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1. Introduction

Exceedance statistics have been widely used in survival analysis, reliability, construction of hypothesis testing especially
for two-sample problems. Distributions of exceedance statistics are closely related to the tolerance and invariant confidence
intervals containing the general distributed mass. Tolerance intervals were discussed in [ 1-3]. Invariant confidence intervals
are discussed in [4]. A first discussion on exceedance statistics, their properties and applications can be found in [5,6].
Wesolowski and Ahsanullah [7] investigated the distributional properties of the various exceedance statistics. Matveychuk
and Petunin [8] and Johnson and Kotz [9] used exceedance statistics for the construction of the two-sample hypothesis test.
Katzenbeisser [10,11] proposed a test criteria by using exceedance statistics for testing whether the two random samples
are from the same population or not. Bairamov and Petunin [4] introduced the notion of an invariant confidence interval
containing the main distributed mass of a general population and showed that the only order statistics can be invariant
confidence intervals for the class of all continuous distributions. Recently [ 12-14] studied exact and limiting distributions
of exceedance statistics for both order statistics and record values when the underlying distribution is arbitrary.

Let X1,X5,...,X, and Yq,Y>,...,Y,; be samples obtained from populations with distribution functions F and Q,
respectively, where F, Q € 3. and 3. is the class of all continuous distribution functions. Let X1., < Xo., < -+ < Xy
and Yi.;, < Yo < - -+ < Yy be the order statistics constructed from X1, Xo, ..., X, and Yy, Yo, ..., Yy, respectively.

For any integer m > 1, define

Sn=#{j<m:Y; <X} (1)
which denotes the number of Yy, Y, ..., Y}, falling below the threshold X.
Denote by S]; the number of Y observations falling into the random interval (X, Xs:n), i.€.
Sp=#{k<m:Yye€ XK Xen)} 1<r<s<n (2)
Denote
V1 = (=00, X1:n], V2 = Ky Xzl s -+ Vo = Koty Xuen] s V1 = (Xpn» 00) .
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and define binary random variables

gf:{l’ Seevi 12, omi=12,.. . n+1

0, Yr¢v;
n+1
Si=Y &, k=12,....m
i=1
It is obvious that S; denotes the number of observations Yy, Ya, ..., Y, falling into interval v; (i = 1,2, ..., n+ 1).

Proposition 1.1. Let the hypothesis Hy be defined as Hy : F (x) = Q (x) and the composite alternative H, is Hy : F (x) #
Q (x); F,Q € 3. Assume that Hy is true then, for 0 < i, < m,k = 1,2,...,n+ 1,iy + iy + --- 4+ ipy; = m the joint
probability mass function of random variables 1, &a, ..., {ny1 1S

. . ) 1
P{ti=in =10, s &1 = 1} = 75y
("\")

Proof. If Hy is true, then we have
n!m!

i [ i) [Fx2) — P
11: 12 ln+1 X1 <Xp <--<Xp
x IFxn) — FGn- )" dF ()P () -~ dF )

P{ti=1i1,5 =iy ..oy Gnpr = Iny1} =

B n'm! l]’lz’ln+1‘
iglip! g (1 dp A g 1))
1
= (3)
n
It is not difficult to observe (3) can also be interpreted as follows: let the hypothesis Hy be true and let Z;, Z,, . . ., Z, be the
ordered layout of the order statistics of both samples, then
1
P{Z] <Zz < - <Zn+m}: ThaFmy
("3
For example
1

P{Xlzn EXZ:n R fxn:n = Yl:m = Y2:m <= Ym:m} =

(See [15,p.442]). O

In this paper, the distribution and asymptotic behavior of the exceedance statistics Sy, S,, S3 defined as the number of
observations of Y's falling into Ay = (—00, X1.n], A2 = X1, Xninl, A3 = (Xun, 00) are studied respectively.

2. Joint distribution of exceedance statistics based on order statistics
Theorem 2.1. Assume that X1, Xz, ..., Xpand Yy, Yo, ..., Yy, are samples from populations with d.f. F and Q, respectively where
F,Q € .. Let
Ay = (=00, Xial Ay = X1, Xnenl Az = Xy, 00)
and

k)1, Yee .
Si_{o, Ykngk_lz .,mi=1,2,3.

Then
I—k+n—2
o) @

whereS1 4+ S, +S3 =m,S; € [0, m], S, € [0, m], S3 € [0, m].

P{Si=kS=1-k,Ss=m—-1} =
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Proof.
PiSi=kS=I—kS;=m—l= Y PV, €AY, €Ar... V€A,
1,12,
Y, € 42, Yy, € Ag, ..., Yy € Ay, Yy, € A3, Yy, € As, ..., Y, € A3} (5)
where the sum extends over all m! permutations obtained from 1,2,...,m. O

Denote by F; ;(x, y) the joint distribution function of order statistics X;., and X;.,. Applying the continuous total probability
formula to (5), conditioning on X;., and X,., we have

P{Si=kS=1—k S3=m-—1}

m!
= — PiY; € (—oo, Xinl, ..., Yy € (—00, X14],
K= Tl (m = D! //oooo iy € (=00 Xual, .., ¥y € (=00, Xua]
Yik+1 € (Xlznsxn:n] PO Yil € (Xlznan:n] s
Yil+1 € (Xnn, 00) 5+ -+, Y € (Xin, 00) | Xpin = X1, Xpon = XZ} dFy 0 (X1, X2)
m! n

y 0o X
di i | [ FEOFIE ) = F 0l = Foa ™ f ndadsy

(l—k+n—2)

n—2

~—r
("a")

Thus, the proof is completed.

3. Asymptotic distributions of exceedance statistics

Lemma 3.1.
STS
lim sup |P {l =< X} - P{Q Xsn) —Q (Xr:n) = X} =0
n—oo 0<x<1 m

for r-th and s-th order statistics (1 <r <s <n).

Following results are given for the F = Q case. (see [16,17]).
Corollary 3.1. Let Hy : F(x) = Q(x). Then

lim sup =0

n—00 g<x<1

P{%’rs Ex} _P{F(Xs:n)_F(Xr:n) EX}

Bairamov [16]. Let W,s = F (Xs.,) — F (X;-n), then the probability density function of Wiy is
1

LT A=), 0<x<1
Bs—r,n—s+r+1) -

Jws ) =
David [18].
Theorem 3.1. The asymptotic distribution of (S1/m, S;/m, S3/m) is

S S S
lim P{—] <X, 2 <xp, 2 §X3} = lim P{S$; < [mxq],S; < [mx,], S3 < [mx3]}
m m m—o00

m— 00 m

(®2)" = (x — x)" = nx; (1 —x3)""", (6)

Proof. By substituting S3 = m — Sy — S; in (6) we reach

P{S; <mxy,S; < mxp,S3 < mx3} = P{S; <[mxq],S; < [mxy], m —[mx3] < S; + S,}

I—k+n-2
[mxq]  [mxp] n—2

k=0 I=m—[mx3]+k (m + Tl)
n
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where [x] denotes the integer part of x. Lett = — k

1 [mx1] [mxa]—k t+n—2
P{S; < mxq,5; < mxp,S3 < Mx3} = — Z Z < n—2 )
<m + n) k=0 t=m—[mx3]
n

1 [%] [y k(t—l—n—Z) ’"""f“(urn—z)
<m+n> k=0 \ t=0 n-—2 =0 n-—2

n
B 1 [%]([mxz]—k—l—n—Z—i—l)_[%]<m—[mx3]—l+n—2+l)
B <m+n> — [mx,] — k p m—[mxs] — 1

n

Gim \ iz (Imx2] — ! (n — 1)! — [mx3] — D! (n — 1)!

; ([mxﬂ([mxz]—k—i—n—U!_% (m — [mx;] +n — 2)! )

1 1 %1 (mx2] —k+n=1! 1 'V n—[ma]—k+n—2)
Gl | (=D & ([Imx,] — k)! (n—1! & (m—[mxs] —k—1)!
Iy I
On the other hand, I; is simplified using the equations
Zak: Z an—k
k=nq k=n—nj
Dottt +m) = 12n(n+1)---(n+m—|—l).
t=1
L 1 ) (mxy] —k4+n—1)!
T - = (mxl !
1 [mx4]
=WZ([sz]—kH)([sz]—kvLZ) S([mx] —k+n—1)
1 [mx;]
= =i > kD Kk+2)(k+n—1)
k:[mxz,mﬁ]
1 (mx+1] [mxz—mx ]
= m k; k(k+1)(k+2)---(k+n—2)— k; k(k+1) (k+2)---(k+n—2)
= = [([sz] + 1) ([mxz] +2) - - - (Imxa] + n) — ([mxy — mx;])
>< ([mxy] — [mxq] 4+ 1) - - - (fmxy] — [mx1] 4+ n — 1)]
Lo 1 ™) (m— [mxs] +n—2)!
27T (=1 £ (m—[mxs] — 1)!
1 [mxq]
= G & O D on = (s 1) = ] 40 - 2)
1
= m([mxllﬂ)(m—[mm) (m— [mx3] + 1) --- (m — [mx3] + n—2).

Under the simplifications of I and I, the joint distribution function of S; /m, S, /m and S3/m is obtained as,

P{S; <mx;,S; <mxp,S3 <mx3} =11 — L

=L a4 1) (mal +2) - (el )

("a")"



N. Ozkaya Turhan / Journal of Computational and Applied Mathematics 236 (2012) 2259-2267 2263
1
-0 ([mxy — mx{]) (Imxz — mx;] + 1) --- ([mxz —mx;] +n—1)
1
— — ((Jmx 1) (m—[mx
Gy (mal+ D m — [ms))
X (m—[mx3]+ 1) (m—[mx3] +n—2)) (10)
where [mx;] < [mx,], m — [mx3] < [mxz], m — [mx3] + [mx;] < [mx,].

By applying limits to P {S; < mx;, S, < mx,, S3 < mx3} in (10), the result is

lim P{S; < mx;, S, <mxy,S3 < mxs} = (x2)" — (X — %1)" — nxy (1 — x3)""! (11)

m—0o0

where X1, X3, X3 € [0, 1]. As a special case of (11) forn = 2

lim P{S; < mx;,S; <mxp,S3 < mxs} = (x2)> — (X2 — %1)* — 2% (1 — X3)"
m—0o0

where x1, x5, x3 € [0, 1]. When S, S; and S3 € [0, m] the probability is verified in the sense that

P{S1§m,52§m,535m}:( )Zz<t+n_ )

m+n\ iz
n
n!m!

= mtmin ](m+1)(m+2) -(m+n)

1. O

3.1. Asymptotic distribution of exceedance statistics when the random threshold is X,.,

Assume that Xi,Xo,...,X, and Yy, Yo, ..., Y, be samples from populations with d.f. F and Q respectively where
F,Q € 3. Let Xy, is a random threshold and A; = (—00, X;.n], A2 = (Xp.p, 00) are intervals. And let us define the
variables

k_ )1, Yeed _ .
Si—{o, Yk¢A1k 1,2,...,mi=1,2
and

m
k
-3¢
k=1

Let S; and S; be exceedances, obtained from the sample Y1, Y, ..., Y;;, denoting the numbers of observations below and
above the random threshold X,,., respectively where S; +S, = m, S; € [0, m]and S, € [0, m].

Theorem 3.2. Let S; € [0, m] and S, € [0, m] where Sy + S, = m. Then the joint asymptotic distribution of % and % random
variables is

. S S n n
lim P <X, = <xr=x—0-=X)", x1+x>1
m—>00 m

S
lim P 15)(1}=x'1‘, x1 €[0,1],x% > 1

m—0oQ

lim P

m— 00

S
m

sz} =X, x,€[0,1],x; > 1.

Proof. The joint probability function of S; and S; is

PSi=kS=m—ki= > PV, €AY, €Ar....Y €AYy, €4, Y, €Ay ... Y, € A}
i1,i2,...,im
m!
= — P € oo, X , € 00, X
k! (m—k)!/ { - LY, €= I
Yik € (_007X] s Yik+1 € (Xa OO) s Yik+2 € (X» OO) PR Yim € (xv OO)} n[F (X)]n_lf(x) dx

_ m! n ! tn+k71 [1 _ t]mfk dt
T kRm—=k J,
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nn+k—1)!(m—k)! m!
(m+n)! k! (m — k)!

nm!

The marginal distribution function of % is

[mx4]
S nm!
Pl— <x1; = E ——k+ Dk +2)---(n+k—1)
m

= (n+ m)!
[mxq+1] m!
= ; mlc(l<+1)(k+2)--~(n+k—2)
nm! 1
= ! [n—2+2 [mxq + 1] [mxq 4 2] - - - [mxy +n]:|

1
T m+Hm+2)---(m+n [mx; + 1][mx; 4+ 2] - - - [mx; +n]. (13)

The marginal distribution function % is obtained by using the same procedure in Eq. (13)

S, [mxa] m
P{— fxz} = > Y PiSi=kS =i
m k=0 =0

k+i=m
& im k-1
= (m+m)! k!

1
T m+Hm+2)---(m+n [mx; 4+ 1][mxy + 2] - - - [mxy + n]. (14)

The joint distribution of the random variables %‘ and %Z is

S S
P{1 §X1,2§Xz} =P{S; <mx;,m—S; <mxy} =P{m—mx, <S5 < mxy}
m m

[mx4] [mxq] m
= Y Pisi=k= > > P{Si=kS=i
k=[m—mx;] k=[m—mxy] i=0
k+i=m
O e k-
kel ] (n+ m)! k!
[mxq]
nm!
= — > k+Dk+2)-(k+n—1)
(Tl + m) k=[m—mx,]
nm! L mxy 10 [mx 2] x4 14— 24 1]
— X X ... Im —
m+m)!|[n—2+2 ! ! !
- [m-— - 1]---[m— —241]. 15
n_2+2[m mxa|[m—mx; +1] ---[m—mx; +n—2+ ]} (15)

The equations in (13)-(15) are simplified by (8). Thus, we derived the asymptotic distribution of % and % by using
(13)-(15) when m — oc.

. S] 52 n n

lim Py— <x, —<Xr=x-(0-x)" xt+x>1
m—s00 m m

. S] n

im Py—<xip=x5, x €[0,1],%>1
m—s> 00 m

. S2 n

lim Pi= <xpp =5, xel01].x>1
m—s 00 m

Thus, the proof is completed. O
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3.2. Asymptotic distribution of exceedance statistics when the random threshold is X;.,

Assume that X1, Xo, ..., X, and Yy, Yo, ..., Y, be samples from populations with d.f. F and Q respectively where
F,Q € 3. Let Xy, is a random threshold and A; = (—00, X1.4], A2, = (Xi.,, 00) are intervals. And let us define the
variables

k_ )1, Yeed .
;= {O, Yo & A k=1,2,....,mi=1,2

and

m

Si=) &

k=1

Let Sqand S, be exceedances, obtained from the sample Y, Y,, ..., Y;;, denoting the numbers of observations below and
above the random threshold X;., respectively where S; +S, = m, S; € [0, m]and S, € [0, m].

Theorem 3.3. Let S; € [0, m]and S, € [0, m], where S;+S, = m. Then the joint asymptotic distribution of % and % random
variables is

. S S 1 1

lim P{— <x;, = <xpp=%x—(1—=x1)", X,%¢e[0,1],% +x >1
m—s 00 m m

. S] n

lim P{— <x1y=1—(1—x)", x€[0,1],x; > 1
m—s>00 m

. S2 n

lim P{—=<x¢=1—(1-—x)", x ¢€[0,1],x; > 1.
m—s> 00 m

Proof. The joint probability function of S; and S, is

P(S;=k S, =m—k} = Z P{Y;, € A, Y, € Ay, ..., Y, € ALYy, € A2, Yy, € Aa, ..., Y, € Ay
i1,02,0erim
= [T R R - F o d o
T km—k J_o
nm!
=——-(mM—k4+1)(mMm—-k+2)---(m+n—k—1). (16)
(m 4+ n)!

The marginal distribution function of % is

S] _[mxll m!
thxl} = k;m(m—k+1)(m—k+2)--.(m+n—k—1)
nm! n
=——— Y @+ DE+2)@+t-1)

(n + m)! t=[m—mxq]

[m—mx;][m—mx; +1]---[m—mx; +n—2+ 1]

=1 (17)
(m+1)m+2)---(m+n)
The marginal distribution function %2 is obtained by using the same procedure in Eq. (17)
52 [mx;]
P{ SXz} = ZP{52=I(}
m k=0
_ el aml (n+m—k—1)!
- & (n+m)! (m— k)!
m — mx;| [m — mx; 1] [m — mx; n—2+1
o m—m)(m = mg 1] m—mx £ 24 1] (s)

(m+1)m+2)---(m+n)
The joint distribution function of the random variables % and % is

S S2
Pl— <X, — <X =P{S <mx;,m—S§ <mxy}
m m

=P{m—mx, <S; < mx;}



2266 N. Ozkaya Turhan / Journal of Computational and Applied Mathematics 236 (2012) 2259-2267

[mx4]

= P{S; =k}
k=[m—mxy]
[mxq] m
= Z ZP{S1 =k, S, =i}
k=[m-mxy] i=0
k+i=m
B (mxy] nm! (m+m—k—1)!
k] (n+ m)! (m—k)!
[m—m+mx;]
nm!
=——— Y D+ -1
(Tl + m) t=[m—mxq]

1
T mEDm+2) - (m+n
oo mxp+14n—1]—[m—mxq][m—mx; +1] ---[m—mx; +n—1]]. (19)

[[mx; + 1] [mx, + 2]

The equations in (17)-(19) are simplified by (7) and (8). Thus, we derived asymptotic distribution of % and % by using
(17)-(19) when m — oc.

. S Ay} . n

lim Py— <X, = <xp=%—1—x)", x,%€l[0,1],x+x >1
m—s00 m m

. S1 n

lim P{— <x1y=1—(1—x)", x1€[0,1],x, >1

m—>00 m

. 52 n

lim P{—<xt=1—(1—-x)", xe[0,1],x >1

m—> 00 m

Thus, the proof is completed. O

4. Numerical results

In the following we provide numerical values for the exact distribution for different values of n and m.

n=3m=4
Nk |0 1 2 3 4
0 0.02857
1 0.05714 | 0.02857
2 0.08571 0.05714 | 0.02857
3 0.11429 | 0.08571 0.05714 | 0.02857
4 0.14286 | 0.11429 0.08571 0.05714 | 0.02857
n=5m=4
Nk |0 1 2 3 4
0 0.00794
1 0.03175 0.00794
2 0.07937 0.03175 0.00794
3 0.15873 0.07937 0.03175 0.00794
4 0.27778 0.15873 | 0.07937 0.03175 0.00794
n=4,m=>5
Nk | O 1 2 3 4 5
0 0.00794
1 0.02381 0.00794
2 0.04762 0.02381 0.00794
3 0.07937 0.04762 0.02381 0.00794
4 0.11905 0.07937 0.04762 0.02381 0.00794
5 0.16667 0.11905 0.07937 0.04762 0.02381 0.00794
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n=4m=7

Nk | O 1 2 3 4 5 6 7

0 0.00303

1 0.00909 0.00303

2 0.01818 0.00909 0.00303

3 0.03030 0.01818 0.00909 0.00303

4 0.04545 0.03030 0.01818 0.00909 0.00303

5 0.06364 0.04545 0.03030 0.01818 0.00909 0.00303

6 0.08485 0.06364 0.04545 0.03030 0.01818 0.00909 0.00303

7 0.10909 0.08485 0.06364 0.04545 0.03030 0.01818 0.00909 0.00303

These results could be advised for use in two-sample hypothesis tests in many areas as described in the Introduction
section.
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