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Abstract

We introduce a geometric evolution equation of hyperbolic type, which governs the evolution of a hypersurface moving in the
direction of its mean curvature vector. The flow stems from a geometrically natural action containing kinetic and internal energy
terms. As the mean curvature of the hypersurface is the main driving factor, we refer to this model as the hyperbolic mean curvature
flow (HMCF). The case that the initial velocity field is normal to the hypersurface is of particular interest: this property is preserved
during the evolution and gives rise to a comparatively simpler evolution equation. We also consider the case where the manifold
can be viewed as a graph over a fixed manifold. Our main results are as follows. First, we derive several balance laws satisfied by
the hypersurface during the evolution. Second, we establish that the initial-value problem is locally well-posed in Sobolev spaces;
this is achieved by exhibiting a convexity property satisfied by the energy density which is naturally associated with the flow. Third,
we provide some criteria ensuring that the flow will blow-up in finite time. Fourth, in the case of graphs, we introduce a concept
of weak solutions suitably restricted by an entropy inequality, and we prove that a classical solution is unique in the larger class of
entropy solutions. In the special case of one-dimensional graphs, a global-in-time existence result is established.
© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

Nous introduisons une équation d’évolution géométrique de type hyperbolique qui décrit l’évolution d’une hypersurface dans la
direction de son vecteur de courbure moyenne. Ce flot est défini par une fonctionnelle géométrique, somme d’un terme d’énergie
cinétique et d’un terme d’énergie interne. Dans la mesure où la courbure moyenne est le facteur le plus important de ce flot, ce
modèle est appelé flot hyperbolique par la courbure moyenne. Le cas particulier où la vitesse initiale est normale à l’hypersurface
est particulièrement intéressant : cette propriété est préservée par l’évolution en temps et conduit à une équation très simple. Nous
considérons aussi le cas où l’hypersurface peut être vue comme un graphe au dessus d’une variété fixée. Nos résultat principaux
sont les suivants. Tout d’abord, nous obtenons plusieurs lois de conservation non-homogènes satisfaîtes au cours de l’évolution.
Nous démontrons que le problème de valeurs initiales est bien posé dans les espaces de Sobolev ; ce résultat est établi en mettant en
évidence une propriété de convexité de la fonctionnelle d’énergie associée au flot. Nous fournissons ensuite des critères d’explosion
de la solution en temps fini. Enfin, dans le cas des graphes, nous introduisons une notion de solution faible entropique et nous
démontrons que toute solution classique est aussi l’unique solution dans la classe des solutions entropiques. Dans le cas des
graphes à une dimension, nous démontrons un résultat d’existence global en temps.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Our aim in this paper is to introduce and study a geometric evolution equation of hyperbolic type which describes
the flow,

F : [0, T ) × M → R
n+1, T > 0,

of an immersed n-dimensional hypersurface M in the Euclidean space. We derive this evolution equation from a
geometrically natural action functional based on the local energy density,

e := 1

2

(∣∣∣∣ d

dt
F

∣∣∣∣2

+ n

)
,

involving the kinetic energy of the hypersurface and the internal energy associated with its volume. The equation under
consideration models the nonlinear motion of an elastic membrane, driven by its surface tension only. Our model is
purely geometric and requires no constitutive equation on the membrane material (contrary to what is required in the
theory of nonlinear elastic bodies or shells). As the mean curvature of the hypersurface is the main driving factor, we
refer to this model as the hyperbolic mean curvature flow (HMCF); see Proposition 3.2 below. Stationary solutions of
this flow will be minimal hypersurfaces with vanishing kinetic energy.

The flow equation takes a simpler form in the case that the initial velocity is normal to the hypersurface, i.e. if its
tangential part vanishes: (

dF

dt

)�

|t=0
= 0. (1.1)

Namely, from the momentum conservation law satisfied by a general flow, we will deduce that tangential components
of the velocity vector vanish for all times if they vanish initially. Hence, under this assumption, the (normalized
version) of the proposed HMCF equation reads:

d2F

dt2
= eHν − ∇e,

(
dF

dt

)�

|t=0
= 0, (HMCF′)

where the scalar H is the mean curvature of the hypersurface and the vector ν denotes its unit normal (chosen to be
inward pointing when M is compact without boundary). In fact, the assumption (1.1) is geometrically motivated in the
sense that tangential variations do not alter the shape of the hypersurface and merely correspond to reparametrizations
by a suitably chosen family of (time-dependent) diffeomorphisms. Since, geometrically, only (HMCF′) is of interest,
we will mainly study this flow, which we refer to as the normal mean curvature flow equation.

The main results established in the present paper are as follows. After introducing the proposed flow in Sections 2
and 3, we derive in Section 4 several conservation laws or balance laws satisfied by the hyperbolic mean curvature
flow. Then, in Section 5, we begin our investigation of the properties satisfied by general solutions to the hyperbolic
flow by restricting attention to the important case that the hypersurface is represented as an entire graph over R

n:
we prove the local well-posedness of the flow equation, and introduce a concept of weak solutions suitably restricted
by an entropy inequality; we also prove the uniqueness of a classical solution within the class of weak solutions,
and for one-dimensional graphs we establish the global-in-time existence of weak solutions with bounded variation.
The convexity of the measure e dμ with respect to certain well-chosen variables is an essential observation for these
results. Then, for the rest of the paper we turn to Eq. (HMCF′) for normal flows and, in Section 6, we prove that the
equations under consideration can be recast in the form of a first-order nonlinear hyperbolic system, and we obtain
a local-in-time existence result for the evolution of general compact manifolds. Next, in Section 7, we provide some
criteria ensuring that the flow will blow-up in finite time, due to the formation of geometric singularities or shock
waves. For general material on flows by mean curvature we may refer to [1,3], and on nonlinear wave equations to
[2,5,6].
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2. Structure equations for general flows

Let F : M → R
n+1 be a smooth immersion of an orientable smooth manifold M of dimension n into R

n+1, and
let ν be the unit normal vector defined along the hypersurface and chosen to be inward pointing when the manifold is
compact without boundary. In local coordinates (xi)i=1,...,n, we have:

Fi := ∇iF := dF

(
∂

∂xi

)
= ∂F

∂xi
,

and

ν = F1 ∧ · · · ∧ Fn

|F1 ∧ · · · ∧ Fn| .

The induced metric g = gij dxi ⊗ dxj and the second fundamental form h = hij dxi ⊗ dxj of the hypersurface are

gij = 〈Fi,Fj 〉, hij = −〈Fi,∇j ν〉,
respectively. Here, ∇ denotes the Levi-Civita connection associated with g. Throughout, we use Einstein’s summation
convention on repeated indices and, for simplicity, we keep the same notation 〈·,·〉 for both the standard inner product
on R

n+1 and the induced inner product on M . Latin indices are raised with the inverse (gij ) of the metric (gij ) so, for
instance,

h
j
i := hikg

kj .

We denote by Rijkl the components of the Riemann curvature tensor of the hypersurface in local coordinates.
We denote the induced volume form on M by dμ and the (scalar) mean curvature by H := gijhij . We will use also
the following convention: we identify the gradient ∇p of a function p on M with its image dF(∇p) = ∇ip Fi .

The following basic properties of these tensor fields are easily checked from their definitions.

Lemma 2.1. The Gauss–Weingarten–Codazzi equations of the hypersurface M read:

∇iFj = hij ν, (2.1)

∇iν = −h
j
i Fj , (2.2)

∇ihjk = ∇jhik, (2.3)

Rijkl = hikhjl − hilhjk. (2.4)

In the present paper, we are interested in a flow of hypersurfaces, that is, a smooth family of immersions,

F : [0, T ) × M → R
n+1,

so that all of the tensor fields defined above also depend on the time variable t . We can then define on M some
additional (time-dependent) functions σ,α and 1-form fields S = Sidxi,A = Aidxi by:

σ :=
〈

d

dt
F, ν

〉
, Si :=

〈
d

dt
F,Fi

〉
,

α :=
〈

d2

dt2
F,ν

〉
, Ai :=

〈
d2

dt2
F,Fi

〉
.

We refer to σ and S as the normal and tangential velocity components, respectively, and to α and A as the normal and
tangential acceleration components, respectively. We have the decomposition:

d

dt
F = σν + SiFi,

d2

dt2
F = αν + AiFi.

To express the structure equations satisfied by a general flow, it is convenient to introduce the local energy density
of the hypersurface:
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e := 1

2

(∣∣∣∣ d

dt
F

∣∣∣∣2

+ |∇F |2
)

= 1

2

(∣∣∣∣ d

dt
F

∣∣∣∣2

+ n

)
, (2.5)

where we have used |∇F |2 = gij 〈∇iF,∇jF 〉 = gij gij = n. A simple computation based on Lemma 2.1 then yields
the following expressions for the components of the velocity and acceleration fields.

Lemma 2.2. Every flow F satisfies the following structure equations:

∇iσ =
〈

d

dt
Fi, ν

〉
− h

j
i Sj , (2.6)

∇iSj =
〈

d

dt
Fi,Fj

〉
+ σhij , (2.7)

α = d

dt
σ + 〈∇σ,S〉 + h(S,S), (2.8)

A = d

dt
S − de, (2.9)

where de = ∇j e dxj denotes the exterior differential of the function e, dual to the gradient ∇e = ∇ie Fi .

The following notion will be of special interest in this paper.

Definition 2.3. A flow F : [0, T ) × M → R
n+1 is called a normal flow if and only if its tangential velocity vanishes

identically, that is, S(t) ≡ 0 for all t ∈ [0, T ).

Proposition 2.4.

1. A flow F is normal if and only if its tangential velocity and tangential acceleration satisfy:

S(0) = 0 at the initial time,

A = −de at all times.

2. Given a general flow F : [0, T ) × M → R
n+1, there always exists a smooth family of time-dependent diffeomor-

phisms Ψt : M → M such that the modified flow given by,

F̃ : [0, T ) × M → R
n+1, F̃ (t, x) := F

(
t,Ψt (x)

)
,

is a normal flow. In particular, the hypersurfaces,

Mt := F(t,M), M̃t := F̃ (t,M),

coincide for each t ∈ [0, T ).

Proof. The first claim follows immediately from Eq. (2.9). To derive the second claim we consider a general flow:

d

dt
F (t, x) = σ(t, x)ν(t, x) + S(t, x).

Since S(t, x) is tangential to Mt , we can introduce the solution Ψt : M → M be the following ordinary differential
equation (ODE):

d

dt
Ψt (x) = −S

(
t,Ψt (x)

)
.

Then, by setting S(t, x) =: Si(t, x)Fi(t, x) we see that the map,

F̃ (t, x) := F
(
t,Ψt (x)

)
,

satisfies the evolution equation:
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d

dt
F̃ (t, x) = σ

(
t,Ψt (x)

)
ν
(
t,Ψt (x)

) + S
(
t,Ψt (x)

) + Fi

(
t,Ψt (x)

) d

dt
Ψ i

t (x)

= σ
(
t,Ψt (x)

)
ν
(
t,Ψt (x)

)
=: σ̃ (t, x)̃ν(t, x). �

The proposition above shows that a general flow F and its normalized version F̃ can be identified geometrically.
Therefore, without genuine restriction, our analysis will often be focused on normal flows, which have the general
form:

d2

dt2
F = αν − ∇e. (2.10)

It should be observed that, at this stage, the normal acceleration α has not been defined yet. Our results will show that
by prescribing this scalar field (in the forthcoming section) the evolution of the hypersurface is uniquely determined.

To conclude this section, in view of the computations done in Huisken [3] for the standard mean curvature flow, we
obtain the following first-order evolution equations for the induced metric, volume form, second fundamental form,
and mean curvature of the hypersurface.

Lemma 2.5. The evolution of the tensor fields gij , dμ, ν,hij ,H associated with a general flow F : [0, T ) × M →
R

n+1 is determined by the equations:

d

dt
gij = −2σhij + ∇iSj + ∇j Si, (2.11)

d

dt
dμ = (d†S − σH)dμ, (2.12)

d

dt
ν = −(∇ iσ + hikSk

)
Fi, (2.13)

d

dt
hij = ∇i∇j σ − σhk

i hkj + hk
i ∇j Sk + hk

j∇iSk + ∇khij Sk, (2.14)

d

dt
H = �σ + σ |h|2 + Si∇iH, (2.15)

where d†S = ∇ iSi = ∇iS
i denotes the divergence of a vector field, and |h|2 := hijhij denotes the (squared) norm of

a 2-tensor field.

In particular, if the flow is normal we take S = 0 and A = −de in Lemma 2.5 and obtain:

d

dt
gij = −2σhij , (2.16)

d

dt
dμ = −σH dμ, (2.17)

d

dt
ν = −∇ iσFi, (2.18)

d

dt
hij = ∇i∇j σ − σhk

i hkj , (2.19)

d

dt
H = �σ + σ |h|2. (2.20)

3. The hyperbolic mean curvature flow

We are now in a position to introduce the evolution equation that we propose in this paper. The flow is going to
be defined from an Hamiltonian principle based on a geometrically natural action, consisting of a kinetic term and an
internal energy term, which is defined geometrically as the local volume density of the hypersurface.
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More precisely, let F : [0, T ] × M → R
n+1 be a smooth family of immersions of an orientable manifold M of

dimension n into R
n+1. Define the total kinetic energy at the time t by

K(t) :=
∫
M

1

2

∣∣∣∣ d

dt
F

∣∣∣∣2

dμt

and, after integrating over the time interval [0, T ], consider the action,

JK(F ) :=
T∫

0

∫
M

1

2

∣∣∣∣ d

dt
F

∣∣∣∣2

dμt dt. (3.1)

Define the total internal energy of the hypersurface at the time t by:

V (t) :=
∫
M

1

2
|∇F |2 dμt = n

2

∫
M

dμt ,

solely determined by the induced volume form, and consider the corresponding action:

JV (F ) := n

2

T∫
0

∫
M

dμt dt. (3.2)

According to the Hamiltonian principle, we impose that the evolution of the hypersurface is stationary for the
action JV − JK , that is,

d

ds
(JV − JK)(F + sΦ)|s=0 = 0, (3.3)

for all Φ ∈ C∞
0 ([0, T ] × M,R

n+1) (compactly supported maps that are differentiable of any order).

Remark 3.1. Obviously, if the volume of the manifold is infinite, the functionals JK(F ) and JV (F ) above are only
formally defined. This difficulty can be easily overcome by restricting attention to any compact subset of M . However,
since the stationarity condition (3.3) implied by the Hamiltonian principle itself is formulated in terms of compactly
supported variations, this is unnecessary.

We now show:

Proposition 3.2 (Hyperbolic mean curvature flow equation). The stationary solutions of the action functional JV −JK

satisfy the equation of motion:

d2

dt2
F = αν + AkFk,

α := (
e − |S|2)H − σd†S,

Ak := (σH − d†S)Sk − ∇ke.

(HMCF)

For instance, if the initial velocity is normal, i.e. if S|t=0 = 0, then it will follow from the conservation of momentum
that S|t = 0 for all t , so that the HMCF equation reduces to the much simpler equation

d2

dt2
F = eHν − ∇e,

(
d

dt
F

)�

|t=0
= 0. (HMCF′)

Comparing with the general flow Eq. (2.10) we see that the minimal action principle allows us to identify the normal
acceleration, as a linear function in the mean curvature H :

α = eH.
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In consequence, for normal flows the evolution of the normal component of the velocity is proportional to the mean
curvature:

d

dt
σ = e(σ )H.

Later in this paper, we will prove that Eq. (HMCF′) is hyperbolic. We will not treat here the general system (HMCF)
except in the next section where we will derive some (a priori) conservation laws for the general flow. The subsequent
sections are entirely devoted to the normal equation (HMCF′), since this (as already noted in the introduction) is
sufficient from the geometric point of view.

Observe also that ∇e depends on second-order derivatives of F , namely on mixed derivatives in space and time.
In agreement with the standard mean curvature flow (which is parabolic), the acceleration α is defined in terms of
the curvature of the manifold M , and α, considered as an operator on M , is elliptic in nature. Therefore, this justifies
to refer to the proposed flow as the hyperbolic mean curvature flow. The following sections will show, both, some
similarities and some marked differences between the parabolic and hyperbolic versions of the mean curvature flow.

Proof. A simple computation yields,

d

ds
JV (F + sΦ)|s=0 = n

2

T∫
0

∫
M

gij 〈Fi,Φj 〉dμt dt = −n

2

T∫
0

∫
M

H 〈ν,Φ〉dμt dt,

where, for the second identity, we have integrated by parts and used the contracted Gauss formula �F = Hν (a con-
sequence of (2.1)).

On the other hand, for JK we obtain the first variation formula:

d

ds
JK(F + sΦ)|s=0 =

T∫
0

∫
M

(〈
d

dt
F,

d

dt
Φ

〉
+

(
e − n

2

)
gij 〈Fi,Φj 〉

)
dμt dt,

in which we now successively integrate by parts each term of the right-hand side. For the first term we find

T∫
0

∫
M

〈
d

dt
F,

d

dt
Φ

〉
dμt dt =

T∫
0

d

dt

( ∫
M

〈
d

dt
F,Φ

〉
dμt

)
dt −

T∫
0

∫
M

〈
d2

dt2
F,Φ

〉
dμt dt

−
T∫

0

( ∫
M

〈
d

dt
F,Φ

〉
d

dt
dμt

)
dt

=
T∫

0

∫
M

〈
− d2

dt2
F + (σH − d†S)

d

dt
F,Φ

〉
dμt dt,

where we used (2.12). For the second term we obtain:

T∫
0

∫
M

(
e − n

2

)
gij 〈Fi,Φj 〉dμt dt = −

T∫
0

∫
M

〈
∇e +

(
e − n

2

)
Hν,Φ

〉
dμt dt.

Combining the above identities together, we deduce that

d

ds
(JV − JK)(F + sΦ)|s=0 =

T∫
0

∫
M

〈P,Φ〉dμt dt,

with
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P := d2

dt2
F − (σH − d†S)

d

dt
F + ∇e + (e − n)Hν

= d2

dt2
F +

(
1

2

(|S|2 − σ 2 − n
)
H + σd†S

)
ν + (∇ke − (σH − d†S)Sk

)
Fk.

Since Φ ∈ C∞
0 ([0, T ] × M,R

n+1) is arbitrary this completes the derivation of (HMCF). �
4. Conservation laws and balance laws

In this section we derive various conservation laws satisfied by solutions of the hyperbolic mean curvature flow
(HMCF), and we show that, as far as the geometry of the hypersurface is concerned, one may work within the class
of normal flows (HMCF′). Consider a family of immersions F : [0, T ) × M → R

n+1 satisfying the hyperbolic mean
curvature equation (HMCF). In the present section, all tensor fields under consideration are assumed to be sufficiently
smooth. We use the so-called abc method discussed by Shatah and Struwe in [5], and multiply (HMCF) by an expres-
sion of the general form,

a
d

dt
F + b · ∇F + cF,

by choosing the variable coefficients a, b, and c so that higher-order terms in the corresponding evolution equations
admit a divergence form.

The following lemma shows that there exists a divergence-type form for (HMCF), which will be useful for the
derivation of conservation laws (modulo lower-order terms).

Lemma 4.1 (A general identity). Let Y = Y(t, y) be a time dependent vector field on R
n+1. Every solution of (HMCF)

satisfies:

d

dt

(〈
d

dt
F,Y

〉
dμt

)
=

(
∇k

(
(n − e)〈Fk,Y 〉) + (e − n)gijDY(Fi,Fj )

+ DY

(
d

dt
F,

d

dt
F

)
+

〈
d

dt
F,Yt

〉)
dμt , (4.1)

where Yt = ∂
∂t

Y and DY is the spatial differential of Y , i.e.

DY = δαγ

∂Y γ

∂yβ
dyα ⊗ dyβ.

Proof. We multiply (HMCF) by Y and compute:

d

dt

(〈
d

dt
F,Y

〉
dμt

)
=

(((
e − |S|2)H − σd†S

)〈ν,Y 〉 + (
(σH − d†S)Sk − ∇ke

)〈Fk,Y 〉

+
〈

d

dt
F,Y

〉
(d†S − σH) + DY

(
d

dt
F,

d

dt
F

)
+

〈
d

dt
F,Yt

〉)
dμt .

Since d
dt

F = σν + SkFk we obtain:

d

dt

(〈
d

dt
F,Y

〉
dμt

)
=

((
e − |S|2 − σ 2)H 〈ν,Y 〉 − ∇ke〈Fk,Y 〉 + DY

(
d

dt
F,

d

dt
F

)
+

〈
d

dt
F,Yt

〉)
dμt

=
(

(n − e)H 〈ν,Y 〉 − ∇ke〈Fk,Y 〉 + DY

(
d

dt
F,

d

dt
F

)
+

〈
d

dt
F,Yt

〉)
dμt .

From ∇kFk = �F = Hν we get:

(n − e)H 〈ν,Y 〉 − ∇ke〈Fk,Y 〉 = ∇k
(
(n − e)〈Fk,Y 〉) − (n − e)gijDY(Fi,Fj ).

Inserting this in the above expression for d (〈 d F,Y 〉dμt ) we arrive at (4.1). �

dt dt
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From Lemma 4.1 we now derive various conservation laws or balance laws of interest. The first result below is a
consequence of the invariance of (HMCF) under isometries of R

n+1.

Proposition 4.2 (Local continuity equation). Every solution of (HMCF) satisfies

d

dt

(〈
d

dt
F,Y

〉
dμt

)
= ∇k

(
(n − e)〈Fk,Y 〉)dμt , (4.2)

where Y = Yα ∂
∂yα is any time independent Killing vector field on R

n+1.

Proof. Let Y = Yα ∂
∂yα be a Killing vector field on R

n+1, that is, Y generates an isometry on R
n+1. Since Y is a

Killing vector field, DY is skew-symmetric, so that the last three terms in (4.1) vanish and we get (4.2). �
Proposition 4.3 (Local momentum equation). Every solution of (HMCF) satisfies the balance law,

d

dt

(〈
d

dt
F,F

〉
dμ

)
= ∇k

(
(n − e)〈F,Fk〉

)
dμ + (

(n + 2)e − n(n + 1)
)
dμ.

Proof. We apply Lemma 4.1 to the vector field Y(y, t) := y. Then DY(v,w) = 〈v,w〉 and Yt = 0. Moreover
Y(F (x, t), t) = F(x, t), so that (4.1) becomes:

d

dt

(〈
d

dt
F,F

〉
dμt

)
=

(
∇k

(
(n − e)〈Fk,F 〉) + (e − n)gij 〈Fi,Fj 〉 +

〈
d

dt
F,

d

dt
F

〉)
dμt

= (∇k
(
(n − e)〈Fk,F 〉) + (e − n)n + 2e − n

)
dμt ,

which establishes the desired identity. �
We next turn to the component S of the velocity vector.

Proposition 4.4 (Local tangential velocity equation). Every solution of (HMCF) satisfies the conservation law:

d

dt

(
S(X)dμt

) = 0, (4.3)

where X ∈ Γ (T M) is any time-independent vector field on M .

Proof. Given a time-independent vector field X = Xi ∂
∂xi defined on M , from (2.9) we obtain:

d

dt

(
S(X)

) = de(X) +
〈

d2

dt2
F,dF(X)

〉
= (σH − d†S)

(
S(X)

)
,

where the second identity follows by multiplying (HMCF) by XiFi = dF(X). The desired conclusion is now clear in
view of (2.12). �

The momentum conservation law has the following important consequence.

Corollary 4.5 (Reduction to normal flows). Within the class of flows F : [0, T ) × M → R
n+1 whose velocity vector is

initially normal to the hypersurface, i.e.

F(0, x) = F0(x),
d

dt
F (0, x) = f (x)ν(0, x),

where F0 : M → R
n+1 is a immersion and f : M → R a function, the following two properties hold:

(1) the flow F is a solution to (HMCF) if and only if it is a solution of the normal flow equation (HMCF′).



600 P.G. LeFloch, K. Smoczyk / J. Math. Pures Appl. 90 (2008) 591–614
(2) any solution of (HMCF′) satisfies S = 0 for all t ∈ [0, T ); in other words, there exists a family of functions
σ : [0, T ) × M → R such that σ(0, x) = f (x), and

d

dt
F (t, x) = σ(t, x)ν(t, x). (4.4)

Proof. For each compactly supported tangent vector field X ∈ Γ0(T M), by defining the total tangential momentum
in the direction X as

p(t,X) :=
∫
M

S(X)dμt , (4.5)

it is clear that

S|t = 0 if and only if p(t,X) = 0, X ∈ Γ0(T M).

However, the identity (4.3) implies:

p(t,X) = p(0,X) = 0, t ∈ [0, T ],
and

S|0 = 0 ⇒ S|t = 0, t ∈ [0, T ].
Then, we obtain (HMCF′) by inserting S = 0 into (HMCF). �

We continue our derivation of conservation laws satisfied by the hyperbolic mean curvature flow.

Proposition 4.6 (Local energy identity). Every solution of (HMCF) satisfies the conservation law:

d

dt
(e dμ) = d†((n − e)S

)
dμ. (4.6)

In particular, if the initial velocity is normal along the hypersurface, then e dμ is conserved along the flow,

d

dt
(e dμ) = 0, (4.7)

and e dμ can be seen as a fixed volume form on M .

Proof. We multiply (HMCF) by dF/dt and obtain:

d

dt
e =

〈
d

dt
F,

((
e − |S|2)H − σd†S

)
ν + (

(σH − d†S)Sk − ∇ke
)
Fk

〉
= σ

((
e − |S|2)H − σd†S

) − ∇keSk + (σH − d†S)|S|2
= σHe + (n − 2e)d†S − ∇keSk

= (σH − d†S)e + d†((n − e)S
)
.

Then, the desired identity again follows from (2.12). The second statement follows from the reduction principle in
Corollary 4.5. �

From the above proposition the following global result follows.

Corollary 4.7 (Global conservation laws). If F : [0, T ) × M → R
n+1 be a solution of (HMCF′) and M is a compact

manifold without boundary, then the total energy E(t) defined by,

EM(t) :=
∫
M

edμt = 1

2

∫
M

∣∣∣∣dF

dt

∣∣∣∣2

dμt + n

2

∫
M

dμt ,

is conserved:

EM(t) = EM(0), t ∈ [0, T ).
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We also state here a compatibility between derivatives of F in time and in space which follows immediately from
the fact that the derivatives d/dt and ∇ commute.

Proposition 4.8 (Compatibility relation between time and space derivatives). Every flow F : [0, T ) × M → R
n+1

satisfies the conservation law:

d

dt
F − ∇(

σν + SjFj

) = 0.

Remark 4.9. There are other globally conserved quantities, which are conserved for topological reasons and not
because of the special nature of our flow. We give two examples.

1. If Y is a divergence free vector field in R
n+1 and M is closed, then by Stokes theorem∫

M

〈ν,Y 〉dμt = 0.

2. The quantity, ∫
M

〈F − p,ν〉
|F − p|r+1

dμt ,

with p ∈ R
n+1 arbitrary (such that F(t, x) �= p for all (t, x) ∈ [0, T ) × M) is the degree of the “winding map”

and hence an invariant.

5. Evolution of entire graphs

In the rest of this article we restrict our attention to the normal hyperbolic mean curvature flow (HMCF′).

5.1. Local well-posedness result for the normal flow of graphs

It is convenient to begin our investigation with the case of graphs. That is, in this section we discuss the case, where
F : [0, T ) × M → R

n+1 satisfies (HMCF′) and such that each Mt := F(t,M) is an entire graph over a flat subspace
Z⊥ ⊂ R

n+1, where Z⊥ denotes the orthogonal complement of a unit vector Z ∈ R
n+1.

Without loss of generality, we assume that F is given by,

F(t, x) = (
x(t), u

(
t, x(t)

))
,

for a time-dependent family of height functions u : [0, T ) × M → R and a family of diffeomorphisms x(t) =
(x1(t), . . . , xn(t)) defined on the hyperplane:

M = Z⊥ = {
(x1, . . . , xn+1) ∈ R

n+1: xn+1 = 0
}
.

In such a situation, a solution of (HMCF′) is completely determined by the time-dependent function u. From now on,

we will use the notation utt := ∂2u

∂t2 and utj := ∂2u
∂t∂xj .

Theorem 5.1 (Local well-posedness for the normal flow of graphs).

1. The hyperbolic mean curvature flow for graphs over a flat hypersurface Z⊥ takes the form of the following
second-order hyperbolic equation:

−utt + (
e(σ )gij + σ 2(gij − δij )

)
uij + 2

σ

w
δijuiutj = 0, (5.1)

where

w :=
√

1 + |Du|2 =
√

1 + δij uiuj , σ = ut/w,
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and

gij = δij − w−2δikδjlukul.

2. The HMCF equation for graphs can be recast in the form of a nonlinear hyperbolic system of n + 1 equations in
the unknowns σ and b = Du = (ui)i=1,...,n,

∂σ

∂t
− ∂

∂xj

(
e(σ )

bi

w
δij

)
= 0,

∂bi

∂t
− ∂

∂xi
(σw) = 0, (5.2)

which, moreover, has a conservative form and is endowed with the mathematical entropy function:

E(σ,b) = 1

2
(σ 2 + n)

√
1 + δij bibj .

Moreover, this function is strictly convex provided:

|Du|2 = δij bibj <
1

2
.

3. Furthermore, the graph equation (5.1) is locally well-posed in the following sense: given data (σ,Du) prescribed
at the initial time t = 0 and belonging to the Sobolev space Hs(Rn) (that is, whose all s-order derivatives are
squared integrable) for some s > 1 + n/2, there exists a classical solution,

u : [0, T ) × R
n → R in L∞([0, T ),Hs+1(Rn)

) ∩ Lip
([0, T ),Hs(Rn)

)
,

defined on a maximal time interval [0, T ).

Proof. Step 1: Derivation of the (HMCF′) graph equation. We will use that

d

dt
F =

(
d

dt
x,

d

dt
u

)
=

(
d

dt
x,

∂

∂t
u + ui

d

dt
xi

)
= σν. (5.3)

On the other hand, since

Fi = ∂

∂xi
+ ui

∂

∂u
,

we obtain:

ν = 1

w

(
−δij ui

∂

∂xj
+ ∂

∂u

)
,

with w := √
1 + |Du|2 =

√
1 + δij uiuj . Inserting this into (5.3) gives the two equations:

d

dt
xi = − σ

w
δijuj , (5.4)

∂

∂t
u + ui

d

dt
xi = σ

w
. (5.5)

Inserting (5.4) into (5.5) yields,

∂

∂t
u = σw. (5.6)

Differentiating (5.6) gives:

d

dt

(
∂

∂t
u

)
= ∂2u

∂t2
+ ∂2u

∂xi∂t

d

dt
xi = w

d

dt
σ + σ

d

dt
w. (5.7)

Now, we can either compute directly or use Eq. (2.8), S = 0, α = eH to see that

d

dt
σ = eH. (5.8)

In turn, (5.7) becomes:
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∂2u

∂t2
= eHw + σ

∂

∂t
w +

(
σwi − ∂2u

∂xi∂t

)
d

dt
xi

= eHw + σ
∂

∂t
w + σ

w

(
∂2u

∂xi∂t
− σwi

)
δijuj .

Since wi = 1
w

δklukuli and ∂
∂t

w = 1
w

δijuj
∂2u

∂xi∂t
, we obtain:

∂2u

∂t2
= eHw + 2

σ

w
δij ∂2u

∂xi∂t
uj − σ 2

w2
δkiδlj ukluiuj .

In addition, from (5.6) we have:
σ

w
= ut

1 + |Du|2 , (5.9)

and from (5.3)

e = 1

2

(∣∣∣∣dF

dt

∣∣∣∣2

+ n

)
= 1

2
(σ 2 + n) = 1

2

(
u2

t

1 + |Du|2 + n

)
. (5.10)

Moreover, the second fundamental form is given by:

hij = 〈Fij , ν〉 = uij

w
,

and the induced metric and its inverse by

gij = δij + uiuj , gij = δij − 1

w2
δikδjlukul,

so that

Hw = gijuij =
(

δij − 1

w2
δikδjlukul

)
uij . (5.11)

This leads us to Eq. (5.1) for graphs over a flat subspace Z⊥.

Step 2: Hyperbolicity of the second-order equation. Eq. (5.1) is hyperbolic if and only if the following matrix:

(Aαβ)α,β=0,...,n :=

⎛⎜⎜⎝
−1 σ

w
u1 · · · σ

w
un

σ
w

u1
... (Aij )i,j=1,...,n

σ
w

un

⎞⎟⎟⎠ ,

with

Aij := (e + σ 2)gij − σ 2δij , i, j = 1, . . . , n,

satisfies

dk := det
(
(Aαβ)α,β=0,...,k

)
< 0, 0 � k � n.

Namely, fix any point p ∈ Z⊥, and choose an orthonormal basis e1, . . . , en spanning Z⊥ such that at p,

Du(p) = u1e1, ui = 0, 2 � i � n.

In this basis the matrix A at p takes the (symmetric) form:

(Aαβ)α,β=0,...,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 σ
w

u1 0 0 · · · 0
σ
w

u1
e−|Du|2σ 2

w2 0 0 · · · 0
0 0 e 0 · · · 0

0 0 0
. . .

. . .
...

...
...

...
. . .

. . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

0 0 0 · · · 0 e
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This gives in view of u2
1 = |Du|2,

d0 = −1, dk = − ek

w2
< 0, k � 1.

Since p was arbitrary, this proves that Eq. (5.1) is indeed hyperbolic.

Step 3: First-order formulation. By introducing the first-order variables σ = ut/w and bi := ui , and regarding w as a
function of b = (bi), we can rewrite (5.1) in the form:

∂σ

∂t
− σ

bi

w(b)
δij ∂σ

∂xj
− e(σ )

gij (b)

w(b)

∂bi

∂xj
= 0,

∂bi

∂t
− w(b)

∂σ

∂xi
− σ

ul

w(b)
δkl ∂bk

∂xi
= 0.

This is a first order nonlinear system in σ,b, which can be checked to take the desired conservative form (5.2).
Considering the function E = (σ, b) introduced in the theorem, we also compute:

∂2E

∂σ 2
= w,

∂2E

∂σ∂bk

= w−1σbi,

∂2E

∂bj ∂bk

= w−1 1

2
(σ 2 + n)

(
δjk − bjbk

w2

)
,

which is a non-negative matrix, since for all scalar Y and vector X = (Xj ) (not both zero) the Hessian evaluated at
(Y,X) equals:

w

(
Y + σ

bj

w2
Xj

)2

− σ 2

w3

(
biX

j
)2 + w−1 1

2
(σ 2 + n)

(
XjXkδjk − XjbjX

kbk

w2

)
,

or equivalently

w

(
Y + σ

bj

w2
Xj

)2

+ w−3 1

2
σ 2

((
XjXkδjk

) − 2
(
biX

j
)2

)
+w−3 n

2
XjXkδjk + w−3 1

2
(σ 2 + n)

((
XjXkδjk

)(
biblδ

il
) − (

Xjbj

)2)
.

This expression is positive if and only if we impose the restriction bibj δ
ij < 1/2. (Each term in the above decompo-

sition has a positive sign.)
Since Eq. (5.2) has the form of a system of conservation laws and admits a convex entropy, it can be put in a

symmetric hyperbolic form. Indeed, introducing the variables,

a := ut = σw(b), ci := e(σ )
bi

w(b)
,

which is nothing but the gradient of E, we obtain:

∂σ

∂t
− ∂

∂xj
(ci δ

ij ) = 0,
∂bi

∂t
− ∂

∂xi
(σw) = 0. (5.12)

Then, by expressing (implicitly) σ and bi as functions σ, bi of the new unknowns a and ci , one can check that the
above system is symmetric, in the sense that

∂σ

∂ci
(a, c) = ∂bi

∂a
(a, c).

In turn, the system is locally well-posed in Hs with s > 1 + n/2. �
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5.2. Weak solutions to the normal flow of graphs

To define weak solutions we rely on the conservative form exhibited in (5.2).

Definition 5.2. A Lipschitz continuous map u : [0, T ) × R
n → R is called a weak solution to the (HMCF′) equation

for graphs (5.1) if and only if for every test-function θ : [0, T )×R
n → R (that is, compactly supported C∞ functions)∫

(0,T )

∫
Rn

(
∂u

∂t

∂θ

∂t
− 1

2

((
w(Du)

)−2
∣∣∣∣∂u

∂t

∣∣∣∣2

+ n

)
∂u

∂xi

∂θ

∂xj
δij

)(
w(Du)

)−1
dx dt = 0,

where w(Du)2 = (1 + δij ∂u
∂xi

∂u
∂xj ). It is called an entropy solution if, moreover, the following inequality holds∫

(0,T )

∫
Rn

1

2

((
w(Du)

)−2
∣∣∣∣∂u

∂t

∣∣∣∣2

+ n

)
w(Du)θ dx dt � 0

for every non-negative test-function θ .

We have the following uniqueness result, which relies on the fact that the energy is convex in the variables σ , b.

Theorem 5.3 (Uniqueness of classical solutions within the class of entropy solutions). Given ε > 0, there exists a
constant Cε such that the following property holds. Let u be a Lipschitz continuous entropy solution and u′ be a
solution of class C 2, both being defined up to some time T > 0 and satisfying the uniform hyperbolicity condition:

|Du|2 <
1 − ε

2
, |Du′|2 <

1 − ε

2
.

Then, provided the Lipschitz norm of u if less than Cε and the C 2 norm of u′ is less than Cε then for all times t ∈ [0, T ):∫
Rn

(∣∣∣∣∂u

∂t
− ∂u′

∂t

∣∣∣∣2

+ |Du − Du′|2
)

(t, x) dx � Cεe
Cεt

∫
Rn

(∣∣∣∣∂u

∂t
− ∂u′

∂t

∣∣∣∣2

+ |Du − Du′|2
)

(0, x) dx.

Proof. Under the assumptions made in the theorem, consider the expression:

Q = Q(t, x) = E(σ,b) − E(σ ′, b′) − DE

D(σ,u)
(σ ′, b′)

(
(σ,u) − (σ ′, u′)

)
= ((

1 + |Du|2)−1|ut |2 + n
)√

1 + |Du|2 − ((
1 + |Du′|2)−1∣∣u′

t

∣∣2 + n
)√

1 + |Du′|2,

and note that for some constant C1
ε > 0,

1

C1
ε

(∣∣ut − u′
t

∣∣2 + |Du − Du′|2) � Q � C1
ε

(∣∣ut − u′
t

∣∣2 + |Du − Du′|2).
On the other hand, a direct calculation using the fact that u is an entropy solution and u′ is a classical solution yields
the inequality:

d

dt

∫
Rn

Q(t, x) dx � C2
ε

∫
Rn

Q(t, x) dx,

where the constant C2
ε depends upon up to second-order derivatives of the solution u′. The conclusion follows from

Gronwall’s inequality and the fact that Q is comparable with |ut − u′
t |2 + |Du − Du′|2. �
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5.3. Global existence of one-dimensional graphs

In view of Theorem 5.1, the hyperbolic mean curvature flow equation in the case n = 1 reads:

utt = 1

2

(
u2

t

1 + u2
x

+ 1

)
uxx

1 + u2
x

+ 2
uxutuxt

1 + u2
x

− u2
xu

2
t uxx

(1 + u2
x)

2

= uxx

2(1 + u2
x)

2

(
u2

t + 1 + u2
x − 2u2

xu
2
t

) + 2
uxutuxt

1 + u2
x

.

Therefore, we find:

utt = 1 + u2
x + u2

t − 2u2
xu

2
t

2(1 + u2
x)

2
uxx + 2

uxut

1 + u2
x

uxt . (5.13)

This equation written on the real line with initial data,

u(x,0) = u0(x), ut (0, x) = u1(x), x ∈ R,

describes the vibrations of an infinitely long string, with initial position u0 and initial velocity u1.
Relying on the definition of weak solutions introduced earlier for general dimensions, we now prove:

Theorem 5.4 (Global existence of weak solutions). There exists a constant δ0 > 0 such that given any initial data
u0, u1 : R → R such that

T V (u0,x) + T V (u1) < δ0,

the initial-value problem for Eq. (HMCF′) in the second-order form (5.13) admits an entropy solution u = u(t, x)

such that the functions ut and ux have bounded variation in space, uniformly in time.

Proof. Since

det

( −1 uxut

1+u2
x

uxut

1+u2
x

1+u2
x+u2

t −2u2
xu2

t

2(1+u2
x)2

)
= −1 + u2

x + u2
t

2(1 + u2
x)

2
= − e

w2
< 0,

this equation is always hyperbolic. We introduce the variables,

a := ut

w
, b := ux.

These are both conservative quantities. For b this is trivial since

bt = uxt = (ut )x = (
a
√

1 + b2
)
x
. (5.14)

For a we may either see this directly from the conservation law (4.2) with Y = ∂
∂u

or we may compute:

at = utt

w
− uxutuxt

w3

= 1 + u2
x + u2

t − 2u2
xu

2
t

2w5
uxx + 2

uxut

w3
uxt − uxutuxt

w3

= 1 + u2
x + u2

t − 2u2
xu

2
t

2w5
uxx + ux(u

2
t )x

2w3

= 1 + u2
x + u2

t − 2u2
xu

2
t

2w5
uxx +

(
uxu

2
t

2w3

)
x

− u2
t

(
ux

2w3

)
x

,

thus

at = uxx

2w3
+

(
uxu

2
t

2w3

)
x

=
(

ux

2w
+ uxu

2
t

2w3

)
x

=
(

ux(1 + u2
x + u2

t )

2w3

)
=

(
(1 + a2)b√

2

)
.

x 2 1 + b x
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This can be rewritten in the form:

at = ab√
1 + b2

ax + 1 + a2

2(1 + b2)3/2
bx

and Eq. (5.14) is equivalent to

bt =
√

1 + b2 ax + ab√
1 + b2

bx.

Combining the last two equations gives the system:(
a

b

)
t

− A(a,b)

(
a

b

)
x

= 0, (5.15)

where

A(a,b) = 1√
1 + b2

(
ab 1+a2

2(1+b2)

1 + b2 ab

)
. (5.16)

Recall that a necessary and sufficient condition for a quantity η = η(a, b) to be a conserved quantity is for,(
ηaa ηab

ηab ηbb

)
A,

to be a symmetric matrix. For the nonlinear hyperbolic system under consideration this gives:

abηab + (1 + b2)ηbb = 1 + a2

2(1 + b2)
ηaa + abηab,

that is,

ηaa = 2(1 + b2)2

1 + a2
ηbb. (5.17)

This is clearly a linear hyperbolic equation. From this we compute, for example, that ab = uxut

w
is a conserved quantity,

a fact which also follows directly from (4.2) with Y = ∂
∂x

.
As one easily computes, the two eigenvalues of A are given by:

λ± = 1√
1 + b2

(
ab ±

√
1 + a2

2

)
, (5.18)

while the eigenspaces are spanned by the vectors,

μ± =
(

±
√

1+a2√
2(1+b2)

1

)
. (5.19)

Regarded as a function of a and b the gradient of λ± equals:

Dλ± = 1√
1 + b2

⎛⎝ b ± a

2
√

1+a2
2

a − b

1+b2 (ab ±
√

1+a2

2 )

⎞⎠ , (5.20)

hence

〈Dλ±,μ±〉 = 1√
1 + b2

(
±

√
1 + a2

√
2(1 + b2)

(
b ± a

2
√

1+a2

2

)
+ a

1 + b2
∓ b

1 + b2

√
1 + a2

2

)

= 3a

2(1 + b2)3/2
= 3ut

2w4
.

Hence, the hyperbolic system under consideration is not genuinely nonlinear in the sense of Lax.
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However, we observe that the genuine nonlinearity is lost on a hypersurface (that is, {ut = 0}) which is itself
non-degenerate, in the sense that〈

D〈Dλ±,μ±〉,μ±
〉 �= 0 along the hypersurface ut = 0.

Therefore, we are in a position to apply to the system of conservation laws:

at −
(

(1 + a2)b

2
√

1 + b2

)
x

= 0,

bt − (
a
√

1 + b2
)
x

= 0,

the global existence theorem in Iguchi and LeFloch [4], which provides the existence of a solution with bounded
variation when the initial data have small bounded variation. �
6. Local-in-time existence

We now turn to the discussion of the existence of solutions to the normal hyperbolic mean curvature flow (HMCF′),
where Mt cannot necessarily be written as an entire graph over a flat subspace. We use standard notation and, in
particular, denote by Hs(M) the Sobolev space of locally squared integrable (tensor-valued) maps defined on M

whose all s-order derivatives (in one local chart and in the distributional sense) are also locally squared integrable.

Theorem 6.1. Let M be a smooth, orientable compact manifold with dimension n, and F : M → R
n+1 be an im-

mersion of M in the Euclidean space. Given a (scalar) normal velocity field σ : M → R in the Sobolev space
Hs+1(M) with s > 1 + n/2, there exists a unique flow F : [0, T ) × M → R

n+1 in the space L∞([0, T ),Hs+1(M)) ∩
Lip([0, T ),Hs(M)) which is defined on some maximal time interval and satisfies the normal hyperbolic mean curva-
ture flow equation (HMCF′), together with the initial conditions:

F(0) = F,
dF

dt
(0) = σν(0).

We will provide two different arguments to handle Eq. (HMCF′).
Let us cover the manifold with finitely many local charts, chosen in such a way that the manifold can be viewed

locally as a graph over its tangent plane at some point. In each local chart, we apply the local existence theorem for
graphs established in Theorem 5.1. Indeed, due to the property of finite speed of propagation satisfied by hyperbolic
equations, all of the arguments therein can be localized in space and apply in each coordinate patch. Then, by patching
together these local solutions and using the fact that only finitely many charts suffice to cover the manifold M , we
can find a sufficiently small T such that every local solution is defined within the time interval [0, T ), at least. This
completes the proof of the theorem.

The rest of this section is devoted to provide a second proof of Theorem 6.1 which is also of interest in its own
sake. We will now express (HMCF′) as a single scalar equation in terms of a height function u with respect to a fixed
initial hypersurface. To this end let us discuss the case of flows F : [0, T )×M → R

n+1 such that each Mt := F(t,M)

is an entire graph over a fixed reference manifold Σ given by an immersion G : M → Σ ⊂ R
n+1. If each Mt can be

written as a graph over Σ , there must exist a family of smooth height functions u : [0, T ) × M → R and a family
ξ : [0, T ) × M → M of diffeomorphisms such that

F(t, x) = G
(
ξ(t, x)

) + u
(
t, ξ(t, x)

)�n(
ξ(t, x)

)
, (6.1)

where �n is the inward unit normal along Σ . Let us denote the metric on M = Σ by σij and the second fundamental
form by τij The induced connection on M with respect to σ will be denoted by D.

The tangent vectors take the form,

Fi(t, x) = (
Gj

(
ξ(t, x)

) + uj

(
t, ξ(t, x)

)�n(
ξ(t, x)

)
− u

(
t, ξ(t, x)

)
τ k
j

(
ξ(t, x)

)
Gk

(
ξ(t, x)

))
ξ

j
(t, x),
i
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where in this section a raised index will be raised with respect to the metric σ , i.e. τ k
i = σklτil . It will be convenient

to define the following tensor:

Nij := σij − uτij .

Then the tangent vectors can be written in the form:

Fi = (
uj �n + Nl

jGl

)
ξ

j
i , (6.2)

and for the second derivative Fij := ∂2F
∂xi∂xj we get

Fij = ((
ukl + Nm

k τml

)�n + (
DlN

m
k − ukτ

m
l

)
Gm

)
ξk
i ξ l

j + (
uk �n + Nm

k Gm

)
ξk
ij .

The induced metric tensor gij = 〈Fi,Fj 〉 is:

gij = (
ukul + NkmNm

l

)
ξk
i ξ l

j . (6.3)

In the following we will assume that u is sufficiently small, so that the symmetric tensor Nij is invertible and we
denote its inverse by Ñ ij . Let us define:

w :=
√

1 + Ñk
i Ñ ilukul.

The inward unit normal along Mt is then determined by

ν = 1

w

(�n − ÑklukGl

)
, (6.4)

so that

hij = 〈Fij , ν〉 = 1

w

(
ukl + Nm

k τml + Ñrmur(ukτml − DlNkm)
)
ξk
i ξ l

j . (6.5)

We need expressions for d
dt

F and d2

dt2 F . From (6.1) we obtain:

d

dt
F = Gk

dξk

dt
+

(
ut + uk

dξk

dt

)
�n − uτ l

k

dξk

dt
Gl,

where the subscript t in ut denotes a partial derivative with respect to t , i.e. ut = ∂u
∂t

. Rearranging terms gives:

d

dt
F =

(
ut + uk

dξk

dt

)
�n + Nl

k

dξk

dt
Gl. (6.6)

This implies the relations:

σ =
〈

d

dt
F, ν

〉
= ut

w
, (6.7)

and

Si =
〈

d

dt
F,Fi

〉
=

(
ujut + g̃jk

dξk

dt

)
ξ

j
i , (6.8)

where

g̃kl := ukul + Nm
l Nml.

We differentiate (6.6) with respect to time and compute:

d2

dt2
F =

(
utt + 2utk

dξk

dt
+ uk

d2ξk

dt2

)
�n −

(
ut + uk

dξk

dt

)
τ l
i

dξ i

dt
Gl

+ DiN
l
k

dξ i

dt

dξk

dt
Gl + Nl

k

d2ξk

dt2
Gl + Nl

kτil

dξk

dt

dξ i

dt
�n.

Hence, we have
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d2

dt2
F =

(
utt + 2utk

dξk

dt
+ uk

d2ξk

dt2
+ Nl

kτil

dξk

dt

dξ i

dt

)
�n (6.9)

+
(

Nl
k

d2ξk

dt2
+ DiN

l
k

dξ i

dt

dξk

dt
−

(
ut + uk

dξk

dt

)
τ l
i

dξ i

dt

)
Gl,

and consequently,

α =
〈

d2

dt2
F,ν

〉
= 1

w

(
utt + 2utk

dξk

dt
+ uk

d2ξk

dt2
+ Nl

kτil

dξk

dt

dξ i

dt

)
− 1

w

(
Nl

k

d2ξk

dt2
+ DiN

l
k

dξ i

dt

dξk

dt
−

(
ut + uk

dξk

dt

)
τ l
i

dξ i

dt

)
Ñm

l um.

Therefore, we have:

α = 1

w

(
utt + 2utk

dξk

dt
+ Nl

kτil

dξk

dt

dξ i

dt

− DiN
l
kÑ

m
l um

dξ i

dt

dξk

dt
+

(
ut + uk

dξk

dt

)
τ l
i Ñ

m
l um

dξ i

dt

)
, (6.10)

and moreover,

Ai =
〈

d2

dt2
F,Fi

〉
= uj

(
utt + 2utk

dξk

dt
+ uk

d2ξk

dt2
+ Nl

kτsl

dξk

dt

dξ s

dt

)
ξ

j
i

+Njl

(
Nl

k

d2ξk

dt2
+ DsN

l
k

dξ s

dt

dξk

dt
−

(
ut + uk

dξk

dt

)
τ l
s

dξ s

dt

)
ξ

j
i .

Reordering gives the final formula:

Ai =
(

ujutt + 2ujutk

dξk

dt
+ g̃jk

d2ξk

dt2
+ (

ujN
l
kτsl + NjlDsN

l
k

)dξs

dt

dξk

dt

− Njlτ
l
s

(
ut + uk

dξk

dt

)
dξs

dt

)
ξ

j
i . (6.11)

We summarize our results in the following proposition:

Proposition 6.2. If F : [0, T ) × M → R
n+1 is an arbitrary flow, where each Mt = F(t,M) is represented as a graph

over G : M → Σ as above, then (u, (ξk)k=1,...,n) is a solution of the coupled system:

σ = ut

w
, (6.12)

Si =
(

ujut + g̃jk

dξk

dt

)
ξ

j
i , (6.13)

α = 1

w

(
utt + 2utk

dξk

dt
+ Nl

kτil

dξk

dt

dξ i

dt
− DiN

l
kÑ

m
l um

dξ i

dt

dξk

dt
+

(
ut + uk

dξk

dt

)
τ l
i Ñ

m
l um

dξ i

dt

)
, (6.14)

Ai =
(

ujutt + 2ujutk

dξk

dt
+ g̃jk

d2ξk

dt2
+ (

ujN
l
kτsl + NjlDsN

l
k

)dξs

dt

dξk

dt

− Njlτ
l
s

(
ut + uk

dξk

dt

)
dξs

dt

)
ξ

j
i . (6.15)
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Note, that up to this point we have not chosen a particular flow. For (HMCF′), we have Si = 0, α = eH , A = −∇ie.
From (6.13) we obtain:

dξk

dt
= −g̃jkujut , (6.16)

where g̃jk denotes the inverse of g̃jk . Inserting this into (6.14) we get:

eH = 1

w

(
utt − 2g̃jkujututk + L

)
, (6.17)

where L is a term of first-order in u. This, by the compactness of Σ , clearly is a uniformly hyperbolic equation,
provided u is sufficiently small in C1(Σ). So we can provide a short-time solution for (HMCF′), if we assume

u|t=0 = 0, i.e. if Σ = M0. After having solved (6.17) we can solve (6.16) for dξk

dt
. If u is sufficiently small in C1(Σ),

then dξk

dt
will be small as well so that by choosing ξt=0 = IdΣ we obtain a family of diffeomorphisms ξ(t) solving

(6.15). This completes the proof of Theorem 6.1.

7. Finite-time blow-up results

7.1. An example of finite-time blow-up

The hyperbolic mean curvature flow may blow-up in finite time in a way that is completely analogous to the
standard mean curvature flow. We provide here a typical example.

Let F0 : Sn → R
n+1 be a round sphere of radius r0. If F : [0, T )×Sn → R

n+1 is a solution of (HMCF′) with initial
data F(0, x) = F0(x), and d

dt
F (0, x) = σ0ν(x) with a constant σ0 ∈ R, then Mt := F(t, Sn) is a concentric sphere

with radius r(t). In this case, the hyperbolic mean curvature flow reduces to the ordinary differential equation (ODE):

rr̈ + n

2
(ṙ)2 + n2

2
= 0, r(0) = r0, ṙ(0) = −σ0.

This second-order equation can be reduced to the following first-order ODE:

ṙ =
⎧⎨⎩

√
(n + σ 2

0 )(
r0
r
)n − n, if σ0 < 0,

−
√

(n + σ 2
0 )(

r0
r
)n − n, if σ0 � 0,

(7.1)

r(0) = r0.

The solution depends upon the dimension n. In the case n = 1, we obtain the cycloid:

r

√
c

r
− 1 + c arctan

√
c

r
− 1 =

{−t − r0σ0 − c arctanσ0, if σ0 < 0,

t + r0σ0 + c arctanσ0, if σ0 � 0,

where c = r0(1 + σ 2
0 ).

On the other hand, in the case n = 2, we obtain the explicit solution:

r(t) =
√

r2
0 − 2r0σ0t − 2t2.

If σ0 < 0, the sphere begins to expand until it starts to shrink and eventually collapses to a point in a finite time T ,
given by:

T = r0

2

(−σ0 +
√

σ 2
0 + 2

)
.

In the above situation, one can avoid the formation of singularities by rescaling the metric according to its volume.
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7.2. Blow-up estimates based on the mean and total mean curvature

In some situations it is possible to derive blow-up results from the behavior of the mean or total mean curvature of
the system. To this end let us define the function,

γ (σ ) := 2√
n

arctan

(
σ√
n

)
,

which satisfies

γ ′ = 2

n

1
σ 2

n
+ 1

= 1

e
,

and

d

dt
γ = γ ′ d

dt
σ = H.

Given U ⊂ M we define:

fU(t) :=
∫
U

(σ + γ e)dμt , EU :=
∫
U

e dμt .

Note that d
dt

(e dμt ) = 0 implies, that EU does not depend on t .

Proposition 7.1. For any open set U ⊂ M and any 0 � t1 � t2 � T one has:∣∣∣∣∣
t2∫

t1

∫
U

H dμt dt

∣∣∣∣∣ = 1

n

∣∣fU(t2) − fU(t1)
∣∣ � 2π

n
√

n
EU, (7.2)

and ∣∣∣∣∣
t2∫

t1

∫
U

He dμt dt

∣∣∣∣∣ =
∣∣∣∣fU(t2) − fU(t1) +

∫
U

σ dμt1 −
∫
U

σ dμt2

∣∣∣∣
� 2(π + 1)√

n
EU . (7.3)

In particular, if T = ∞, then for any ε > 0 and any choice of open set U ⊂ M there exists a sequence tk → ∞ such
that ∣∣∣∣ ∫

U

H dμtk

∣∣∣∣ < ε, k ∈ N,

and ∣∣∣∣ ∫
U

He dμtk

∣∣∣∣ < ε, k ∈ N.

Proof. Since d
dt

σ = eH and d
dt

dμt = −σH dμt we compute

d

dt
fU (t) =

∫
U

(
eH + He + γ σeH − (σ + γ e)σH

)
dμt = n

∫
U

H dμt .

The function σ
e

+ γ is a monotone increasing function in σ , and

− π√ <
σ + γ <

π√ .

n e n
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Therefore the function,

fU(t) =
∫
U

(
σ

e
+ γ

)
e dμt ,

satisfies

− π√
n

EU < fU(t) <
π√
n

EU . (7.4)

Then we obtain:
d

dt
fU (t) = n

∫
U

H dμt

which implies (7.2). From the observation,

0 �
∫
U

(σ ± √
n )2dμt =

∫
U

(
σ 2 + n ± 2

√
nσ

)
dμt = 2EU ± 2

√
n

∫
U

σ dμt ,

we conclude that ∣∣∣∣ ∫
U

σdμt

∣∣∣∣ � EU√
n

. (7.5)

Moreover, we have:

d

dt

∫
U

σ dμt =
∫
U

(e − σ 2)H dμt = −
∫
U

eH dμt + n

∫
U

H dμt ,

and thus

d

dt

(
fU(t) −

∫
U

σ dμt

)
=

∫
U

eH dμt .

This and (7.4), (7.5) imply (7.3). �
We can improve Proposition 7.1, as follows.

Proposition 7.2. For any x ∈ M and any 0 � t1 � t2 � T one has:∣∣∣∣∣
t2∫

t1

H(x, t) dt

∣∣∣∣∣ = ∣∣γ (t2) − γ (t1)
∣∣ � 2π√

n
.

In particular, if T = ∞, then for any ε > 0 and any x ∈ M there exists a sequence tk → ∞ such that∣∣H(x, tk)
∣∣ < ε, k ∈ N.

Proof. This follows directly by integrating

d

dt
γ = H,

and from

|γ | � π√
n
. (7.6)

Proposition 7.3. Consider the flow associated with a closed curve C ⊂ R
2 with non-vanishing rotation number χ(C).

Then T < ∞.
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Proof. The rotation number of a curve is given by:

χ(C) = 1

2π

∫
C

H dμ.

This is a topological invariant, hence in particular d
dt

χ(Ct ) = 0 for all smooth deformations Ct of C. It follows that∫
C

H dμt

is a (non-zero) constant. Hence, by Proposition 7.1 we must have T < ∞. �
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