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Abstract
Let || - || be a unitarily invariant norm on matrices. For matrices A, B, X with A, B positive
semidefinite and X arbitrary, we prove that the function s — || |A’XBI=/|" || - || |A1 = X B ||

is convex on [0, 1] for each r > 0. This convexity result interpolates the matrix Cauchy—
Schwarz inequality || |AY2XBY2|" |2 < || |AX|" || - || |IXB|" || due to R. Bhatia and C. Davis
[Linear Algebra Appl. 223/224 (1995) 119], and also it generalizes A.W. Marshall and I.
Olkin’s [Pacific J. Math. 15 (1965) 241] result that the condition number ||A*| - |[A™%] is
increasing in s > 0. We prove that if f(¢) is a nonnegative operator monotone function on
[0, 0co0) and || - || is a normalized unitarily invariant norm, then f (|| X||) < || f(|X])| for every
matrix X. The special case when f () = " (0 < r < 1) is used to consider the monotonicity of
p > |AP + BP||Y/P as well as p — ||(AP + BP)Y/P||. Furthermore, we obtain some norm
inequalities of Holder and Minkowski types related to the expression || |A|” + |B|? || /P For
example, comparisons are made between |C*A + D*B| and || |A|” + |B|? |17 - | |C|9 +
[D|9 |14, where p~! 4+ g—! = 1. © 2002 Elsevier Science Inc. All rights reserved.

AMS classification: 15A60; 15A45; 47A30

Keywords: Unitarily invariant norms; Operator monotone functions; Cauchy—Schwarz inequality; Con-
vexity; Monotonicity; Holder inequality; Schatten norms

* Corresponding author.
E-mail addresses: hiai@math.is.tohoku.ac.jp (F. Hiai), zhan @math.pku.edu.cn (X. Zhan).
1 Supported by Grant-in-Aid for Exploratory Research 12874019.
2 Supported by the National Science Foundation of China under Grant 19801004 and Grant-in-Aid for
JSPS Fellows 99216.

0024-3795/02/$ - see front matter © 2002 Elsevier Science Inc. All rights reserved.
PI:S0024-3795(01)00353-6


https://core.ac.uk/display/82206089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

152 F. Hiai, X. Zhan / Linear Algebra and its Applications 341 (2002) 151-169

1. Introduction

Let M, be the space of n x n complex matrices. A norm || - || on M, is called
unitarily invariant if |[UAV || = ||A|| forall A, U, V with U, V unitary. Examples in
this class are Schatten p-norms and Ky Fan k-norms. For basic properties of unitarily
invariant norms see [4,8]. The matrix Cauchy—Schwarz inequality proved by Horn
and Mathias [9,10] is

HA*BI" > < [(A*AY | - [(B*B)" | 6]

forall A, B € M,, any real number r > 0 and every unitarily invariant norm, where
|Y| = (Y*Y)"/2. Bhatia and Davis [5] (see also [4, Theorem IX.5.2] and [7, p. 174])
generalized this to the form

I|A*XBI" |> < | |AA*X|" || - | I XBB*|" |
forall A, B, X € M,, and any r > 0, which is obviously equivalent to
IAY2X B2 |12 < 1|AX|" || - 11X BI" | )

for positive semidefinite A, B and arbitrary X. We remark that the following more
general Holder type inequality was proved in [11, Theorem 3]:

IAXB|" || < [[|APX|" |7 - ||| XBI|" | /e 3)
for positive semidefinite A, B, arbitrary X, and positive real numbers r, p, g with
pl+g =1

On the other hand, for positive real numbers a;, b; (i = 1, ..., n) and real num-

bers u, x, Callebaut [6] gave the following interesting refinement of the classical
Cauchy—Schwarz inequality: The expression

n n
(Z a:‘“%“*) (Z aé""bf‘*") @
i=1 i=1

increases as |x| increases. See [13] for a simple proof. To see the effect just consider
thecase u = 1, —1 < x < 1 in (4). In the same spirit, in Section 2 we will prove the
matrix analog by considering the convexity of a norm function (Theorem 1).

Given a norm || - || on M,, the condition number of an invertible matrix A is
defined as

c(A) = Al - 1A

This is one of the basic concepts in numerical analysis; it serves as measures of the
difficulty in solving a system of linear equations. Marshall and Olkin [12, Theorem
3.2] proved that for positive definite A and every unitarily invariant norm

c(A%) = [|A*] - [IA™"| ®)
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is increasing in s > 0. We generalize this result in Section 2.
In Section 3 we first prove that the inequality

FAIAD < IAAADI (0)
holds when f(¢) is a nonnegative operator monotone function on [0, co) and || - ||
is a unitarily invariant norm normalized as |diag(1,0, ..., 0)|| = 1. Furthermore,
the reverse inequality is shown when || - || is normalized as || /|| = 1. We next use

the special case of (6) when f(f) =" (0 < r < 1) to discuss the monotonicity of
p > AP + BP|V/P.

Finally in Section 4 we obtain some norm inequalities of Holder and Minkow-
ski types. Similar kinds of norm inequalities related to the expression ||(JA|? +
|B|P)!/P || were discussed in [2]. However, in this paper we mostly treat the different
expression || [A|? + |B|P || 1/p 1t seems that the latter expression is somewhat easier
to handle than the former. The forms of the inequalities obtained are

al|C*A + D*B| < [[|AIP + |BI” |7 - | |C14 + D ||'/9
(for p~ ' +47 1 = 1),
BIl AL + A2|P + |By + Bo|P ||'/P
< ALP + B 1VP + 11A21P + |Ba|P ||VP,
where «, § are constants depending on p (also the norm || - ||). Unlike the scalar case

it turns out that the constants «, § strictly smaller than 1 are indispensable except the
case p = 2.

2. Convexity of certain functions involving unitarily invariant norms

In this section we treat some functions of a real variable involving unitarily in-
variant norms. We prove the convexity of those functions refining the known norm
inequalities of Cauchy—Schwarz type.

Theorem 1. Let A, B, X € M, with A, B positive semidefinite and X arbitrary. For
every positive real number r and every unitarily invariant norm, the function
t 1—t 1—- t
¢@)=1A'XB " |- |I|A ' XB'|"||
is convex on the interval [0, 1] and attains its minimum at t = 1/2. Consequently, it

is decreasing on [0, 1/2] and increasing on [1/2, 1].

Proof. Since ¢ (¢) is continuous and symmetric with respect to ¢ = 1/2, all the
conclusions will follow after we show that

d@) <{pt+s)+¢@—19)}/2 (7
fort + 5 € [0, 1]. By (2) we have
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HA'XB'™|" | = |A* (A" X BT ) B*|" |

_ _ o 1/2
g{” |AI+XXB1 (t+s)|r ” . ” |Al‘ SXBI (t s)|r ”}

and
A XB'|" | = |A* (A" XB")B*|" |
12
g{” |Al—(l—S)XBt—S|r ” . ” |Al—(l+S)XBl+S|r ”} .

Upon multiplication of the above two inequalities we obtain

HAXB - AT X B! || < (g + )t — )} /2. 8)
Applying the arithmetic—geometric mean inequality to the right-hand side of (8)
yields (7). This completes the proof. [

An immediate consequence of Theorem 1 interpolates the Cauchy—Schwarz in-
equality (2) as follows.

Corollary 2. Let A, B, X € M,, be as in Theorem 1. For every r > 0 and every

unitarily invariant norm,
IAY2X B2 |2 < A" XB )" || - [ |AY X B'|" |
|

HAXT - 11X BI" |

NN

holds for 0 <t < 1.

Corollary 3. Let A, B, X € M,, with A, B positive definite and X arbitrary. For
every r > 0 and every unitarily invariant norm, the function

g(s) =I1A*XB*|" |- [ |AT”XB™*|" | ©)
is convex on (—00, 00), attains its minimum at s = 0, and hence it is decreasing on
(—00, 0) and increasing on (0, 00).

Proof. In Theorem 1, replacing A, B, X and ¢ by A2, B2, A=1XB and (14+s)/2
respectively, we see that g(s) is convex on (—1, 1), decreasing on (—1, 0), increas-
ing on (0, 1) and attains its minimum at s = 0 when —1 < s < 1. Next replacing
A, B by their appropriate powers it is easily seen that the above convexity and
monotonicity of g(s) on those intervals are equivalent to the same properties on
(—00, 00), (—00, 0) and (0, co) respectively. [

Note that Marshall and Olkin’s [12] monotonicity result on the condition number
in (5) corresponds to the case r = 1, X = B = [ (the identity matrix) of g(s) in (9).

To see that Callebaut’s result on (4) is indeed a special case of Corollary 3, in (9)
putr = 1,5 = x, A = diag(ay, ..., an), B:diag(b_l, R bn_l), X =diag((a1b)*,
.o, (ayby)"), and let || - || be the trace norm.



F. Hiai, X. Zhan / Linear Algebra and its Applications 341 (2002) 151-169 155

The following is another example of convex functions involving unitarily invari-
ant norms.

Theorem 4. Let A; € M,, (i =1,...,k) be positive semidefinite. For every posi-
tive real number r and every unitarily invariant norm, the functiont — || (Zle AD"|
is convex on (0, 00).

Proof. It suffices to show

() ML)

2

i=1

for all s, ¢ > 0. In inequality (1) setting

A% 0 o0 CA2 0 o
A A;/z 0 --- 0 5 Atz/2 0 --- 0
we obtain
k r k r k )2
el el o
i=1 i=1 i=1

Applying the arithmetic—geometric mean inequality to the right-hand side of (11)
gives (10). O

3. A norm inequality for operator monotone functions with applications

For Hermitian matrices H, K we write H < K or K > H to mean that K -H is
positive semidefinite. A real-valued continuous function f(¢) on [0, co) is said to
be operator monotone if 0 < A < B implies f(A) < f(B) for any A, B € M,, of
all orders n. Here f(A) is defined by the usual functional calculus on A. Familiar
examples of operator monotone functions are t” (0 < p < 1) and log(z + 1).

A norm on M, is said to be normalized if ||diag(1, 0, ..., 0)|| = 1. All the Ky Fan
k-norms (k = 1, ..., n) and Schatten p-norms (1 < p < 00) are normalized. Given a
norm || - || on M,,, the dual norm of || - || with respect to the Frobenius inner product is

IAI° = max {|tr AX*|: X € My, |X]| =1} .

If || - || is a unitarily invariant norm on M, and A > 0, then by the duality theorem
we have (see [8, Theorem 3.5.5] for an equivalent result)
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|All =max {trAB: B>0, |[B|I°=1, BeM,}. (12)

The following result is a norm inequality for operator monotone functions. The spe-
cial case when f(z) = t" (0 < r < 1) will be used later.

Theorem 5. Let f(t) be a nonnegative operator monotone function on [0, 0o0) and
I - | be a normalized unitarily invariant norm on M,,. Then for every A € M,,,

FAAD < I1FAADI- (13)

Proof. Since ||A| = || |A] ||, it suffices to prove (13) for the case when A is posi-
tive semidefinite. We now make this assumption. By (12) there exists a B > 0 with
I BIP = 1 such that

Al = tr AB. (14)

Denote by || - ||co and || - ||1 the operator (spectral) norm and the trace norm respec-
tively. Every normalized unitarily invariant norm satisfies

[Xlloo < IXII< X1 (X € My)

(see [4, p. 93]). Since | - || is normalized, || - || is also a normalized unitarily invari-
ant norm. Hence
1=|B|° < B =tB. (15)
From ||A|lco < ||A]| and (14) we have
s||A]l < slIAllL sAB

SHIAL S s+ 1Al 5+ 1Al
12 SA Bl/2
s+ 1Alloo
<t BY*{sA(sI + A)~1)B!/?
=trsA(s] + A)”'B (16)

=trB

for any real number s > 0. In the above latter inequality we have used the fact that
SA/(s + |Alloo) < SA(ST + AL

It is well known (e.g., [4]) that for each nonnegative operator monotone function
f (@) on [0, co) there are unique constants «, B > 0 and a positive measure (4 (-) on
(0, 00) such that

f(t)=a+ﬂt+/
0

Using this integral representation, (15), (14), (16) and (12) we compute

© sl
A= A
FUAD=a + Bl ||+f0 ST AT

[e.0]

%dM(S) 0 <1< 00). (17)

du(s)

o
<atr B+ trAB + / trsA(sI + A)"'Bdu(s)
0
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—tr {al +BA+ /OOSA(sI + A)_ldu(s)} B
0

=tr f(A)B
<A,

completing the proof. [J

We say that a norm || - || is strictly increasing if 0 < A < B and ||A|| = || B|| im-
ply A = B. For instance, the Schatten p-norm | - ||, is strictly increasing for all
1 < p < co. We now consider the equality case of (13).

Theorem 6. Let f(t) be a nonnegative operator monotone function on [0, 00) and
assume that f(t) is non-linear. Let || - || be a strictly increasing normalized unitarily
invariant norm and A € M, with n > 2. Then f(||All) = |f(AD| if and only if
f(©O) =0andrank A < 1.

Proof. First assume that f(0) = Oand |A| = A P with a projection P of rank 1. Then
|A]l = A|lP]| = A by the normalization assumption and || f(|AD|| = [|f(A)P] =
f ) = f(lA]]). Conversely, assume f(||All) = | f(|AD]||. If A = 0, then since || - ||
is normalized and strictly increasing we must have f(0) = 0. Next suppose A # 0.
Let p be the measure in the integral representation (17) of f(¢). Since f(¢) is non-
linear, i # 0. From the proof of Theorem 5 we know that f(||A]) = || f(ADI
implies ||A|lcc = ||A|| or equivalently

[diag(s1, 0, ..., 0) = [ldiag(s, s2, ..., sn)ll,
where s1 > 52 > --- > s, are the singular values of A. Now the strict increasing-

ness of || - || forces s, = --- = s, = 0, that is, rank A = 1. So write |A| = AP with
a projection P of rank 1. Since f(||All) = || f(]A])|| means

IfPI=IfR)P+ fOUT = P,
we have f(0) = Odue to I — P # 0 and the strict increasingness of || - || again. [

Theorem 5 can be complemented by the following reverse inequality for unitarily
invariant norms with different normalization.

Theorem 7. Let f(t) be a nonnegative operator monotone function on [0, 0o) and
Il - I be a unitarily invariant norm on My, with ||I|| = 1. Then for every A € M,

IFAADI < fAIAID.

Proof. We may assume that A is positive semidefinite. Since
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o
F(A) =al + BA +/ sAGsI + A~ Ndu(s)
0
as in the proof of Theorem 5, we have
* 1
I f(AN <o+ BlAI +/ IsAGsT + A)~ [l dp(s)
0

due to ||7|| = 1. Hence it suffices to show

Al
s+ Al

IAGT 4+ A~ < (s > 0). (18)

For each s > 0, since

<Ayt
s+ x s

forallx > 0and0 < ¢ < 1, we get
AT+ A ' <PPI+0—-0)%7'A
so that
TAGT+ AT < 12T+ (1 =0T A <2+ (=27 H|A]L (19)

Minimize the right-hand side of (19) over ¢ € (0, 1) to obtain (18). This completes
the proof. [

Denote E = diag(1,0, ..., 0). Combining the inequalities in Theorems 5 and 7,
we can write

\EIl - f (W) <IFAADI < 111 - (M)
T\E] W

for every nonnegative operator monotone function f(¢#) on [0, co) and for every
unitarily invariant norm || - ||. As an immediate consequence of this we have:

Corollary 8. Let g(t) be a strictly increasing function on [0, 00) such that g(0) = 0,
g(00) = oo and the inverse function g_1 on [0, 00) is operator monotone. Let || - ||
be an arbitrary unitarily invariant norm. Then for every A € M,,,

g (Y7 ) < tedani <1 (151 )
71 IE]

Given a unitarily invariant norm | - || on M,,, for p > 0 define

IXI1P = |IX|P1MP (X € My). (20)
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Then it is known [4, p. 95] (or [7, Lemma 2.13]) that when p > 1, || - |?) is also a
unltarlly 1nvar1ant norm.

Corollary 9. Let || - || be a normalized unitarily invariant norm on M,,. Then for
any A € M,,, the function p — || A||P) is decreasing on (0, 00) and

lim AP = [[Alloc.
paoo
The above limit formula remains valid without the normalization condition on || - ||.

Proof. The monotonicity part is the special case of Theorem 5 when f(¢) =1¢",
0 <r <1, but we may give a short direct proof. It suffices to consider the case
when A is positive semidefinite, and now we make this assumption. We first show

IA]
IA"]

A" (O <r <D, ey

[ = |
| <TAIT (1 <7 <o00). (22)
Since ||Alleo < ||A]l, forr > 1 we get

IATII=1AA™ " < AT IA" oo
=NAINAIG" < IANIANIT" = 1A]",
proving (22). Inequality (21) follows from (22): For 0 < r < 1, Al = [[(AD)Y7|| <

A1/
If0 < p < g, then

IAP|| = [[(ADYP/9| > | A9||P/4
so that ||AP||'/P > ||A?||'/4. Moreover,
1 1
1Alleo = 1A ISP < APVP < JAPIVP = 1Al — 1Al

as p — 0o, where || - ||, is the Schatten p-norm. When || - || is not normalized, we
just apply the normalized case to || - ||/||diag(1,0,...,0)]. O

When f(¢) is a nonnegative operator monotone function on [0, 00), the inequality

IfF(X+ D) < I1F(X)+ fFD)]

was proved in [3] for all positive semidefinite X, Y € M, and for every unitarily
invariant norm. Also, for a function g(#) as in Corollary 8 the reverse inequality

lg(X + )l > llg(X) + gl

was proved there. Special cases of these are

X+ <IX"+Y O<r<D, (23)
X+ 1> 1X"+Y (1<r<o0), (24)

which will be repeatedly used in the sequel of the paper.
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Next we consider the monotonicity of the functions p — |[(A? + BP)!/P|| and
p +— ||AP 4+ BP||1/P. We denote by A v B the supremum of two positive semidefi-
nite matrices A, B in the sense of Kato (see [1, Lemma 6.15]).

Theorem 10. Let A, B € M, be positive semidefinite. For every unitarily invariant
norm, the function p — (AP + BP)V/P| is decreasing on (0, 1]. For every nor-
malized unitarily invariant norm, the function p — ||AP + BP||Y/? is decreasing on
(0, 00) and

lim |A? + BP|'/? = |AV B| .
p—>00

The above limit formula remains valid without the normalization condition.

Proof. Let0 < p <g < 1.Setr =q/p (> 1), X = AP, Y = B? in (24) to get
I(A? + BPY!/P|| > || A7 + BY|. (25)

Using a majorization principle [8, Lemma 3.3.8] together with Ky Fan’s dominance
principle [4, 8], we can apply a convex and increasing function 7!/ on [0, o) to
(25) and get

I(AP + BPYYP| > [[(A7 + BTV
which shows the first assertion.
To show the second assertion we must prove

|AP + BP VP > |AY + BY|| Y4, (26)

for 0 < p < g. Itis easily seen that (26) is equivalent to
A+ B|" > |A" + B|

for all > 1 and all positive semidefinite A, B € M,,, which follows from (22) and
(24):

IA+BI" > I(A+B)|| > |A" + Bl
For p > 1,

(AP + B /P )| =|| AP + B ||
1AP + BP|'P
IAP + BP|}/P

1

=|(A” + BP) /P”p
<[(A? + BP)/? —(AV B)|, + AV B|,
<|I(A? + BPYYP —(Av B)|l1 + AV B,

NN

Since
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p—>00

AP 4 gp\ /P
lim (A? + B”)Y? = lim (;> =AVB
P00 2

(see [1, Lemma 6.15]) and

lim [[AV B, =[|AV Bllc,
p—>00

we obtain

lim [|A” + BP|'/? = |AV Bx.
p—>00
This completes the proof. [

We remark that there are some unitarily invariant norms for which p — |[(A? +
BP)!/P|| is not decreasing on (1, c0). Consider the trace norm (here it is just trace
since the matrices involved are positive semidefinite). In fact, for the 2 x 2 matrices

1 0 12 1 =12
A—[o o}’ B"[r - 1—z2} O<r<D,

it was proved in [2, Lemma 3.3] that for any py > 2 there exists a¢ € (0, 1) such that
p > tr{(A? + BF)!/P} is strictly increasing on [ po, 00). Also consider the example
¥ (p) = tr {(A? + BP)V/P} with

12 1 -6
Az[z 5}’ B:[—6 50]

Then ¥ (1.5) — ¥ (8) = —1.5719. Thus ¥ (1.5) < ¥(8). Hence ¥ (p) is not decreas-
ing on [1.5, 8].

4. Norm inequalities of Holder and Minkowski types

Let 1 < p, g < oo with p_1 + q_l = 1. It is known [4, p. 95] (also [7, p. 174])
that the Holder inequality

XY X 7y ) (= ey ) @7)

holds for all X, Y € M, and every unitarily invariant norm, where || |X|? ||1/? for
p = oo is understood as the operator norm || X ||« (see Corollary 9). Actually, this
is a special case of the Holder inequality (3) mentioned in Section 1. Here note
that || | X*|" || = || |X]|" || for r > 0. The results in this section may be regarded as
applications of inequalities (23), (24) and (27).

In what follows || |A|” + |B|? |'/? for p = oo will be understood as | |A| V
| B| ||co due to Theorem 10. We will use the following simple fact several times: Let A
and B be positive semidefinite matrices having the eigenvalues o1 > - -+ > «;, (= 0)
and B = -+ = B, (= 0), respectively. If o; < g; (i =1,...,n) (in particular, if
A < B), then there exists a unitary U such that A” < UB"U* forall r > 0.
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Theorem 11. Let 1 < p,q < oo with p~' +¢g~ ' = 1. Forall A,B,C,D € M,
and every unitarily invariant norm,

2 WP=12lc* A + D*B|| < | |AIP + |BIP VP - | |C|19 4+ D7 ||V9 . (28)

Moreover, the constant 2~11/P=1/21 js pest possible.

Proof. Since

and the inequality is symmetric with respect to p and g, we may assume 1 < p <
2 < g < oo. Note that

c 0'[A 0] _[c*A+D*B 0
D o] |B 0]~ 0 0]
From (27) it follows that
c 0]"'[A o
D 0 B 0

<L 015 )

=II(IAI> + [BH)P2|VP |(1C 1> + D)) 4.

IC*A+ D*B| =

q11/q

Since 1 < p < 2, (23) implies
IUAR + 1BIH?2 < AP +1BI7|l.
Since the operator concavity of */7 gives
ICI> +1DP _ <|C|‘1 + |D|q>2/‘f
2 = 2 ’

by the remark proceding the theorem we get

2
<|C|2 + |D|2>‘” U <|C|q + |D|q) -
2 h 2

for some unitary U. Therefore, we have

I(C 12 + | D)2/ Ve < 21/2=Vay |12 4 | D17 || V4
=2/P=121C19 4 | D)7 |14,

Thus the desired inequality (28) follows.
The best possibility of the constant is seen from the following example:

10 0 1
A:C:D:[O 0}’ B:[o 0}
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with the operator norm || + ||oo. U

In particular, the case p = g = 2 of (28) is
IC*A + D*B| < AP + B2 - | ICI* + [DP||'/2.
We now consider Schatten norms.
Theorem 12. Let1 <r < ooand1 < p,q < oo with p’l—i—q’1 = 1. Forall A, B,
C,DeM,,
217N C* A+ DBl < AP + 181717 - 11C1E + DI (29)

Proof. By (27) for every unitarily invariant norm we have
IC*A + D*B| <|IC*A|l + | D*B||
<IHAPYP e e+ 1B |e - ppe e
1 1
<(NAPI+1BIPNY - (el +111ppe ) e .
When |- [ = - Il
1 1
AP, + 11BIP N, = (] A7) + (r1B1P)""
<2V (w( AP+ (BIP)
=21V AP+ 1 BIPHYT,
<27V AP+ 1B s

and similarly for || |C|?]|, + || | D|?]|,. In the last inequality above we have used (23).
Thus we get the required inequality (29). O

Theorem 12 is meaningful only for 1 < » < 2 because in the case 2 < r < oo it
is weaker than Theorem 11. In particular, for r = 1,
1 1
IC*A + D*Bly < [1AI” +BI”1}/” - | C19 + D9 .
Next we consider norm inequalities of Minkowski type.

Theorem 13. Let 1 < p < o0. For A;, B € M,, (i = 1,2) and every unitarily in-
variant norm,

27 VPR AL + Aol? + 1By + Baf (117
<N AUP + [BUP 1M 4 | |A2)? + | Bo| P |17

Proof. Since

1/p
A 0
2 2yp/2\1/p _
ICIA]" + [BI)P4] —H‘[B 0]

p
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isanormin (A, B), we have
(A1 + Az|* + | By + Bo|HP/2||1/P
<AL + [BUHPRIYP 4111 A2)* + | B )P VP (30)
When 1 < p < 2, (23) implies
1A+ 1BADPP < AP + IBiIP N (o= 1,2). 31
By the operator concavity of 17/ we get

2
AL+ Aol” +1B1 + Bol? _ (|A1 + A2 + B + Bz|2>”/
2 h 2

(32)

so that

2PN A + A2l? + By + Bol”||
< (A1 + A2)* + |B1 + Bo|P)P). (33)

Combining (33), (30) and (31) we have
2271P || Ay + AolP + | By + Bo|P || VP
<AL + [BUP|VP 41| A2l? + | Bo ||| VP.
When p > 2, (24) implies
I1A1 + A2|” + |By + Ba|”|| < [(|A1 + A2|* + | By + B2H)P/?. (34)
Since, as in the proof of Theorem 11,

/2
1A 1 + 1B 1>\ |A;|P + |B;|P
( 1 5 1 < Ui 2 > 2 Ul'*

for some unitary U;, we have

27PN+ 1BiPPR < AP+ 1Bi1P) (= 1,2). (35)
Combining (34), (30) and (35) yields

2VPTIR) AL+ Maf? + 1By + Baf” |7

<AL+ [BUP VP + 1 |Aol? + [ Baf? /7.
This completes the proof. [J
The inequality in Theorem 13 holds for p = oo as well; however the sharper

inequality

A1 + A2[ V [B1 + Ba| loo < A1]V [Billoo + [ 1A2] V [B2|llc  (36)

is valid. This is seen from Theorem 14 below, but a direct proof is also easy since
AV Bl lloo = max{[| Ao, [ Blloo}-
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The example

10 0 1 0 0 0 0
el e A R E

with the operator norm shows that when 1 < p < 2is fixed and || - || is arbitrary, the
constant 2!/271/7 in Theorem 13 is best possible.

When A;, B; (i = 1, 2) are positive semidefinite matrices, there is a possibility to
obtain a sharper inequality. When || - || = || - |loo and 1 < p < 2, it is proved in [2,
Proposition 3.7] that

I(A1 + A2)? + (By + Bo)P |17 < | AP + BPINXP + 1AL + BEIXP.
We also have
2YP7YI(AL + A2)P + (By + B)P|1MP < |AT + BY|IVP +|AS + BY VP

for every unitarily invariant norm and 1 < p < 2. (The constant 2!/7~1 is better than
2-11/P=1721 for 1 < p < 4/3.) Indeed, since the operator convexity of 7 gives

2177 (AL + AP AT+ ALY 217P(Bi+ By)P < BY + B,
we get
2VP7N[(Ay + AP + (B + By)P|VP
< AV + AS + BY + BJ||'/P
< (IA7 + Bl + [1AY + BY|D'/?
< AV + BYIYP + | AY + BY) .

For Schatten norms we have:

Theorem 14. For1 < p,r < oocand A;, Bi e M, (i = 1,2),
2U/PAD AL + Aol + B+ Bl |17
1 1
<NTALP + 1BUP 1P + 11 A2l? + (Bl 117

Proof. Both limit cases p = oo and r = oo follow by taking the limits of the cases
p < oo and r < 00, sO we may assume p, r < oo. First, the case » = 1 is obvious

since
‘ |:A 0i|
0 B
p

isanorm in (A, B). Next, for 1 < r < o0, since

A As|P B B>|P\" A As|P" B B |P"
<| 1+ Az -ZH 1+ 2|><U(| 1+ Az| -ZH 1+ Bzl )U*

1
I1A1? +|BIP |I}/” =

for some unitary U by the operator concavity of ¢!/”

norm case to get

, we can apply the above trace
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1
1AL+ A2f” +1B1 + Ba? /"
1
= (A1 + A2l” + |By+ Bal) I
<@ HYPAL+ AP+ |By+ Bl
<2 (AP BT 1 Aol + Bl )
= 20/ (AL + B POV (A2l 4 | Bol ) )
Since by (23)
1AL+ 18117l < AP + 1B
we have
1
1AL+ A2l +1B1 + Ba)? /"
<20 (AP 4+ BIPIT + 1Azl + 1 BaIP 17

as desired. [

In the rest of this section we consider norm inequalities of Minkowski type con-
cerning ||(|A|? + |B|P)!/P||. At first, since

A O
2 21/2) _
I0AP +1B1%) ”‘H[B 0]

it is obvious that

(AL + A21? 4+ 1B1 + Bo| )|
< NAALP + BUDY2) + 1142 + B2 1)) (37)

For Schatten norms we give the following two results.

Theorem 15. For1 < p<r<ooand A;, Bi e M,, (i =1,2),

271211 1Ay + AalP + By + BaIP)VP),
< NAALP + [BUPYP I, 4 (1 A2lP + |Bo|P)Y P,

Proof. When p = oo (hence r = 00), the sharper inequality (36) is valid. So we
may assume p < oo and prove the inequality for a more general unitarily invariant
norm of the form || - || = ||| - |||”) (see (20)) with another unitarily invariant norm

[1] - [l]. Here note that || - ||, = || - ||£1/7;,. When 1 < p < 2, it follows from (23) that
IAA* + 1B DY =111 A 1>+ | By 5P/ P
<IIANP + 1B |)1YP
=1I(1A; |7 + | B; 1”7
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By (32) we get
2127VP|(JAy + A2lP + |By + Bo|P)V/P||
<A1 + A2 + 1By + B2 ).
Combining the above two inequalities and (37) yields
227UP(JAL+ Aol? + [B1 + Bo|P)7|
<NAALP + 1BUD)YP | + 111 A2lP + | B2 |7

The proof for the case 2 < p < oo is similar. Applying (24) to |||(|A] + Az|*> +
|B1 + Ba|*)P/2|]| gives

1AL+ A2l* + 1B + B2l)'2 1 > 1(1A1 + Al + |B1 + B2|) /7.
Also, applying (35) to the norm ||| - ||| gives

2P AR+ 1B 2L < AN+ 1B
Finally use (37) again to obtain the required inequality. [J
Theorem 16. For1 < p,r < oocand A;, Bi e M, (i = 1,2),

27 WP (| Ay + Aol + 1By + Bal ") 7|

< NAALP + [BUPYP I, 4 [1(1A2lP + |Bo|P)Y P,

Proof. We may assume p,r < co as in the proof of Theorem 14. When 1 < r <
p < 00, by (23) and Theorem 14 (the trace norm case) we have

(A1 + A2l” + By + Bo|P)'/7 |,
= [(JA1 + Aal? + | By + Bo|P)/P )"
<AL+ Aol + 1By + Bal 117
<A + B+ 1A + 1B 11"
By the operator concavity of 1"/” we get
| A"+ | Bi|” < 2'7P (1A + |Bi PP

Therefore,

1AL+ A2l + | By + Ba|") 7l
<2 LAan” + BN 1AL + 1 Bal Py 71

=21V A + BN Pl + 1 A2l + 1BaIP) 7 |

When 1 < p < r < oo, we can apply Theorem 14 with r/ p in place of r to get
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2U7UPY Ay + Asl? + 1By + Bal |8

1 1
<N IALP + BP0 + 1 Aol + Bl 1,7

Since
1
AP +1BIP 1,70 = (AP + [BIP)'/7),
the desired inequality follows. [

When 1 < p < 2, the example following the proof of Theorem 13 shows the best
possibility of the constant in the inequality in Theorem 15 (attained in the case r =
00). On the other hand, when 2 < p < oo, it is known [2, Proposition 3.6] that there
exist positive semidefinite A;, B; such that

tr{((A1 + AP + (B + Bz)l’)””}
> tr{(Af + Bl”)l/l’} +tr{(A§ + Bf)l/l’} :
Thus, for any 1 < p < oo except p = 2, the inequality

(1AL + A2l? + | By + Bo|P)7||
< NAALP + 1BIUDYP | + 111 A21? + |B2P)VP |

cannot generally hold.
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