
p < ∞ and r < ∞, so we may assume p, r < ∞. First, the case r = 1 is obvious
since

‖ |A|p + |B|p ‖1/p
1 =

∥∥∥∥
[
A 0
0 B

]∥∥∥∥
p

is a norm in (A,B). Next, for 1 < r < ∞, since( |A1 + A2|p + |B1 + B2|p
2

)r

� U

( |A1 + A2|pr + |B1 + B2|pr
2

)
U∗

for some unitary U by the operator concavity of t1/r , we can apply the above trace
norm case to get
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‖ |A1 + A2|p + |B1 + B2|p‖1/p
r

= ‖(|A1 + A2|p + |B1 + B2|p)r‖1/pr
1

� (2r−1)1/pr‖ |A1 + A2|pr + |B1 + B2|pr‖1/pr
1

� 2(1/p)(1−1/r)
(
‖ |A1|pr + |B1|pr‖1/pr

1 + ‖ |A2|pt + |B2|pr‖1/pr
1

)
= 2(1/p)(1−1/r)

(
‖(|A1|pr + |B1|pr)1/r‖1/p

r + ‖(|A2|pr+ |B2|pr)1/r‖1/p
r

)
.

Since by (23)

‖(|Ai |pr + |Bi |pr)1/r‖r � ‖ |Ai |p + |Bi |p‖r ,
we have

‖ |A1 + A2|p + |B1 + B2|p‖1/p
r

� 2(1/p)(1−1/r)
(
‖ |A1|p + |B1|p‖1/p

r + ‖ |A2|p + |B2|p‖1/p
r

)
,

as desired. �

In the rest of this section we consider norm inequalities of Minkowski type con-
cerning ‖(|A|p + |B|p)1/p‖. At first, since

‖(|A|2 + |B|2)1/2‖ =
∥∥∥∥
[
A 0
B 0

]∥∥∥∥ ,
it is obvious that

‖(|A1 + A2|2 + |B1 + B2|2)1/2‖
� ‖(|A1|2 + |B1|2)1/2‖ + ‖(|A2|2 + |B2|2)1/2‖. (37)

For Schatten norms we give the following two results.

Theorem 15. For 1 � p � r � ∞ and Ai, Bi ∈ Mn (i = 1, 2),

2−|1/p−1/2|‖(|A1 + A2|p + |B1 + B2|p)1/p‖r
� ‖(|A1|p + |B1|p)1/p‖r + ‖(|A2|p + |B2|p)1/p‖r .

Proof. When p = ∞ (hence r = ∞), the sharper inequality (36) is valid. So we
may assume p < ∞ and prove the inequality for a more general unitarily invariant
norm of the form ‖ · ‖ = ||| · |||(p) (see (20)) with another unitarily invariant norm
||| · |||. Here note that ‖ · ‖r = ‖ · ‖(p)r/p. When 1 � p � 2, it follows from (23) that

‖(|Ai |2 + |Bi |2)1/2‖=|||(|Ai |2 + |Bi |2)p/2|||1/p
� ||| |Ai |p + |Bi |p |||1/p
=‖(|Ai |p + |Bi |p)1/p‖.
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By (32) we get

21/2−1/p‖(|A1 + A2|p + |B1 + B2|p)1/p‖
� ‖(|A1 + A2|2 + |B1 + B2|2)1/2‖.

Combining the above two inequalities and (37) yields

21/2−1/p‖(|A1 + A2|p + |B1 + B2|p)1/p‖
� ‖(|A1|p + |B1|p)1/p‖ + ‖(|A2|p + |B2|p)1/p‖.

The proof for the case 2 � p < ∞ is similar. Applying (24) to |||(|A1 + A2|2 +
|B1 + B2|2)p/2||| gives

‖(|A1 + A2|2 + |B1 + B2|2)1/2‖ � ‖(|A1 + A2|p + |B1 + B2|p)1/p‖.
Also, applying (35) to the norm ||| · ||| gives

21/p−1/2‖(|Ai |2 + |Bi |2)1/2‖ � ‖(|Ai |p + |Bi |p)1/p‖.
Finally use (37) again to obtain the required inequality. �

Theorem 16. For 1 � p, r � ∞ and Ai, Bi ∈ Mn (i = 1, 2),

2−|1/p−1/r|‖(|A1 + A2|p + |B1 + B2|p)1/p‖r
� ‖(|A1|p + |B1|p)1/p‖r + ‖(|A2|p + |B2|p)1/p‖r .

Proof. We may assume p, r < ∞ as in the proof of Theorem 14. When 1 � r �
p < ∞, by (23) and Theorem 14 (the trace norm case) we have

‖(|A1 + A2|p + |B1 + B2|p)1/p‖r
= ‖(|A1 + A2|p + |B1 + B2|p)r/p‖1/r

1

� ‖ |A1 + A2|r + |B1 + B2|r‖1/r
1

� ‖ |A1|r + |B1|r‖1/r
1 + ‖ |A2|r + |B2|r‖1/r

1 .

By the operator concavity of t r/p we get

|Ai |r + |Bi |r � 21−r/p(|Ai |p + |Bi |p)r/p.
Therefore,

‖(|A1 + A2|p + |B1 + B2|p)1/p‖r
� 21/r−1/p

{
‖(|A1|p + |B1|p)r/p‖1/r

1 + ‖(|A2|p + |B2|p)r/p‖1/r
1

}
= 21/r−1/p

{
‖(|A1|p + |B1|p)1/p‖r + ‖(|A2|p + |B2|p)1/p‖r

}
.

When 1 � p � r < ∞, we can apply Theorem 14 with r/p in place of r to get
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21/r−1/p‖ |A1 + A2|p + |B1 + B2|p ‖1/p
r/p

� ‖ |A1|p + |B1|p ‖1/p
r/p + ‖ |A2|p + |B2|p ‖1/p

r/p .

Since

‖ |A|p + |B|p ‖1/p
r/p = ‖(|A|p + |B|p)1/p‖r ,

the desired inequality follows. �

When 1 � p � 2, the example following the proof of Theorem 13 shows the best
possibility of the constant in the inequality in Theorem 15 (attained in the case r =
∞). On the other hand, when 2 < p � ∞, it is known [2, Proposition 3.6] that there
exist positive semidefinite Ai, Bi such that

tr
{(
(A1 + A2)

p + (B1 + B2)
p
)1/p

}
> tr

{
(A

p

1 + B
p

1 )
1/p

}
+ tr

{
(A

p

2 + B
p

2 )
1/p

}
.

Thus, for any 1 � p � ∞ except p = 2, the inequality

‖(|A1 + A2|p + |B1 + B2|p)1/p‖
� ‖(|A1|p + |B1|p)1/p‖ + ‖(|A2|p + |B2|p)1/p‖

cannot generally hold.
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