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Coordinated cell movements shape simple epithelia into functional tissues and organs during embryogen-
esis. Regulators and effectors of the small GTPase Rho have been shown to be essential for epithelial
morphogenesis in cell culture; however, the mechanism by which Rho GTPase and its downstream effectors
control coordinated movement of epithelia in a developing tissue or organ is largely unknown. Here, we
show that Rhol GTPase activity is required for the invagination of Drosophila embryonic salivary gland
epithelia and for directed migration of the internalized gland. We demonstrate that the absence of zygotic

Keywords:
Dr)(l)sophila function of Rho1 results in the selective loss of the apical proteins, Crumbs (Crb), Drosophila atypical PKC and
Salivary Stardust during gland invagination and that this is partially due to reduced crb RNA levels and apical

Gland localization. In parallel to regulation of crb RNA and protein, Rho1 activity also signals through Rho-kinase
Invagination (Rok) to induce apical constriction and cell shape change during invagination. After invagination, Rho-Rok
Migration signaling is required again for the coordinated contraction and dorsal migration of the proximal half of the
Rho gland. We also show that Rho1 activity is required for proper development of the circular visceral mesoderm

gnilg:glsia upon which the gland migrates. Our genetic and live-imaging analyses provide novel evidence that the
Pglarity proximal gland cells play an essential and active role in salivary gland migration that propels the entire gland
Tube to turn and migrate posteriorly.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Epithelial cells move cohesively to form functional tissues and
organs during embryogenesis. The specification of an epithelial
placode followed by distinct changes in cell shape leading to the
invagination of cells into the underlying tissue is a prevalent
morphogenic movement observed during early stages of the forma-
tion of the lens and optic cup (Hilfer, 1983), otic vesicle (Alvarez and
Navascues, 1990), neural tube (Schoenwolf and Smith, 1990), mam-
mary gland, tooth and hair follicle (Mikkola and Millar, 2006). Similar
changes in cell shape and movement are also observed in Drosophila
and Xenopus gastrulation and Drosophila tracheal and salivary gland
invagination (Hardin and Keller, 1988; Leptin, 1999; Myat, 2005). In
addition to invagination, epithelial tissues and organs migrate as
cohesive sheets or groups of cells. For example, Drosophila epidermal
cells migrate as sheets during dorsal closure whereas border cells
migrate as clusters of motile cells (Lecaudey and Gilmour, 2006).
Despite the prevalence of epithelial invagination and migration in
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organogenesis, little is known about the molecular mechanisms that
govern epithelial characteristics and movement.

Members of the Rho family of small GTPases are critical regulators
of epithelial morphogenesis. They act as molecular switches to control
epithelial cell polarity, cell-cell adhesion, cell-substratum adhesion
and actin cytoskeleton organization (Jaffe and Hall, 2005). The small
GTPase Rac has been shown to regulate cohesive movements of several
epithelial tissues and organs in the Drosophila embryo such as dorsal
closure migration (Woolner et al., 2005), tracheal cell rearrangement
(Chihara et al., 2003) and salivary gland migration (Pirraglia et al.,
2006). During Drosophila gastrulation, the small GTPase Rho signals
through Myosin II to induce apical constriction and mediate invagina-
tion of mesodermal cells (Barrett et al., 1997; Nikolaidou and Barrett,
2004). Activators of Rho GTPase have also been shown to be required
for invagination of the Drosophila embryonic salivary gland implicating
Rho GTPase in this process (Kolesnikov and Beckendorf, 2007;
Nikolaidou and Barrett, 2004); however, it is not known whether
Rho GTPase controls salivary gland invagination solely through actin-
myosin contraction or by multiple mechanisms.

Here, we analyze Rho GTPase function in morphogenesis of the
Drosophila embryonic salivary glands. The salivary glands form by
invagination of primordial cells from the embryo surface followed by
cohesive migration of the gland along surrounding mesoderm (Myat,
2005). Gland cells invaginate by apical constriction and cell shape
change from columnar to pyramidal, a process dependent on the
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transcription factor, Fork head (Fkh) (Myat and Andrew, 2000a; Myat
and Andrew, 2000b). Hairy and Huckebein-dependent transcriptional
regulation of the apical determinant protein, Crumbs (Crb) is
necessary for apical membrane generation during gland invagination.
After invagination is complete, the distal tip of the gland contacts the
overlying circular visceral mesoderm (CVM) and migrates with the
distal tip cells elongating and extending protrusions in the direction of
migration (Bradley et al., 2003). The entire gland then turns to align
itself along the anterior-posterior axis before migrating further
posteriorly. In this study, we show that Rhol GTPase regulates
salivary gland invagination by maintaining apical localization of Crb,
Drosophila atypical PKC (DaPKC) and Stardust (Sdt) and that this
occurs partially through regulation of crb RNA level and apical
localization of the transcript and by inducing apical constriction and
cell shape change through Rho-kinase (Rok). The Rho-Rok signaling
pathway is required again during gland migration for contraction and
dorsal migration of the proximal half of the gland that allows the
entire gland to turn and migrate posteriorly.

Materials and methods
Drosophila strains and Genetics

Canton-S flies were used as wild-type controls. The following fly
lines were obtained from the Bloomington Stock Center and are
described in FlyBase (http://flybase.bio.indiana.edu/): Rho1%¥02107
(Rho1%), Rho1™8 Rho17?f, wingless (wg)-GAL4, engrailed (en)-GAL4,
armadillo (arm)-GAL4, UAS-rok-CAT, UAS-rok-CAT-KG, rok?’and UAS-
mouse CDS8GFP (mCD8GFP). UAS-rokRNAi was obtained from the
Vienna Drosophila Research Center (VDRC). crb''4?? and UAS-crb"™7T
were gifts of E. Knust, UAS-Rho1"® and UAS-Rho1"?were gifts of N.
Perrimon, UAS-Rho1"T was a gift of N. Harden, UAS-actinGFP, bagpipe
(bap)-GAL4 and twist (twi)-GAL4 were gifts of M. Baylies and crb''4?
DA(3L)H99 was a gift of D. Bilder. fork head (fkh)-GAL4 was used to
drive salivary gland specific expression (Henderson and Andrew,
2000).

Antibody staining of embryos

Embryos were fixed and processed for antibody staining as
previously described (Reuter et al., 1990). The following antisera
were used at the indicated dilutions: rat dCREB-A antiserum at
1:10,000 for DAB staining and 1:1250 for fluorescence; rabbit Fkh
antiserum (a gift from M. Stern and S. Beckendorf) at 1: 1000; rabbit
DaPKC antiserum (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) at
1:500; mouse Crumbs antiserum (Developmental Studies Hybridoma
Bank, DSHB; lowa City, IA) at 1:100 for DAB and 1:10 for
fluorescence; rabbit Stardust antiserum at 1:500 (a gift from E.
Knust); mouse Neurotactin antiserum at 1:10 (DSHB); mouse «-
spectrin antiserum at 1:10 (DSHB); mouse Fasciclin III (Faslll)
antiserum at 1:20 (DSHB); mouse [3-galactosidase (3-gal) antiserum
(Promega; Madison, WI) at 1:10,000 for DAB staining and 1:500 for
fluorescence; rabbit phospho-myosin light chain (p-MLC) antiserum
at 1:20 (Cell Signaling Technology, Danvers, MA), rabbit Bazooka
antiserum at 1:1000 (a gift from A. Brand), mouse GFP antiserum at
1:20,000 (Roche Diagnostics, Indianapolis, IN) and Alexa488-
conjugated anti-GFP at 1:50 (Invitrogen Molecular Probes, OR).
Appropriate biotinylated-(Jackson Immunoresearch Laboratories,
Westgrove, PA), AlexaFluor488- or Rhodamine-(Molecular Probes,
Eugene, OR) conjugated secondary antibodies were used at a dilution
of 1:500. F-actin was labeled with AlexaFluor488-phalloidin (Mole-
cular Probes). Whole-mount stained embryos were mounted in
methyl salicylate (Sigma, St. Louis, MO), 85% glycerol with 2.5% N-
propylgalate or Aqua Polymount (Polysciences, Inc., Warrington, PA).
Embryos were visualized on a Zeiss Axioplan 2 microscope with
Axiovision Rel 4.2 software (Carl Zeiss, Thornwood, NY) and thick

(1 pm) fluorescent images were acquired on a Zeiss Axioplan
microscope (Carl Zeiss) equipped for laser scanning confocal
microscopy at the Rockefeller University Bio-imaging Resources
Center (New York, NY).

RNA in situ hybridization

In situ hybridization with antisense digoxigenin-labeled RNA
probes for crumbs was performed as previously described (Lehmann
and Tautz, 1994). crumbs and (-galactosidase cDNAs were used as
templates for generating antisense digoxygenin-labeled RNA probes
as previously described (Myat and Andrew, 2002). Embryos were
mounted in 70% glycerol before visualization as described above for
antibody staining.

Reverse transcription (RT) and real-time PCR analyses

UAS-Rho1N'® UAS-actinGFP|CFL flies were crossed to armadillo-
GAL4 flies and heterozygous and homozygous embryos were
manually selected with a Zeiss Stereo Discovery V12 Zoom
Microscope (Carl Zeiss). Total mRNA was extracted according to
manufacturer's instructions using the QIAshredder and RNeasy mini
kit from Qiagen (Valencia, CA). Reverse transcription (RT) was
performed according to manufacturer's instructions using the One-
Step RT-PCR kit (Qiagen). Primer sequences used for quantification of
crb transcript were Dcrb5-3 (5 CGCAGTCCTCTCGCCTTCTTCTAC 37)
and Dcrb3-3 (5'TGGTGCGCGAATACAGTTCCGCC 3’). Reference control
was rp49 amplified with specific primers, rp49-5-2 (5’ ATGAC-
CATCCGCCCAGCATACAGG 3’) and rp49-3-2 (5’ CTCGTTCTCTTGA-
GAACGCAGGCG 3’). All primers used were generated by Invitrogen
(Carlsbad, CA). Intensity of the crb and control rp49 PCR products
was measured with NIH's Image] software and the ratio was
calculated. Real-time PCR was performed at the Weill Cornell
Microarray Core Facility.

Live imaging

Live imaging analysis was performed on the LSM 5 LIVE confocal
system (Carl Zeiss) equipped with a Diode 488-100 laser. Images were
acquired using either a 20X or 40X lens objective every 5 min at a scan
speed between 1 and 4 for the duration of the recording period.
Embryos were adhered to double-sided tape, covered in Halocarbon
oil (SIGMA) and maintained at 25 °C during the recording.

Scoring of salivary gland invagination and migration phenotypes

To score gland invagination phenotypes, stage 14 embryos stained
for dCREB-A were scored for glands that did not invaginate at all
(None), partially invaginated with some cells that formed a tube and
other cells that remained at the ventral surface (Partial) or completely
invaginated (Complete). To score gland migration phenotypes, stage
14 embryos stained for dCREB-A were scored for glands that had
completely turned, incompletely turned, only the distal tip turned or
distal tip did not turn at all.

Quantification of fluorescence intensity and extent of apical-basal
contraction

For quantification of fluorescence intensity in salivary gland
placodes (Figs. 7A and D), stage 11 en-GAL4 UAS-mCD8GFP and wg-
GAL4 UAS-mCD8GFP embryos were double stained for GFP and DaPKC.
Three sets of Z series each consisting of three to five 0.5 um thick
optical sections were acquired by LSM confocal microscopy and the
projected image of each of the Z series was analyzed by Image]
software. Identical areas measuring 6.07 pm in width and 4.95 pm in
length were selected and the ratio of the mean total signal intensity
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(pixel) for GFP and DaPKC was obtained. For quantification of p-MLC
fluorescence intensity in migrating salivary glands (Figs. 71 and ]J),
stage 12 embryos were double stained for p-MLC and Fkh. Pixel
intensity measurements of an area 18 pm in width and 17 um in length
were performed as described above.

For quantification of extent of apical-basal contraction, live images
of Rho1'8 heterozygous and homozygous embryos at stage 11 were
first acquired as described above. The distance between the apical and
basal membranes of proximal gland cells at the beginning and end of
the recording were measured with LSM 510 software and the average
calculated. P values were obtained by STATA software two-way
ANOVA analysis (StataCorp, TX).
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Results
Rho1 GTPase is required for salivary gland invagination and migration

To understand how Rho1 GTPase regulates salivary gland invagi-
nation, we analyzed embryos mutant for three different alleles of
Rho1, Rho1¥9?197% (Rho1X), Rho1'® and Rho17?F and found that gland
invagination was defective in all three alleles. In Rho1¥ homozygous
embryos, majority of glands failed to invaginate and gland cells
remained at the ventral surface of the embryo (Figs. 1D-F and ]) in
contrast to heterozygous embryos (Figs. 1A-C and ]). Invagination
defects in Rho1¥ mutant glands were first observed in late stage 11. In
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Fig. 1. Rho1 GTPase is required for salivary gland invagination and migration. Rho1¥ heterozygous salivary glands invaginate (A, arrow) and migrate posteriorly (B, arrow) to form
elongated glands (C, arrow). Rho1 “ homozygous glands begin to invaginate (D, arrow) but do not continue invaginating and cells remain at the ventral surface of the embryo (E and F,
arrows). In embryos heterozygous for Rho1’E, salivary glands invaginate and form elongated glands (G, arrow) whereas in Rho1'® homozygous embryos, proximal gland cells do not
invaginate (H, arrow) and the distal cells do not migrate (H, arrowhead). In embryos expressing dominant negative Rho1"' specifically in the gland (I), some cells invaginate to form a
tube (I, arrow) whereas others fail to invaginate (I, arrowhead). (J) Wild-type, mutant and recombinant embryos stained with dCREB-A were scored at stage 14 for glands that
completely invaginated (Complete), partially invaginated (Partial) or did not invaginate (None). All embryos were stained for dCREB-A to mark nuclei of salivary gland cells and >-

galactosidase to distinguish heterozygous from homozygous embryos.
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those Rho1¥ mutant glands that did invaginate, invagination always
began in the correct dorsal-posterior position (data not shown). In
Rho1'® homozygous embryos, majority of glands partially invaginated
(Figs. 1H and ]); however, the internalized portion of the gland failed
to turn and migrate posteriorly unlike heterozygous glands that turned
and migrated completely (Fig. 1G). Rho17?f homozygous embryos
showed an identical phenotype to Rho1'2 homozygous embryos where
majority of glands invaginated but failed to turn and migrate pos-
teriorly (data not shown). Gland invagination and migration defects
were also observed in embryos homozygous for D(2R)p1, a deficiency
that deletes the entire Rhol gene and trans-heterozygotes of Rho1¥
and Df(2R)Jp1 (data not shown). Furthermore, expression of the
dominant-negative Rho1™™® mutation specifically in the gland with
flkh-GAL4 phenocopied the Rho1X loss of function phenotype with the
majority of gland cells failing to invaginate (Figs. 11 and ]).

To confirm that the gland invagination defects observed in Rho1¥
mutant embryos were due to loss of Rhol function in the gland, we
expressed wild-type Rhol (Rho1"™7) specifically in glands of Rho1X
homozygous embryos with fkh-GAL4 and obtained a substantial
rescue; the percentage of non-invaginated glands decreased from
80% to 27% and the percentage of completely invaginated glands
increased from 2% to 58% (n=126 glands; Fig. 1]). Expression of Rho1""
specifically in salivary glands of wild-type embryos with fkh-GAL4 had
no effect on gland invagination (data not shown). Together, these data
indicate that the invagination defects observed in Rho1X homozygous
embryos were due to lack of Rho1 function in salivary gland cells. The
Rho1¥ allele is due to a P-element insertion in the first intron within
the coding region (Magie et al., 1999) whereas the Rho1'® allele is an
imprecise excision removing the coding region C-terminal to amino
acid 52. Although no Rho protein was detected in Rho1’® mutant
embryos (Magie and Parkhurst, 2005), the phosphate binding loop and
the entire effector domain that mediates binding of Rho1 to effector
proteins (Self et al., 1993) are retained within the initial 52 amino acids
of Rho1'8, suggesting the possibility that this mutant protein may
retain some activity. Both the Rho1¥ and Rho18 alleles are described as
strong alleles and were used in the studies described here.

Since loss of zygotic Rho1 function resulted in failure of gland cells
to invaginate, we tested whether overexpression of constitutively
active Rho1, Rho1""2, in gland cells would accelerate gland invagina-
tion. In control embryos (fkh-GAL4+/CFL), a small group of gland cells
invaginated at any given time to form elongated glands with a single
lumen (Fig. S1A and B). In contrast, in Rho1"’?> mutant embryos (fkh-
GAL4 UAS-Rho1V'2) the entire placode invaginated simultaneously
and cells were cuboidal shaped unlike the pyramidal shaped control
cells (Fig. S1C). Continuous expression of Rho1""?throughout gland
development resulted in glands with multiple cyst-like lumena (Fig.
S1D) instead of a single lumen characteristic of heterozygous glands
(Fig. S1B). These data demonstrate that Rho1 activity is necessary and
sufficient for gland invagination.

Rho1 activity is required for epithelial shape and apical polarity

Salivary gland cells of wild-type (Myat and Andrew, 2000a) and
Rho1" heterozygous embryos (Fig. 2A) are elongated and columnar
with prominent cortical F-actin. In contrast, the salivary gland
epithelium of Rho1¥ homozygous embryos consisted of mesenchymal
shaped cells with disorganized cortical F-actin (Fig. 2B). The loss of
epithelial morphology in Rhol¥ mutant embryos suggested that
epithelial apical/basolateral (A/B) polarity might also be lost. In
invaginating wild-type salivary glands, A/B polarity was maintained
throughout the entire invagination process as indicated by the apical
localization of Drosophila atypical Protein Kinase C (DaPKC) and
Crumbs (Crb) and basolateral localization of Neurotactin (Nrt) (Fig.
S2). In early salivary gland placodes of Rho1¥ heterozygous and
homozygous embryos, the apical protein, Crb, was localized in the
apical membrane (Figs. 2C and D). However, upon initiation of

invagination, apical localization of Crb was lost in the non-invaginated
gland cells of Rho1¥ homozygous embryos (Figs. 2F and H), whereas
it was maintained in all gland cells of heterozygous embryos
(Figs. 2E and G).

To test whether apical polarity in general was not maintained in
Rho1¥ mutant embryos or the defect was specific to Crb, we analyzed
the localization of other apical proteins, DaPKC, Stardust (Sdt) and
Bazooka (Baz) in Rho1¥ heterozygous and homozygous embryos. DaPKC
and Sdt colocalized with Crb at the apical membrane of Rho1¥
heterozygous and homozygous glands prior to invagination (data not
shown) but were lost from the apical membrane simultaneously with
Crb at the onset of invagination in Rho ¥ homozygous glands (Fig. S3). In
contrast, Baz maintained its apical localization in the non-invaginated
gland cells of Rho1¥ homozygous embryos (Figs. 3B and B”) as in the
invaginating gland cells of heterozygous embryos (Figs. 3A and A”)
while Crb was lost in the homozygous gland cells (Figs. 3B and B’) and
maintained in the heterozygous gland cells (Figs. 3A and A’). We next
tested whether basolateral polarity was maintained or lost in Rho1¥
mutant embryos by staining for the basolateral protein, Neurotactin
(Nrt). Nrt maintained its normal localization at the basolateral
membrane in Rho1¥ homozygous gland cells as in heterozygous cells
(Figs. 3C=F). Thus, these data demonstrate that zygotic activity of Rho1l
is required to maintain apical polarity of a subset of apical proteins,
namely, Crb, DaPKC and Sdt in invaginating gland cells and had no effect
on localization of the apical protein, Baz, and the basolateral protein,
Nrt.

Expression of dominant negative Rho in all cells of the
salivary gland placode with fkh-GAL4 also led to loss of apical Crb, as
in Rho1¥ homozygous embryos (Fig. S4B). Furthermore, expression of
Rho1™ in only a subset of gland cells, such as the posterior two
rows of the placode with wingless (wg)-GAL4, resulted in loss of
apical Crb specifically in this group of cells, whereas Crb localization
was normal in the remaining gland cells (Fig. S4C). Loss of Crb,
DaPKC and Sdt from the apical membrane was not accompanied by
mislocalization to the basolateral membrane (Figs. 2F, H and data not
shown). Although Baz remained in the apical membrane of Rho1X
homozygous embryos during stages 11-14, by the end of embry-
ogenesis the entire epidermis of Rho1% homozygous embryos began
to disintegrate and Baz was lost. This is consistent with previous
reports that DE-cad, as well as PB-catenin and «-catenin were
disrupted in the epidermis of Rho mutant embryos at stage 15
(Magie et al., 2002).

In Drosophila, crb is required for maintenance of epithelial polarity
and proper positioning of adherens junctions (Grawe et al., 1996;
Izaddoost et al., 2002; Klebes and Knust, 2000; Pelllkka et al., 2002). In
embryos homozygous for crb’™4%?, salivary gland cells die (Fig. S5A
and B) and small glands are formed due to degeneration of the
epithelium as previously described (Grawe et al., 1996; Tepass and
Knust, 1990; Tepass and Knust, 1993). Therefore, we analyzed embryos
homozygous for crb2 and Df(3L)H99 (crb42 Df3L)H99) that fail to
undergo apoptosis due to the H99 deletion (Bilder et al., 2003). In
crb2 DA3BL)H99 homozygous embryos, 68.7% of glands failed to
invaginate, 25.6% partially invaginated and 5.7% completely invagi-
nated (n=102 glands; Figs. 1] and S5D). Salivary gland invagination
defects in crb!'4? Df(3L)H99 mutant glands were accompanied by loss
of A/B polarity. In the early gland epithelium of crb’'4? Df(3L)H99
heterozygous embryos, DaPKC was localized apically and Nrt was
localized basolaterally (Fig. S5E) whereas in homozygous embryos,
neither DaPKC nor Nrt showed a polarized localization and instead
was diffused in the cytoplasm (Fig. S5F). These data demonstrate that
proper polarization of salivary gland cells is required for invagination
and that Rho1l GTPase plays an important role in maintaining apical
polarity during invagination.

We previously showed that crb RNA becomes elevated in the
apical domains of salivary gland cells prior to and during inva-
gination in a manner partially dependent on the transcription factor,
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Fig. 2. Rhol1 activity is required for epithelial shape and Crb localization. Salivary gland cells of Rho1¥ heterozygous embryos are columnar with prominent F-actin (A, arrow) whereas
cells of Rho1¥ homozygous embryos are mesenchymal-shaped with disorganized F-actin (B, arrow). In Rho1¥ heterozygous embryos (C), Crb (red) in salivary gland cells marked by
Fkh (green) is localized in the apical membrane before (C, arrow) and during invagination (E, arrow). In Rho1¥ homozygous embryos (D and F), Crb (red) is localized in the apical
membrane of gland cells before invagination (D, arrow) and in the internalized cells (F, arrow) during invagination but is lost in the gland cells that do not invaginate (F, arrowheads).
Projected images of ten 1 um Z optical sections of Rho1¥ heterozygous (G) and homozygous glands (H) show that Crb is lost in the homozygous glands (H, arrows) unlike in
heterozygous glands (G, arrow). Embryos in panels A and B were stained for phalloidin to label F-actin (green) and dCREB-A (red) to mark salivary gland nuclei, embryos in panels C-H
were stained for Crb (red) to mark the apical membrane and embryos in panels C-F were also stained for Fkh (green) to mark gland nuclei. All embryos were stained for 3-gal to
distinguish heterozygous from homozygous embryos. All panels shown are lateral views of embryos except for the embryos in G and H which are horizontal views. Scale bar in panel

A represents 10 um and scale bar in panel G represents 2 pm.

Huckebein (Myat and Andrew, 2002). Moreover, it was recently
reported that in Drosophila follicular cells, dynein transports Crb
protein and RNA to the apical membrane (Li et al., 2008). To test
whether the loss of Crb protein observed in Rho1¥ homozygous
embryos is in part due to reduced crb transcript levels and/or apical
localization, we performed real time and RT-PCR analyses of wild-
type embryos expressing dominant negative Rho1™" in the entire
epidermis with arm-GAL4 and whole mount in situ hybridization
(ISH) of crb RNA in Rho1¥ mutant embryos. We observed a 10%
decrease in crb RNA levels in Rho1V"® mutant embryos by real-time
PCR and RT-PCR compared to control embryos suggesting that the
loss of Crb protein observed in Rho1¥ mutant embryos is in part due

to reduced crb transcription. In non-invaginating gland cells of
Rho1¥ heterozygous embryos, crb RNA was elevated compared to
surrounding non-gland cells, consistent with our previous findings
(Fig. 4A) (Myat and Andrew, 2002). In contrast, in non-invaginating
gland cells of Rho1X homozygous embryos with a similar apical
domain size, crb RNA was not elevated in the apical domains of
gland cells (Fig. 4B) or elsewhere in the cells. We observed a similar
reduction of apical crb RNA specifically in gland cells expressing
dominant negative Rho1™"® (Fig. 4D) compared to control gland cells
(Fig. 4C). Thus, these data demonstrate that the loss of Crb protein
due to absence of zygotic Rho1 activity is in part due to reduced crb
RNA levels and apical localization of the transcript.
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Fig. 3. Baz and Nrt are maintained in invaginating Rho1 mutant glands. In Rho1¥ heterozygous (A) and homozygous (B) embryos, Baz (A, A”, B and B”, red) is localized at the apical
membrane of invaginating heterozygous gland cells (A and A”, arrows) and noninvaginating homozygous gland cells (B and B”, arrows) whereas Crb (A, A’, B and B/, green) is
maintained in heterozygous gland cells (A and A’, arrows) and is lost in homozygous gland cells (B and B’, arrows). In Rho1¥ heterozygous (C and E) and homozygous (D and F)
embryos, Nrt is localized in the basolateral membrane of gland cells at stages 11 (C and D, arrows) and 14 (E and F, arrows). Embryos in panels A and B were stained for Crb (green) and
Baz (red) and embryos in panels C-F were stained for Nrt (green) to mark the basolateral membrane. Heterozygous and homozygous embryos were distinguished by 3-gal staining on
the CFL balancer chromosome (not shown). Panels in A and B are horizontal views of gland cells whereas panels in panels C-F are lateral views of embryos. Scale bar in panel A

represents 2 um and scale bar in panel C represents 1 pm.

Rho1 regulates gland invagination through Crb and Rok

Since Rhol activity regulated crb transcript levels, we tested
whether expression of wild-type crb (crb*") in Rho1X mutant glands
through a heterologous promoter will rescue the polarity and/or
invagination defects. In the early gland placode of Rho1¥ heterozygous
embryos (Fig. 4E) and wild-type embryos expressing crbVT specifically
in the gland (Fig. 4F), Crb was localized in the apical membrane, albeit
Crb was more robust in the latter embryos. Crb was lost in gland cells
of Rho1* homozygous embryos (Fig. 4G); however, Crb was restored to
the apical membrane of Rho1¥ homozygous embryos expressing
crb"T specifically in gland cells (Fig. 4H). Restoration of apical Crb in
Rho1¥ homozygous embryos expressing crb™T also restored apical
DaPKC (Fig. 4K) and Sdt (data not shown). In stage 14 wild-type glands
(Fig. 41), DaPKC was localized at the apical membrane and Nrt at the
basolateral membrane. In stage 14 wild-type glands expressing crb"”,
DaPKC was localized around the entire plasma membrane and Nrt was
lost (Fig. 4]), demonstrating the expansion of the apical membrane at
the expanse of the baslateral membrane due to ectopic Crb. Even at
stage 14, DaPKC in Rho1¥ homozygous glands expressing crb""
remained at the apical domain in most gland cells and in other cells

was distributed around the entire plasma membrane (Fig. 4K). These
data show that Crb is necessary and sufficient to maintain apical
polarity of DaPKC and Sdt in the gland epithelium downstream of
Rhol activity. Overexpression of crb™T in Rho1X homozygous embryos
also rescued the gland invagination defect to a small extent; the
number of non-invaginated glands decreased from 80% in Rho1X
homozygous embryos to 68% (n=120 glands) with a concomitant
increase in the number of partially invaginated glands from 18% to 29%
(Fig. 51I).

In crb"T expressing Rho1*mutant glands that failed to invaginate,
apical domains did not constrict even though apical localization of Crb
and DaPKC was restored (Figs. 4H and K), suggesting that additional
processes downstream of Rhol were required to achieve apical
constriction and invagination. To test this hypothesis, we determined
whether Rho-kinase (Rok), a known regulator of apical constriction in
Drosophila epithelia (Dawes-Hoang et al., 2005), mediated apical
constriction downstream of Rhol during gland invagination. In a
small percentage of embryos mutant for rok?, a strong loss-of-
function allele of rok (Winter et al., 2001), glands failed to invaginate
or did not invaginate completely (9%, n=170 glands) and often began
with anterior gland cells (Fig. 5A) instead of dorsal-posterior cells, as
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Fig. 4. Rho1 maintains apical polarity through crb. In Rho1 heterozygous (A) and fkh-GAL4 control (C) embryos, crb RNA is elevated in the apical domains of salivary gland cells
(A and C, large arrows) compared to neighboring non-gland cells (A and C, arrowheads). In Rho1¥ homozygous embryos (B) and wild-type embryos overexpressing dominant
negative Rho1™'"? specifically in the gland (D), crb RNA is lost from the apical domain of gland cells (B and D, large arrows). In the early gland placode of Rho1¥ heterozygous embryos
(E) and wild-type embryos overexpressing crb"" in the gland (F), Crb is localized at the apical membrane (E and F, arrows). Crb is lost in Rho1¥ mutant glands (G, arrows), whereas it is
maintained in Rho1¥ mutant glands overexpressing crb"™’(H, arrows). In stage 14 wild-type glands (I), DaPKC is localized at the apical membrane (I, arrow) and Nrt at the basolateral
membrane (I, arrowhead). In stage 14 wild-type glands overexpressing crb"'" (J), DaPKC is localized at the apical membrane (J, arrow) and in more basal regions (J, arrowheads),
whereas Nrt is completely lost. In stage 14 glands of Rho1X homozygous embryos overexpressing crb™7 (K), DaPKC (K, large arrow) is localized exclusively at the apical membrane and
Nrt (K, arrowhead) at the basolateral membrane in most cells but in some cells DaPKC is localized around the entire plasma membrane (K, small arrow) and Nrt is lost. All panels
shown are horizontal views except for panels I, ] and K which are lateral views. Embryos in panels A-H are at stage 11, whereas embryos in panels I, ] and K are at stage 14. In panels A-
D, cells anterior to the salivary gland (A, C and D, small arrows) express high levels of crb RNA and serve as an internal control for ISH. Gland cells in panels A-D were identified by the
position of the gland placode in parasegment 2 and gland cells in panels E-H were identified by double staining for dCREB-A (not shown). Scale bars in panels E and [ represent 5 pm.

in wild-type embryos. rok’mutant embryos also showed gland
migration defects (35%, n=170 glands) where the distal tip cells
turned but the proximal half of the gland did not turn and the gland
failed to migrate posteriorly (Fig. 5B). Gland invagination and
migration defects were also observed in glands where rok was
inhibited in the entire epidermis with RNAi (Fig. 5C, D and Fig. S6). In
rok? mutant glands, apical localization of Crb was not lost (Fig. 5F) in
contrast to Rho1* mutant glands. However, apical constriction was
defective in rok? mutant glands (Fig. 5H) in contrast to heterozygous
glands that constricted apically and invaginated (Fig. 5G). The low
penetrance of gland invagination defects in rok? homozygous
embryos is likely due to the significant maternal contribution of rok
(Mizuno et al., 1999). In support of this, a slight increase in gland
invagination defects was observed when rok function was inhibited
with RNAi (13%, n=159 glands) compared to rok’ homozygous
embryos lacking zygotic function of rok (9%, n=170 glands). Although
invagination site was changed from dorsal-posterior to anterior
section of the salivary gland placode in rok?> homozygous embryos, in
glands where rok was knocked down with RNAI, invagination began
in the correct dorsal-posterior position (data not shown). These data
demonstrate that Rok is not required for apical localization of Crb and
is instead required for apical constriction and cell shape change
during gland invagination.

To determine whether Rok functions downstream of Rhol to
mediate gland invagination we tested the ability of the catalytic
domain of rok, rok-CAT, known to confer increased rok activity
independent of Rho (Winter et al, 2001), to rescue the gland
invagination defect of Rho1X homozygous embryos. Overexpression

of rok-CAT in wild-type glands had no effect on invagination and
migration but resulted in expansion of the gland lumen in late
embryogenesis (Fig. STE and F). Expression of rok-CAT specifically in
salivary glands of Rho1X mutant embryos led to a partial rescue of the
gland invagination defect; the percentage of non-invaginated glands
decreased and the percentage of partially and completely invaginated
glands increased compared to Rho1¥ mutants (Fig. 51). Since crb""and
rok-CAT each partially rescued the gland invagination defect of Rho1¥
mutant embryos, we next tested whether simultaneous expression of
crb"T and rok-CAT in salivary glands of Rho1X homozygous embryos
would result in a better rescue of the Rhol1X invagination defect.
Coexpression of crb"T and rok-CAT indeed led to a better rescue of the
gland invagination defect of Rho1¥ homozygous embryos compared to
expression of either transgene alone (Fig. 51). In contrast, coexpression
of rok-CAT-KG, encoding a kinase dead form of Rok (Winter et al.,
2001) and crb"" in Rho1¥ homozygous embryos did not increase the
level of rescue observed with crb™T alone (Fig. 51). One functional
output of the Rho-Rok signaling pathway is the increased phosphor-
ylation of myosin resulting in actin-myosin contraction. Therefore, we
tested whether Rho and Rok regulated gland invagination through
phoshorylation of myosin light chain. In Rho1¥ heterozygous embryos,
phosphorylated myosin-light-chain (p-MLC) accumulated in the
apical membrane prior to and during gland invagination (Figs. S7A
and B). In contrast, p-MLC was reduced in the non-invaginated glands
of Rho1* homozygous embryos (Fig. S7C and D). These data dem-
onstrate that Rho1 GTPase controls gland invagination through both
Crb and Rok to maintain polarity of a subset of apical proteins and to
activate actin-myosin contraction, respectively.
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Fig. 5. Rok and Crb control salivary gland invagination downstream of Rho1. In rok? mutant embryos (A and B), glands invaginate partially (A, arrow) with some cells remaining at the
embryo surface (A, arrowhead) or invaginate completely but fail to turn and migrate posteriorly (B, arrow). In embryos where rok RNAi is expressed in the entire epidermis with arm-
GAL4 (C and D), glands do not invaginate (C and D, arrowheads) or do not migrate (D, arrow). In rok? heterozygous embryos (E), Crb is localized apically in the invaginating dorsal-
posterior gland cells (E, arrow) and in the non-invaginating cells (E, arrowhead), whereas in rok? homozygous embryos (F), Crb is localized apically in the invaginating anterior gland
cells (F, arrow) and in the non-invaginating cells (F, arrowhead). rok? heterozygous gland cells constrict apically and invaginate (G, asterisks), whereas homozygous gland cells do not
constrict apically (H, asterisks). Graph (I) depicts extent of gland invagination phenotypes in wild-type embryos, Rho1X homozygous embryos, Rho1¥ homozygous embryos
expressing crb"" or rok-CAT and Rho1* homozygous embryos coexpressing crb*/" and rok-CAT or crb*/" and rok-CAT-KG. Embryos in panels A-D were stained for DCREB-A. Embryos
in panels G and H were stained for a-spectrin (a-spec) to label cell outlines and Fkh (not shown). White lines in panels G and H mark the outline of the gland which is based on Fkh
staining (not shown). Scale bar in panel E represents 10 um.

Rho1 mediates cell contraction during salivary gland migration regulator of actin-myosin contraction we sought to determine
whether cell contraction plays a role in gland migration. We analyzed

Our genetic analysis of Rhol and rok mutants demonstrated that normal gland migration by live-imaging wild-type glands expressing
Rho-Rok signaling was required not only for gland invagination but either mouse CD8GFP in the entire gland with fkh-GAL4 (Fig. 6A and
also for migration (Figs. 5A-D and Fig. S6). Since Rok is an important Movie 1) or actinGFP in a cluster of proximal gland cells with en-GAL4
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Fig. 6. Rho1-dependent cell contraction is required for gland migration. Live-imaging of wild-type salivary gland expressing mCD8GFP in the entire gland with fkh-GAL4 (A) shows
the proximal tip of the gland (A, arrows) contract and migrate away from the embryo surface (A, arrowheads) followed by posterior turning of the entire gland. Live-imaging of wild-

type salivary gland expressing actinGFP in a cluster of proximal gland cells with en-GAL4 (B) shows apical-basal contraction, rounding and dorsal migration. Live-imaging of Rho
heterozygous (C) and homozygous (D) glands expressing actinGFP in all gland cells with fkh-GAL4 shows that Rho

IIB

1'8 heterozygous gland cells in the proximal half of the gland

contract (C, arrows) resulting in detachment of the proximal gland from the embryo surface (C, arrowheads) whereas Rho1'® homozygous gland cells do not contract (D, arrows) and
the gland remains close to the embryo surface (D, arrowheads) and fails to migrate posteriorly. Asterisks in panels B and D mark the movement of a single cell during the recording
period. Recording time (t) is shown in minutes. White line in the B panels outlines proximal gland cells. D: dorsal, V: ventral, A: anterior and P: posterior.

(Fig. 6B and Movie 2) and Rho1'® heterozygous glands expressing
actinGFP with fkh-GAL4 (Fig. 6C and Movie 3) at the stage when all
gland cells had invaginated but the gland had not migrated yet. In
wild-type glands, columnar cells in the proximal half of the gland
contracted coordinately in the apical-basal axis to become round and
moved dorsally away from the ventral surface of the embryo (Figs. 6A-
C, Movies 1, 2 and 3). In contrast, Rho1'® mutant gland cells did not
contract in the apical-basal axis and did not migrate dorsally (Fig. 6D
and Movie 4). We quantified the Rho1’® cell contraction defect by
measuring the distance between the apical and basal membranes of
Rho1™ heterozygous and homozygous proximal gland cells labeled
with actinGFP (see Materials and Methods). During the 50 min of live
recording, Rho1'® heterozygous cells in the proximal half of the gland
contracted from 12.5 um to 8.6 um in length (n=18 cells, p=0.0000). In
contrast, Rho1'® homozygous gland cells showed no contraction and
measured 16 pm at the beginning and end of the recording (n=12 cells,
p=0.7249). Thus, our live-imaging studies provide the first evidence
for coordinated cell contraction and a rounded type of motility in the

proximal half of the gland during migration and the identification of
Rho1 GTPase as a key regulator of this process.

To confirm that the Rho1’® gland migration defect was due to
absence of Rhol activity in gland cells, we attempted to rescue the
Rho1'8 migration defect by expressing wild-type Rho1 (Rho1"7) in all
gland cells. Expression of Rho1"" in all Rho1'® mutant gland cells with
fkh-GALA resulted in a partial rescue of the gland migration defects;
percentage of glands that turned incompletely and completely
increased in the rescue embryos with an accompanying decrease in
the percentage of glands that did not turn at all and only the tip turned
(Fig. 7G). Since our data showed contractile motility of the proximal
gland cells which contrasted from the previously described elongated
motility of distal tip cells (Bradley et al., 2003 ), we next tested whether
Rho1 activity was required for both types of movement. We used the
en-GAL4 and the wg-GALA4 lines to achieve transgene expression in a
cluster of proximal gland cells or distal gland cells, respectively (Figs.
7A-F). Initial studies with mouse CD8GFP driven by either en-Gal4 or
wg-GAL4 confirmed that en-GAL4 drove expression robustly in a
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Fig. 7. Rho1 function is required predominantly in the proximal gland cells for migration. In wild-type embryos where mCD8GFP expression is driven by en-GAL4 (A-C), GFP (A-C,
red) is expressed in the anterior-most cluster of placode cells prior to gland invagination (A, arrow), in a cluster of proximal gland cells (B, arrow) as the gland begins to migrate and
continues to be expressed in the proximal gland cells (C, arrow) during later stages of migration. In wild-type embryos where mCD8GFP expression is driven by wg-GAL4 (D-F), GFP
(D-F, red) is expressed in the dorsal-posterior cells during gland invagination (D, arrow). wg-GAL4 driven mCD8GFP is later expressed in the distal cells including the elongated distal
tip cells (E, arrows) as the gland begins to migrate and in the distal-half of the gland (F, arrows) during later stages of migration. A single wg-GAL4 UAS-mCD8GFP gland cell is
occasionally observed in a more proximal location (F, arrowhead). (G) Graph depicts extent of gland migration in stage 14 wild-type embryos, Rho1'® homozygous embryos and
Rho1'® homozygous embryos where Rho1"T was expressed in all gland cells with fkh-GAL4, proximal gland cells with en-GAL4 or distal gland cells with wg-GAL4. (H) Graph depicts
extent of gland migration in stage 14 wild-type embryos and wild-type embryos expressing Rho1™"? in proximal gland cells with en-GAL4 or in distal gland cells with wg-GAL4. In
migrating glands of Rho1'Pheterozygous embryos (I), phosphorylated MLC (p-MLC) is prominent in all cells (I) whereas in cells of Rho1'®homozygous glands, p-MLC is decreased (]).
Embryos in panels A-F were stained for GFP (red) and Fkh (green) to label gland cells. Embryos in panels I and ] were stained for p-MLC (red) and dCREB-A (not shown). White lines in

panels I and ] outline the gland. Salivary gland lumen in panels I and ] is marked by L. Scale bar in panel A represents 10 um.

cluster of proximal gland cells (Figs. 7A-C and S8A) and to a lesser
extent in clusters of CVM cells (Fig. S8A) whereas wg-GAL4 drove
expression robustly in the distal gland cells (Figs. 7D-F and S8B) and
to a lesser extent in the entire CVM (Fig. S8B). Interestingly, rescue
of the Rho1'® migration defect with en-GAL4 driven expression of
Rho1"7"led to a significantly better rescue than with wg-GAL4 (Fig. 7G)
suggesting a greater requirement for Rho1 activity in the proximal
gland cells than in the distal cells. en-GAL4 driven expression of
Rho1"T also led to a better rescue than with fkh-GAL4 which could be
due to the earlier embryonic expression of Rho1"" by en-GAL4 com-
pared to fkh-GALA4. Alternatively, spatial regulation of Rho1 activity
may be important for gland migration and uniform overexpression of
Rho1™T in the entire gland with fkh-GAL4 may have inhibitory effects
on gland migration. To test this possibility, we expressed Rho1"" in
the entire gland with fkh-GAL4 of otherwise wild-type embryos and
analyzed gland migration at different stages of embryogenesis. Gland
migration was delayed at stage 12 in glands overexpressing Rho1"";
however, this delay in gland migration was corrected by stage 14
(Fig. S9). Thus, spatial expression of Rho1 within the gland appears to
be important for efficient gland migration.

Expression of dominant negative Rho1V™ in the proximal gland
cells with en-GAL4 or in the distal gland cells with wg-GAL4 also
showed that inhibition of Rho1 function in the proximal cells was
more deleterious for gland migration than inhibition in the distal cells
(Fig. 7H). We confirmed that en-GAL4 and wg-GAL4 mediated
transgene expression at similar levels by embryonic stage 11 when
the salivary gland placodes form by measuring the levels of GFP
fluorescent intensity of gland cells expressing en-GAL4 driven or wg-
GAL4 driven mCD8GFP (data not shown). Therefore, these studies
show that normal Rho1 activity is more critical in the proximal cells
than in the distal cells of the migrating gland and that Rhol-
dependent contraction and dorsal migration of proximal cells is a key
element of turning and migration of the entire gland.

To test whether Rho1 controlled proximal gland cell contraction and
migration through activation of actin-myosin contraction, we stained
Rho1'® mutant embryos for p-MLC. In Rho1!8 heterozygous embryos,
prominent p-MLC staining was found throughout the cells of migrating
glands (Fig. 71) whereas glands of Rho1'® homozygous embryos showed
decreased p-MLC staining (Fig. 7]). We quantified the level of p-MLC in
glands of Rho1'® heterozygous and homozygous embryos and found
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that p-MLC fluorescence intensity in Rho1’® mutant glands was reduced
to 78% of the intensity of heterozygous glands. These data suggest that
Rho1 regulates gland migration in part through phosphorylation of MLC
and subsequent actin-myosin contraction.

Rho1 function is required in both the salivary gland and CVM for gland
migration

Expression of Rho1"7 in all or a subset of salivary gland cells of
Rho1'® mutant embryos did not completely rescue the gland migration
defects (Fig. 7G). Furthermore, en-GAL4 and wg-GAL4 drove transgene
expression in the CVM in addition to the gland (Fig. S8A and B). These
data raised the possibility that Rho1 might regulate gland migration in
a cell non-autonomous manner. Thus, we tested whether Rho1 activity
is also required in the circular visceral mesoderm (CVM) upon which
the gland migrates. The CVM is derived from the trunk visceral
mesoderm primordia which ingresses into the interior of the embryo
to form cell clusters that then expand along the anterior-posterior (A-
P) axis to form a continuous layer (Fig. S10A and B) (Lee et al., 2005). In
Rho1'™ homozygous embryos, the CVM was discontinuous with
clusters of cells at discrete intervals along the A-P axis (Fig. S10C and
D). Furthermore, expression of dominant negative Rho1™'® in the CVM
with twist (twi)-GAL4 that drives transgene expression in the CVM and
somatic mesoderm (SM) (Fig. S8C) resulted in failure of the glands to
turn and migrate posteriorly (Fig. S10F). These gland migration defects
correlated with failure to form a properly structured CVM where the
cells were spindle shaped and did not elongate in the dorsal-ventral
axis (Fig. S10F), as in control embryos (Fig. S10E). Due to these CVM
defects observed upon loss of Rhol function, we next tested whether
expression of Rho1"" in the mesoderm could rescue the gland
migration defects of Rho1’® homozygous embryos. Expression of
Rho1"T in the entire CVM of Rho1'® homozygous embryos with twi-
GALA4 (Fig. S8C) partially rescued the gland migration defect albeit to a
weaker extent than with en-GAL4 (compare Fig. S10G to Fig. 7G).
Similar level of rescue was observed when Rho1"" was expressed in
clusters of the CVM of Rho1'® homozygous embryos with bap-GAL4
(Figs. S8D and S10G). These data demonstrate that Rhol activity is
required for proper development of the CVM; however, Rho1 activity is
required predominantly in the proximal gland cells for their contrac-
tion and migration.

Discussion

In this study, we demonstrate that Rho1 activity controls salivary
gland invagination through at least two distinct mechanisms; one, by
maintaining apical polarity specifically of Crb, DaPKC and Sdt in the
early salivary gland placode and two, by inducing apical constriction
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and cell shape change through Rok in the invaginating gland (Fig. 8A).
Since simultaneous expression of Crb and Rok did not result in
complete rescue of the Rho invagination defect, it is possible that Rho
regulates gland invagination by other as yet unidentified mechanism
(s) in addition to Crb and Rok. We show that Rhol and Rok are
required again during gland migration to control cell contraction and
rounded movement of the proximal half of the gland (Figs. 8A and B).
Our live-imaging and genetic analyses provide the first evidence that
cell contraction and rounded motility of cells in the proximal half of
the gland is essential for turning and subsequent posterior migration
of the entire gland. Although Rho1 activity is required in the gland
cells and in the CVM for gland migration, Rho1 activity is required
predominantly in the proximal gland cells for contraction and
migration.

We show that zygotic function of Rho1 is required to prevent loss
of the apical proteins, Crb, DaPKC and Sdt in the invaginating salivary
gland and not of the apical protein, Baz, demonstrating that Rhol
activity regulates a specific subset of apical proteins and not apical
polarity in general. Rho1 activity maintains Crb protein in salivary
gland cells in part by regulating crb RNA levels and apical localization
of the transcript. Since Rho GTPases are important regulators of the
actin and microtubule cytoskeletal systems which together with their
respective motor proteins, are required for the proper delivery of
mRNA to one membrane domain or the other of polarized cells (St
Johnston, 2005), it is possible that crb transcripts fail to localize in the
apical domain of Rho1l mutant cells because they are not transported
to and/or stabilized at the apical membrane due to underlying defects
in the apical cytoskeleton. Rho GTPases have been shown to regulate
RNA stability such as those of the Na*/Ca®*exchanger (Maeda et al.,
2005) and endothelial nitric oxide synthase mRNAs (Laufs and Liao,
1998) although the mechanism is unknown.

Although loss of Crb, DaPKC and Sdt occurred simultaneously in
Rhol mutant glands, overexpression of crb™ from a heterologous
promoter was sufficient to restore expression and apical localization
not only of Crb but also of Sdt and DaPKC. These data suggest that
apical Crb maintains DaPKC and Sdt in their proper localization at the
apical membrane either directly or through Crb-mediated stabiliza-
tion of the sub-membrane cytoskeleton. A recent study reported that
the Dynein motor localizes Crb in follicle cells through apical targeting
of sdt RNA (Horne-Badovinac and Bilder, 2008). Therefore, it appears
that the apical proteins, Crb and Sdt reciprocally regulate each other's
apical localization in polarized epithelia. The proper apical localization
of Crb, DaPKC and Sdt observed in Rho1® homozygous embryos prior
to gland invagination is likely due to the maternal contribution of
Rhol. However, reduced levels of Rhol due to zygotic loss of Rhol
function are insufficient to maintain these apical proteins during
embryogenesis.

proximal
cell
contraction ¥

Fig. 8. Model for Rho1 function in salivary gland invagination and migration. During salivary gland invagination, Rho1 activity maintains Crb, DaPKC and Sdt in part by controlling crb
RNA level and apical localization and induces apical constriction and cell shape change through Rok (A). Rho-Rok mediated cell constriction is also required for gland migration (A).
Salivary gland turns posteriorly (B) through coordinated contraction and cohesive migration of proximal tip cells (B, red) and elongated motility of distal tip cells (B, blue). Diagrams

are not drawn to scale.
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The relevance of complete maintenance of A/B polarity during
salivary gland invagination is reflected in Drosophila border cells that
retain asymmetric distribution of polarity proteins during their
migratory process (Pinheiro and Montell, 2004). One possible
explanation for why it is necessary that gland epithelia maintain
their apical polarity is that the glands are secretory organs that
synthesize and secrete large quantities of digestive enzymes and glue
proteins that allow the larva to attach to its environment. Thus, proper
maintenance of all aspects of apical-basolateral polarity is likely to be
essential for proper delivery of such secretory products into the lumen
of the gland.

Integrin expression in the gland and CVM is necessary to initiate
the posterior turn of the salivary gland (Bradley et al., 2003), possibly
to mediate contact of the distal tip of the gland to the CVM; however,
the contribution of the proximal gland cells to gland migration was
previously not known. Here, we demonstrate that salivary gland
cells, particularly those in the proximal half, contracted and migrated
in a rounded type of motility and that these events were dependent
on Rhol function and downstream actin-myosin contraction. Our
study provides novel evidence that the proximal gland cells play an
active role in gland migration and do not passively follow the
advancing distal tip. In fact, active contraction and cohesive
migration of the proximal half of the gland allows the proximal tip
of the gland to detach from the embryo's ventral surface and for the
entire gland to turn and lie with its longest axis in the anterior-
posterior direction.

Our studies reveal that migrating salivary glands have an
advancing “front” that extends membrane protrusions and a
contracting “back”. Moreover, expression of GFP reporter genes in
subpopulations of gland cells indicates that distal and proximal gland
cells largely retain their positions throughout gland migration. These
features of salivary gland migration are in contrast to collective
migration of border cells in the Drosophila ovary that do not have an
apparent “back” and there is more fluidity within the cluster, with the
position of the leading cells being interchangeable (Bianco et al.,
2007; Prasad and Montell, 2007). One obvious distinction between
salivary glands and border cells is that salivary glands have to
coordinate cohesive migration of approximately 100 cells whereas
border cells move as a cluster of six to ten cells. We propose that in
large populations of migrating cells where cell positions are fixed,
cohesive migration is best achieved if the front and back of the
migrating group are well defined and each subpopulation contributes
a unique role to the overall migration of the group. Consistent with
this proposal, during wound healing of cultured epithelial sheets,
cells several rows behind the wound edge extend lamellipodia
suggesting an active role in collective migration of the sheet
(Farooqui and Fenteany, 2005).

Our studies reveal that salivary glands use a unique combination of
elongated motility at the distal tip and contractile motility at the
proximal tip during their cohesive migration. A contractile versus
elongated type of motility has previously been observed in tumor cells
migrating in 3D matrices where the contractile or rounded type of
motility was dependent on Rho signaling through ROCK, and the
elongated type of motility was associated with Rac-dependent
membrane protrusions and did not require Rho or ROCK (Sahai and
Marshall, 2003). Thus, the salivary gland provides a unique model
system not only for studying how cells migrate cohesively during
embryogenesis but also for studying different modes of cell migration
common to tumor cell migration.
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