On asymptotic distributions of exceedance statistics

Nejla Ozkaya Turhan
Ankara University, Faculty of Science, Department of Statistics, 06100 Tandogan, Ankara, Turkey

ARTICLE INFO

Article history:

Received 15 March 2011
Received in revised form 5 September 2011

Keywords:

Exceedance statistics
Order statistics
Exact and asymptotic distribution
Random threshold

Abstract

In this study, two independent samples $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ with respective distribution functions F and Q are considered. The joint asymptotic distributions of exceedance statistics defined as the number of Y observations falling into a random interval of order statistics constructed from the X sample is investigated. The results can be used in the context of a two-sample problem.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Exceedance statistics have been widely used in survival analysis, reliability, construction of hypothesis testing especially for two-sample problems. Distributions of exceedance statistics are closely related to the tolerance and invariant confidence intervals containing the general distributed mass. Tolerance intervals were discussed in [1-3]. Invariant confidence intervals are discussed in [4]. A first discussion on exceedance statistics, their properties and applications can be found in [5,6]. Wesolowski and Ahsanullah [7] investigated the distributional properties of the various exceedance statistics. Matveychuk and Petunin [8] and Johnson and Kotz [9] used exceedance statistics for the construction of the two-sample hypothesis test. Katzenbeisser [10,11] proposed a test criteria by using exceedance statistics for testing whether the two random samples are from the same population or not. Bairamov and Petunin [4] introduced the notion of an invariant confidence interval containing the main distributed mass of a general population and showed that the only order statistics can be invariant confidence intervals for the class of all continuous distributions. Recently [12-14] studied exact and limiting distributions of exceedance statistics for both order statistics and record values when the underlying distribution is arbitrary.

Let $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ be samples obtained from populations with distribution functions F and Q, respectively, where $F, Q \in \Im_{c}$ and \Im_{c} is the class of all continuous distribution functions. Let $X_{1: n} \leq X_{2: n} \leq \cdots \leq X_{n: n}$ and $Y_{1: m} \leq Y_{2: m} \leq \cdots \leq Y_{m: m}$ be the order statistics constructed from $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$, respectively.

For any integer $m \geq 1$, define

$$
\begin{equation*}
S_{m}=\#\left\{j \leq m: Y_{j} \leq X\right\} \tag{1}
\end{equation*}
$$

which denotes the number of $Y_{1}, Y_{2}, \ldots, Y_{m}$ falling below the threshold X.
Denote by $S_{m}^{r s}$ the number of Y observations falling into the random interval $\left(X_{r: n}, X_{s: n}\right)$, i.e.

$$
\begin{equation*}
S_{m}^{r s}=\#\left\{k \leq m: Y_{k} \in\left(X_{r: n}, X_{s: n}\right)\right\} \quad 1 \leq r<s \leq n . \tag{2}
\end{equation*}
$$

Denote

$$
\nabla_{1}=\left(-\infty, X_{1: n}\right], \quad \nabla_{2}=\left(X_{1: n}, X_{2: n}\right], \ldots, \quad \nabla_{n}=\left(X_{n-1: n}, X_{n: n}\right], \quad \nabla_{n+1}=\left(X_{n: n}, \infty\right)
$$

[^0]and define binary random variables
\[

$$
\begin{aligned}
& \xi_{i}^{k}=\left\{\begin{array}{ll}
1, & Y_{k} \in \nabla_{i} \\
0, & Y_{k} \notin \nabla_{i}
\end{array}, k=1,2, \ldots, m ; i=1,2, \ldots, n+1\right. \\
& S_{i}=\sum_{i=1}^{n+1} \xi_{i}^{k}, \quad k=1,2, \ldots, m .
\end{aligned}
$$
\]

It is obvious that S_{i} denotes the number of observations $Y_{1}, Y_{2}, \ldots, Y_{m}$ falling into interval $\nabla_{i}(i=1,2, \ldots, n+1)$.
Proposition 1.1. Let the hypothesis H_{0} be defined as $H_{0}: F(x)=Q(x)$ and the composite alternative H_{1} is $H_{1}: F(x) \neq$ $Q(x) ; F, Q \in \Im_{c}$. Assume that H_{0} is true then, for $0 \leq i_{k} \leq m, k=1,2, \ldots, n+1, i_{1}+i_{2}+\cdots+i_{n+1}=m$ the joint probability mass function of random variables $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n+1}$ is

$$
P\left\{\zeta_{1}=i_{1}, \zeta_{2}=i_{2}, \ldots, \zeta_{n+1}=i_{n+1}\right\}=\frac{1}{\binom{n+m}{n}} .
$$

Proof. If H_{0} is true, then we have

$$
\begin{align*}
P\left\{\zeta_{1}=i_{1}, \zeta_{2}=i_{2}, \ldots, \zeta_{n+1}=i_{n+1}\right\}= & \frac{n!m!}{i_{1}!i_{2}!\cdots i_{n+1}!} \int \cdots \int_{x_{1}<x_{2}<\cdots<x_{n}} F^{i_{1}}\left(x_{1}\right)\left[F\left(x_{2}\right)-F\left(x_{1}\right)\right]^{i_{2}} \cdots \\
& \times\left[F\left(x_{n}\right)-F\left(x_{n-1}\right)\right]^{i_{n}} d F\left(x_{1}\right) d F\left(x_{2}\right) \cdots d F\left(x_{n}\right) \\
= & \frac{n!m!}{i_{1}!i_{2}!\cdots i_{n+1}!} \frac{i_{1}!i_{2}!\cdots i_{n+1}!}{\left(i_{1}+i_{2}+\cdots+i_{n+1}+n\right)!} \\
= & \frac{1}{\binom{n+m}{n} .} \tag{3}
\end{align*}
$$

It is not difficult to observe (3) can also be interpreted as follows: let the hypothesis H_{0} be true and let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be the ordered layout of the order statistics of both samples, then

$$
P\left\{Z_{1}<Z_{2}<\cdots<Z_{n+m}\right\}=\frac{1}{\binom{n+m}{n}} .
$$

For example

$$
P\left\{X_{1: n} \leq X_{2: n} \leq \cdots \leq X_{n: n} \leq Y_{1: m} \leq Y_{2: m} \leq \cdots \leq Y_{m: m}\right\}=\frac{1}{\binom{n+m}{n}} .
$$

(See [15, p. 442]).
In this paper, the distribution and asymptotic behavior of the exceedance statistics S_{1}, S_{2}, S_{3} defined as the number of observations of $Y^{\prime} s$ falling into $\Delta_{1}=\left(-\infty, X_{1: n}\right], \Delta_{2}=\left(X_{1: n}, X_{n: n}\right], \Delta_{3}=\left(X_{n: n}, \infty\right)$ are studied respectively.

2. Joint distribution of exceedance statistics based on order statistics

Theorem 2.1. Assume that $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ are samples from populations with d.f. F and Q, respectively where $F, Q \in \Im_{c}$. Let

$$
\Delta_{1}=\left(-\infty, X_{1: n}\right], \quad \Delta_{2}=\left(X_{1: n}, X_{n: n}\right], \quad \Delta_{3}=\left(X_{n: n}, \infty\right)
$$

and

$$
\xi_{i}^{k}=\left\{\begin{array}{ll}
1, & Y_{k} \in \Delta_{i} \\
0, & Y_{k} \notin \Delta_{i}
\end{array} k=1,2, \ldots, m, i=1,2,3 .\right.
$$

Then

$$
\begin{equation*}
P\left\{S_{1}=k, S_{2}=l-k, S_{3}=m-l\right\}=\frac{\binom{l-k+n-2}{n-2}}{\binom{m+n}{n}} \tag{4}
\end{equation*}
$$

where $S_{1}+S_{2}+S_{3}=m, S_{1} \in[0, m], S_{2} \in[0, m], S_{3} \in[0, m]$.

Proof.

$$
\begin{gather*}
P\left\{S_{1}=k, S_{2}=l-k, S_{3}=m-l\right\}=\sum_{i_{1}, i_{2}, \ldots, i_{m}} P\left\{Y_{i_{1}} \in \Delta_{1}, Y_{i_{2}} \in \Delta_{1}, \ldots, Y_{i_{k}} \in \Delta_{1},\right. \\
\left.Y_{i_{k+1}} \in \Delta_{2}, Y_{i_{k+2}} \in \Delta_{2}, \ldots, Y_{i_{l}} \in \Delta_{2}, Y_{i_{l+1}} \in \Delta_{3}, Y_{i_{l+2}} \in \Delta_{3}, \ldots, Y_{i_{m}} \in \Delta_{3},\right\} \tag{5}
\end{gather*}
$$

where the sum extends over all m ! permutations obtained from $1,2, \ldots, m$.
Denote by $F_{i, j}(x, y)$ the joint distribution function of order statistics $X_{i: n}$ and $X_{j: n}$. Applying the continuous total probability formula to (5), conditioning on $X_{1: n}$ and $X_{n: n}$ we have

$$
\begin{aligned}
P & \left\{S_{1}=k, S_{2}=l-k, S_{3}=m-l\right\} \\
= & \frac{m!}{k!(l-k)!(m-l)!} \iint_{-\infty<x_{1}<x_{2}<\infty} P\left\{Y_{i_{1}} \in\left(-\infty, X_{1: n}\right], \ldots, Y_{i_{k}} \in\left(-\infty, X_{1: n}\right],\right. \\
& Y_{i_{k+1} \in\left(X_{1: n}, X_{n: n}\right], \ldots, Y_{i_{l}} \in\left(X_{1: n}, X_{n: n}\right],} \\
& Y_{\left.i_{l+1} \in\left(X_{n: n}, \infty\right), \ldots, Y_{m} \in\left(X_{n: n}, \infty\right) \mid X_{1: n}=x_{1}, X_{n: n}=x_{2}\right\} d F_{1, n}\left(x_{1}, x_{2}\right)}=\frac{m!}{k!(l-k)!(m-l)!} \frac{n!}{(n-2)!} \int_{-\infty}^{\infty} \int_{-\infty}^{x_{2}}\left[F\left(x_{1}\right)\right]^{k}\left[F\left(x_{2}\right)-F\left(x_{1}\right)\right]^{l-k+n-2}\left[1-F\left(x_{2}\right)\right]^{m-l} f\left(x_{2}\right) f\left(x_{1}\right) d x_{1} d x_{2} \\
= & \frac{\binom{l-k+n-2}{n-2}}{\binom{m+n}{n}} .
\end{aligned}
$$

Thus, the proof is completed.

3. Asymptotic distributions of exceedance statistics

Lemma 3.1.

$$
\lim _{n \rightarrow \infty} \sup _{0 \leq x \leq 1}\left|P\left\{\frac{S_{m}^{r s}}{m} \leq x\right\}-P\left\{Q\left(X_{s: n}\right)-Q\left(X_{r: n}\right) \leq x\right\}\right|=0
$$

for r-th and s-th order statistics ($1 \leq r<s \leq n$).
Following results are given for the $F=Q$ case. (see $[16,17]$).
Corollary 3.1. Let $H_{0}: F(x)=Q(x)$. Then

$$
\lim _{n \rightarrow \infty} \sup _{0 \leq x \leq 1}\left|P\left\{\frac{S_{m}^{r s}}{m} \leq x\right\}-P\left\{F\left(X_{s: n}\right)-F\left(X_{r: n}\right) \leq x\right\}\right|=0
$$

Bairamov [16]. Let $W_{r s}=F\left(X_{s: n}\right)-F\left(X_{r: n}\right)$, then the probability density function of $W_{r s}$ is

$$
f_{W_{r s}}(x)=\frac{1}{B(s-r, n-s+r+1)} x^{s-r-1}(1-x)^{n-s+r}, \quad 0 \leq x \leq 1
$$

David [18].
Theorem 3.1. The asymptotic distribution of $\left(S_{1} / m, S_{2} / m, S_{3} / m\right)$ is

$$
\begin{align*}
\lim _{m \rightarrow \infty} P\left\{\frac{S_{1}}{m} \leq x_{1}, \frac{S_{2}}{m} \leq x_{2}, \frac{S_{3}}{m} \leq x_{3}\right\} & =\lim _{m \rightarrow \infty} P\left\{S_{1} \leq\left[m x_{1}\right], S_{2} \leq\left[m x_{2}\right], S_{3} \leq\left[m x_{3}\right]\right\} \\
& =\left(x_{2}\right)^{n}-\left(x_{2}-x_{1}\right)^{n}-n x_{1}\left(1-x_{3}\right)^{n-1} \tag{6}
\end{align*}
$$

Proof. By substituting $S_{3}=m-S_{1}-S_{2}$ in (6) we reach

$$
\begin{aligned}
P\left\{S_{1} \leq m x_{1}, S_{2} \leq m x_{2}, S_{3} \leq m x_{3}\right\} & =P\left\{S_{1} \leq\left[m x_{1}\right], S_{2} \leq\left[m x_{2}\right], m-\left[m x_{3}\right] \leq S_{1}+S_{2}\right\} \\
& =\sum_{k=0}^{\left[m x_{1}\right]} \sum_{l=m-\left[m x_{3}\right]+k}^{\left[m x_{2}\right]} \frac{\binom{l-k+n-2}{n-2}}{\binom{m+n}{n}}
\end{aligned}
$$

where $[x]$ denotes the integer part of x. Let $t=l-k$

$$
\begin{aligned}
P & \left\{S_{1} \leq m x_{1}, S_{2} \leq m x_{2}, S_{3} \leq m x_{3}\right\}=\frac{1}{\binom{m+n}{n}} \sum_{k=0}^{\left[m x_{1}\right]} \sum_{t=m-\left[m x_{3}\right]}^{\left[m x_{2}\right]-k}\binom{t+n-2}{n-2} \\
& \left.=\frac{1}{\binom{m+n}{n}} \sum_{k=0}^{\left[m x_{1}\right]}\left(\begin{array}{c}
{\left[m x_{2}\right]-k} \\
t=0 \\
n-n-2 \\
n-2
\end{array}\right)-\sum_{t=0}^{m-\left[m x_{3}\right]-1}\binom{t+n-2}{n-2}\right) \\
& =\frac{1}{\binom{m+n}{n}}\left(\sum_{k=0}^{\left[m x_{1}\right]}\binom{\left[m x_{2}\right]-k+n-2+1}{\left[m x_{2}\right]-k}-\sum_{k=0}^{\left[m x_{1}\right]}\binom{m-\left[m x_{3}\right]-1+n-2+1}{m-\left[m x_{3}\right]-1}\right) \\
& =\frac{1}{C_{n+m}^{n}}\left(\sum_{k=0}^{\left[m x_{1}\right]} \frac{\left(\left[m x_{2}\right]-k+n-1\right)!}{\left(\left[m x_{2}\right]-k\right)!(n-1)!}-\sum_{k=0}^{m x_{1}} \frac{\left(m-\left[m x_{3}\right]+n-2\right)!}{\left(m-\left[m x_{3}\right]-1\right)!(n-1)!}\right) \\
& =\frac{1}{C_{n+m}^{n}}[\underbrace{\frac{1}{(n-1)!} \sum_{k=0}^{\left[m x_{1}\right]} \frac{\left(\left[m x_{2}\right]-k+n-1\right)!}{\left(\left[m x_{2}\right]-k\right)!}}_{I_{1}}-\underbrace{\frac{1}{(n-1)!} \sum_{k=0}^{\left[m x_{1}\right]} \frac{\left(m-\left[m x_{3}\right]-k+n-2\right)!}{\left(m-\left[m x_{3}\right]-k-1\right)!}}] .
\end{aligned}
$$

On the other hand, I_{1} is simplified using the equations

$$
\begin{align*}
& \sum_{k=n_{1}}^{n_{2}} a_{k}=\sum_{k=n-n_{2}}^{n-n_{1}} a_{n-k} \tag{7}\\
& \sum_{t=1}^{n} t(t+1) \cdots(t+m)=\frac{1}{m+2} n(n+1) \cdots(n+m+1) . \tag{8}\\
& I_{1}=\frac{1}{(n-1)!} \sum_{k=0}^{\left[m x_{1}\right]} \frac{\left(\left[m x_{2}\right]-k+n-1\right)!}{\left(\left[m x_{2}\right]-k\right)!} \\
& \quad=\frac{1}{(n-1)!} \sum_{k=0}^{\left[m x_{1}\right]}\left(\left[m x_{2}\right]-k+1\right)\left(\left[m x_{2}\right]-k+2\right) \cdots\left(\left[m x_{2}\right]-k+n-1\right) \\
& \left.\quad=\frac{1}{(n-1)!} \sum_{k=\left[m x_{2}-m x_{1}\right]}^{\left[m x_{2}\right]}(k+1)(k+2) \cdots(k+n-1) \sum_{k=1}^{[m-1)!} \sum_{k=1}^{\left[m x_{2}+1\right]} k(k+1)(k+2) \cdots(k+n-2)-\sum_{k=1}^{\left[m x_{2-}-m x_{1}\right]} k(k+1)(k+2) \cdots(k+n-2)\right] \\
& \quad=\frac{1}{n!}\left[\left(\left[m x_{2}\right]+1\right)\left(\left[m x_{2}\right]+2\right) \cdots\left(\left[m x_{2}\right]+n\right)-\left(\left[m x_{2}-m x_{1}\right]\right)\right. \\
& I_{2}=\frac{1}{(n-1)!} \sum_{k=0}^{\left[m x_{1}\right]} \frac{\left(m-\left[m x_{3}\right]+n-2\right)!}{\left(m-\left[m x_{3}\right]-1\right)!} \\
& \quad=\frac{1}{(n-1)!} \sum_{k=0}^{\left[m x_{1}\right]}\left(m-\left[m x_{3}\right]\right)\left(m-\left[m x_{3}\right]+1\right) \cdots\left(m-\left[m x_{3}\right]+n-2\right) \tag{9}\\
& \quad=\frac{1}{(n-1)!}\left(\left[m x_{1}\right]+1\right)\left(m-\left[m x_{3}\right]\right)\left(m-\left[m x_{3}\right]+1\right) \cdots\left(m-\left[m x_{3}\right]+n-2\right) .
\end{align*}
$$

Under the simplifications of I_{1} and I_{2}, the joint distribution function of $S_{1} / \mathrm{m}, S_{2} / \mathrm{m}$ and S_{3} / m is obtained as,

$$
P\left\{S_{1} \leq m x_{1}, S_{2} \leq m x_{2}, S_{3} \leq m x_{3}\right\}=I_{1}-I_{2}
$$

$$
=\frac{1}{\binom{m+n}{n}} \frac{1}{n!}\left(\left[m x_{2}\right]+1\right)\left(\left[m x_{2}\right]+2\right) \cdots\left(\left[m x_{2}\right]+n\right)
$$

$$
\begin{align*}
& -\frac{1}{n!}\left(\left[m x_{2}-m x_{1}\right]\right)\left(\left[m x_{2}-m x_{1}\right]+1\right) \cdots\left(\left[m x_{2}-m x_{1}\right]+n-1\right) \\
& -\frac{1}{(n-1)!}\left(\left(\left[m x_{1}\right]+1\right)\left(m-\left[m x_{3}\right]\right)\right. \\
& \left.\times\left(m-\left[m x_{3}\right]+1\right) \cdots\left(m-\left[m x_{3}\right]+n-2\right)\right) \tag{10}
\end{align*}
$$

where $\left[m x_{1}\right] \leq\left[m x_{2}\right], m-\left[m x_{3}\right] \leq\left[m x_{2}\right], m-\left[m x_{3}\right]+\left[m x_{1}\right] \leq\left[m x_{2}\right]$.
By applying limits to $P\left\{S_{1} \leq m x_{1}, S_{2} \leq m x_{2}, S_{3} \leq m x_{3}\right\}$ in (10), the result is

$$
\begin{equation*}
\lim _{m \rightarrow \infty} P\left\{S_{1} \leq m x_{1}, S_{2} \leq m x_{2}, S_{3} \leq m x_{3}\right\}=\left(x_{2}\right)^{n}-\left(x_{2}-x_{1}\right)^{n}-n x_{1}\left(1-x_{3}\right)^{n-1} \tag{11}
\end{equation*}
$$

where $x_{1}, x_{2}, x_{3} \in[0,1]$. As a special case of (11) for $n=2$

$$
\lim _{m \rightarrow \infty} P\left\{S_{1} \leq m x_{1}, S_{2} \leq m x_{2}, S_{3} \leq m x_{3}\right\}=\left(x_{2}\right)^{2}-\left(x_{2}-x_{1}\right)^{2}-2 x_{1}\left(1-x_{3}\right)^{1}
$$

where $x_{1}, x_{2}, x_{3} \in[0,1]$. When S_{1}, S_{2} and $S_{3} \in[0, m]$ the probability is verified in the sense that

$$
\begin{aligned}
P\left\{S_{1} \leq m, S_{2} \leq m, S_{3} \leq m\right\} & =\frac{1}{\binom{m+n}{n}} \sum_{k=0}^{m} \sum_{t=0}^{m-k}\binom{t+n-2}{n-2} \\
& =\frac{n!m!}{(m+n)!} \frac{1}{n!}(m+1)(m+2) \cdots(m+n) \\
& =1 .
\end{aligned}
$$

3.1. Asymptotic distribution of exceedance statistics when the random threshold is $X_{n: n}$

Assume that $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ be samples from populations with d.f. F and Q respectively where $F, Q \in \Im_{c}$. Let $X_{n: n}$ is a random threshold and $\Delta_{1}=\left(-\infty, X_{n: n}\right], \Delta_{2}=\left(X_{n: n}, \infty\right)$ are intervals. And let us define the variables

$$
\xi_{i}^{k}=\left\{\begin{array}{ll}
1, & Y_{k} \in \Delta_{i} \\
0, & Y_{k} \notin \Delta_{i}
\end{array} k=1,2, \ldots, m, i=1,2\right.
$$

and

$$
S_{i}=\sum_{k=1}^{m} \xi_{i}^{k}
$$

Let S_{1} and S_{2} be exceedances, obtained from the sample $Y_{1}, Y_{2}, \ldots, Y_{m}$, denoting the numbers of observations below and above the random threshold $X_{n: n}$ respectively where $S_{1}+S_{2}=m, S_{1} \in[0, m]$ and $S_{2} \in[0, m]$.

Theorem 3.2. Let $S_{1} \in[0, m]$ and $S_{2} \in[0, m]$ where $S_{1}+S_{2}=m$. Then the joint asymptotic distribution of $\frac{S_{1}}{m}$ and $\frac{S_{2}}{m}$ random variables is

$$
\begin{aligned}
& \lim _{m \longrightarrow \infty} P\left\{\frac{S_{1}}{m} \leq x_{1}, \frac{S_{2}}{m} \leq x_{2}\right\}=x_{1}^{n}-\left(1-x_{2}\right)^{n}, \quad x_{1}+x_{2}>1 \\
& \lim _{m \longrightarrow \infty} P\left\{\frac{S_{1}}{m} \leq x_{1}\right\}=x_{1}^{n}, \quad x_{1} \in[0,1], x_{2}>1 \\
& \lim _{m \longrightarrow \infty} P\left\{\frac{S_{2}}{m} \leq x_{2}\right\}=x_{2}^{n}, \quad x_{2} \in[0,1], x_{1}>1 .
\end{aligned}
$$

Proof. The joint probability function of S_{1} and S_{2} is

$$
\begin{aligned}
P\left\{S_{1}=k, S_{2}=m-k\right\} & =\sum_{i_{1}, i_{2}, \ldots, i_{m}} P\left\{Y_{i_{1}} \in \Delta_{1}, Y_{i_{2}} \in \Delta_{1}, \ldots, Y_{i_{k}} \in \Delta_{1}, Y_{i_{k+1}} \in \Delta_{2}, Y_{i_{k+2}} \in \Delta_{2}, \ldots, Y_{i_{m}} \in \Delta_{2}\right\} \\
& =\frac{m!}{k!(m-k)!} \int P\left\{Y_{i_{1}} \in(-\infty, x], Y_{i_{2}} \in(-\infty, x], \ldots,\right. \\
& \left.Y_{i_{k}} \in(-\infty, x], Y_{i_{k+1}} \in(x, \infty), Y_{i_{k+2}} \in(x, \infty), \ldots, Y_{i_{m}} \in(x, \infty)\right\} n[F(x)]^{n-1} f(x) d x \\
& =\frac{m!}{k!(m-k)!} n \int_{0}^{1} t^{n+k-1}[1-t]^{m-k} d t
\end{aligned}
$$

$$
\begin{align*}
& =\frac{n(n+k-1)!(m-k)!}{(m+n)!} \frac{m!}{k!(m-k)!} \\
& =\frac{n m!}{(m+n)!}(k+1)(k+2) \cdots(n+k-1) . \tag{12}
\end{align*}
$$

The marginal distribution function of $\frac{S_{1}}{m}$ is

$$
\begin{align*}
P\left\{\frac{S_{1}}{m} \leq x_{1}\right\} & =\sum_{k=0}^{\left[m x_{1}\right]} \frac{n m!}{(n+m)!}(k+1)(k+2) \cdots(n+k-1) \\
& =\sum_{k=1}^{\left[m x_{1}+1\right]} \frac{n m!}{(n+m)!} k(k+1)(k+2) \cdots(n+k-2) \\
& =\frac{n m!}{(n+m)!}\left[\frac{1}{n-2+2}\left[m x_{1}+1\right]\left[m x_{1}+2\right] \cdots\left[m x_{1}+n\right]\right] \\
& =\frac{1}{(m+1)(m+2) \cdots(m+n)}\left[m x_{1}+1\right]\left[m x_{1}+2\right] \cdots\left[m x_{1}+n\right] . \tag{13}
\end{align*}
$$

The marginal distribution function $\frac{S_{2}}{m}$ is obtained by using the same procedure in Eq. (13)

$$
\begin{align*}
P\left\{\frac{S_{2}}{m} \leq x_{2}\right\} & =\sum_{\substack{k=0 \\
k+i=m}}^{\left[m x_{2}\right]} \sum_{i=0}^{m} P\left\{S_{1}=k, S_{2}=i\right\} \\
& =\sum_{k=0}^{\left[m x_{2}\right]} \frac{n m!}{(n+m)!} \frac{(n+k-1)!}{k!} \\
& =\frac{1}{(m+1)(m+2) \cdots(m+n)}\left[m x_{2}+1\right]\left[m x_{2}+2\right] \cdots\left[m x_{2}+n\right] . \tag{14}
\end{align*}
$$

The joint distribution of the random variables $\frac{S_{1}}{m}$ and $\frac{S_{2}}{m}$ is

$$
\begin{align*}
P\left\{\frac{S_{1}}{m} \leq x_{1}, \frac{S_{2}}{m} \leq x_{2}\right\}= & P\left\{S_{1} \leq m x_{1}, m-S_{1} \leq m x_{2}\right\}=P\left\{m-m x_{2} \leq S_{1} \leq m x_{1}\right\} \\
= & \sum_{k=\left[m-m x_{2}\right]}^{\left[m x_{1}\right]} P\left\{S_{1}=k\right\}=\sum_{\substack{k=\left[m-m x_{2}\right] \\
k+i=m}}^{\left[m x_{1}\right]} \sum_{i=0}^{m} P\left\{S_{1}=k, S_{2}=i\right\} \\
= & \sum_{k=\left[m-m x_{2}\right]}^{\left[m x_{1}\right]} \frac{n m!}{(n+m)!} \frac{(n+k-1)!}{k!} \\
= & \frac{n m!}{(n+m)!} \sum_{k=\left[m-m x_{2}\right]}^{\left[m x_{1}\right]}(k+1)(k+2) \cdots(k+n-1) \\
= & \frac{n m!}{(n+m)!}\left[\frac{1}{n-2+2}\left[m x_{1}+1\right]\left[m x_{1}+2\right] \cdots\left[m x_{1}+1+n-2+1\right]\right. \\
& \left.-\frac{1}{n-2+2}\left[m-m x_{2}\right]\left[m-m x_{2}+1\right] \cdots\left[m-m x_{2}+n-2+1\right]\right] \tag{15}
\end{align*}
$$

The equations in (13)-(15) are simplified by (8). Thus, we derived the asymptotic distribution of $\frac{s_{1}}{m}$ and $\frac{s_{2}}{m}$ by using (13)-(15) when $m \rightarrow \infty$.

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} P\left\{\frac{S_{1}}{m} \leq x_{1}, \frac{S_{2}}{m} \leq x_{2}\right\}=x_{1}^{n}-\left(1-x_{2}\right)^{n}, \quad x_{1}+x_{2}>1 \\
& \lim _{m \rightarrow \infty} P\left\{\frac{S_{1}}{m} \leq x_{1}\right\}=x_{1}^{n}, \quad x_{1} \in[0,1], x_{2}>1 \\
& \lim _{m \rightarrow \infty} P\left\{\frac{S_{2}}{m} \leq x_{2}\right\}=x_{2}^{n}, \quad x_{2} \in[0,1], x_{1}>1
\end{aligned}
$$

Thus, the proof is completed.
3.2. Asymptotic distribution of exceedance statistics when the random threshold is $X_{1: n}$

Assume that $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ be samples from populations with d.f. F and Q respectively where $F, Q \in \Im_{c}$. Let $X_{1: n}$ is a random threshold and $\Delta_{1}=\left(-\infty, X_{1: n}\right], \Delta_{2}=\left(X_{1: n}, \infty\right)$ are intervals. And let us define the variables

$$
\xi_{i}^{k}=\left\{\begin{array}{ll}
1, & Y_{k} \in \Delta_{i} \\
0, & Y_{k} \notin \Delta_{i}
\end{array} k=1,2, \ldots, m, i=1,2\right.
$$

and

$$
S_{i}=\sum_{k=1}^{m} \xi_{i}^{k}
$$

Let S_{1} and S_{2} be exceedances, obtained from the sample $Y_{1}, Y_{2}, \ldots, Y_{m}$, denoting the numbers of observations below and above the random threshold $X_{1: n}$ respectively where $S_{1}+S_{2}=m, S_{1} \in[0, m]$ and $S_{2} \in[0, m]$.

Theorem 3.3. Let $S_{1} \in[0, m]$ and $S_{2} \in[0, m]$, where $S_{1}+S_{2}=m$. Then the joint asymptotic distribution of $\frac{S_{1}}{m}$ and $\frac{S_{2}}{m}$ random variables is

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} P\left\{\frac{S_{1}}{m} \leq x_{1}, \frac{S_{2}}{m} \leq x_{2}\right\}=x_{2}^{n}-\left(1-x_{1}\right)^{n}, \quad x_{1}, x_{2} \in[0,1], x_{1}+x_{2}>1 \\
& \lim _{m \rightarrow \infty} P\left\{\frac{S_{1}}{m} \leq x_{1}\right\}=1-\left(1-x_{1}\right)^{n}, \quad x_{1} \in[0,1], x_{2}>1 \\
& \lim _{m \rightarrow \infty} P\left\{\frac{S_{2}}{m} \leq x_{2}\right\}=1-\left(1-x_{2}\right)^{n}, \quad x_{2} \in[0,1], x_{1}>1 .
\end{aligned}
$$

Proof. The joint probability function of S_{1} and S_{2} is

$$
\begin{align*}
P\left\{S_{1}=k, S_{2}=m-k\right\} & =\sum_{i_{1}, i_{2}, \ldots, i_{m}} P\left\{Y_{i_{1}} \in \Delta_{1}, Y_{i_{2}} \in \Delta_{1}, \ldots, Y_{i_{k}} \in \Delta_{1}, Y_{i_{k+1}} \in \Delta_{2}, Y_{i_{k+2}} \in \Delta_{2}, \ldots, Y_{i_{m}} \in \Delta_{2}\right\} \\
& =\frac{m!}{k!(m-k)!} n \int_{-\infty}^{\infty}[F(x)]^{k}[1-F(x)]^{m+n-k-1} d F(x) \\
& =\frac{n m!}{(m+n)!}(m-k+1)(m-k+2) \cdots(m+n-k-1) . \tag{16}
\end{align*}
$$

The marginal distribution function of $\frac{S_{1}}{m}$ is

$$
\begin{align*}
P\left\{\frac{S_{1}}{m} \leq x_{1}\right\} & =\sum_{k=0}^{\left[m x_{1}\right]} \frac{n m!}{(n+m)!}(m-k+1)(m-k+2) \cdots(m+n-k-1) \\
& =\frac{n m!}{(n+m)!} \sum_{t=\left[m-m x_{1}\right]}^{m}(t+1)(t+2) \cdots(n+t-1) \\
& =1-\frac{\left[m-m x_{1}\right]\left[m-m x_{1}+1\right] \cdots\left[m-m x_{1}+n-2+1\right]}{(m+1)(m+2) \cdots(m+n)} \tag{17}
\end{align*}
$$

The marginal distribution function $\frac{S_{2}}{m}$ is obtained by using the same procedure in Eq. (17)

$$
\begin{align*}
P\left\{\frac{S_{2}}{m} \leq x_{2}\right\} & =\sum_{k=0}^{\left[m x_{2}\right]} P\left\{S_{2}=k\right\} \\
& =\sum_{k=0}^{\left[m x_{2}\right]} \frac{n m!}{(n+m)!} \frac{(n+m-k-1)!}{(m-k)!} \\
& =1-\frac{\left[m-m x_{2}\right]\left[m-m x_{2}+1\right] \cdots\left[m-m x_{2}+n-2+1\right]}{(m+1)(m+2) \cdots(m+n)} . \tag{18}
\end{align*}
$$

The joint distribution function of the random variables $\frac{s_{1}}{m}$ and $\frac{S_{2}}{m}$ is

$$
\begin{aligned}
P\left\{\frac{S_{1}}{m} \leq x_{1}, \frac{S_{2}}{m} \leq x_{2}\right\} & =P\left\{S_{1} \leq m x_{1}, m-S_{1} \leq m x_{2}\right\} \\
& =P\left\{m-m x_{2} \leq S_{1} \leq m x_{1}\right\}
\end{aligned}
$$

$$
\begin{align*}
&=\sum_{k=\left[m-m x_{2}\right]}^{\left[m x_{1}\right]} P\left\{S_{1}=k\right\} \\
&=\sum_{\substack{k=\left[m-m x_{2}\right] \\
k+i=m}}^{\left[m m x_{1}\right]} \sum_{i=0}^{m} P\left\{S_{1}=k, S_{2}=i\right\} \\
&=\sum_{k=\left[m-m x_{2}\right]}^{\left[m x_{1}\right]} \frac{n m!}{(n+m)!} \frac{(n+m-k-1)!}{(m-k)!} \\
&=\frac{n m!}{(n+m)!} \sum_{t=\left[m-m x_{1}\right]}^{\left[m-m+m x_{2}\right]}(t+1)(t+2) \cdots(t+n-1) \\
&=\frac{1}{(m+1)(m+2) \cdots(m+n)}\left[\left[m x_{2}+1\right]\left[m x_{2}+2\right]\right. \\
&\left.\cdots\left[m x_{2}+1+n-1\right]-\left[m-m x_{1}\right]\left[m-m x_{1}+1\right] \cdots\left[m-m x_{1}+n-1\right]\right] . \tag{19}
\end{align*}
$$

The equations in (17)-(19) are simplified by (7) and (8). Thus, we derived asymptotic distribution of $\frac{s_{1}}{m}$ and $\frac{s_{2}}{m}$ by using (17)-(19) when $m \rightarrow \infty$.

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} P\left\{\frac{S_{1}}{m} \leq x_{1}, \frac{S_{2}}{m} \leq x_{2}\right\}=x_{2}^{n}-\left(1-x_{1}\right)^{n}, \quad x_{1}, x_{2} \in[0,1], x_{1}+x_{2}>1 \\
& \lim _{m \rightarrow \infty} P\left\{\frac{S_{1}}{m} \leq x_{1}\right\}=1-\left(1-x_{1}\right)^{n}, \quad x_{1} \in[0,1], x_{2}>1 \\
& \lim _{m \rightarrow \infty} P\left\{\frac{S_{2}}{m} \leq x_{2}\right\}=1-\left(1-x_{2}\right)^{n}, \quad x_{2} \in[0,1], x_{1}>1
\end{aligned}
$$

Thus, the proof is completed.

4. Numerical results

In the following we provide numerical values for the exact distribution for different values of n and m.

$n=3, m=4$					
$l \backslash k$	0	1	2	3	4
0	0.02857				
1	0.05714	0.02857			
2	0.08571	0.05714	0.02857		
3	0.11429	0.08571	0.05714	0.02857	
4	0.14286	0.11429	0.08571	0.05714	0.02857

$n=5, m=4$						
$l \backslash k$	0	1	2	3	4	
0	0.00794					
1	0.03175	0.00794				
2	0.07937	0.03175	0.00794			
3	0.15873	0.07937	0.03175	0.00794		
4	0.27778	0.15873	0.07937	0.03175	0.00794	

$n=4, m=5$						
$l \backslash k$	0	1	2	3	4	5
0	0.00794					
1	0.02381	0.00794				
2	0.04762	0.02381	0.00794			
3	0.07937	0.04762	0.02381	0.00794		
4	0.11905	0.07937	0.04762	0.02381	0.00794	
5	0.16667	0.11905	0.07937	0.04762	0.02381	0.00794

$n=4, m=7$								
$l \backslash k$	0	1	2	3	4	5	6	7
0	0.00303							
1	0.00909	0.00303						
2	0.01818	0.00909	0.00303					
3	0.03030	0.01818	0.00909	0.00303				
4	0.04545	0.03030	0.01818	0.00909	0.00303			
5	0.06364	0.04545	0.03030	0.01818	0.00909	0.00303		
6	0.08485	0.06364	0.04545	0.03030	0.01818	0.00909	0.00303	
7	0.10909	0.08485	0.06364	0.04545	0.03030	0.01818	0.00909	0.00303

These results could be advised for use in two-sample hypothesis tests in many areas as described in the Introduction section.

Acknowledgments

The author would like to thank two anonymous reviewers for their invaluable comments.

References

[1] S.S. Wilks, On the determination of sample sizes for setting tolerance limits, The Annals of Mathematical Statistics 12 (1941) 91-96.
[2] S.S. Wilks, Statistical prediction with special references to the problem of the tolerance limits, Annals of mathematical Statistics 13 (1942) $400-440$.
[3] H. Robbins, On distribution free tolerance limits in random sampling, The Annals of Mathematical Statistics 15 (1944) $214-216$.
[4] I.G. Bairamov, YU.I. Petunin, Structure of invariant confidence intervals containing the main distributed mass, Theory of Probability and its Applications 35 (1) (1991) 15-26.
[5] E.J. Gumbel, H. von Shelling, The distribution of the number of exceedances, The Annals of Mathematical Statistics 21 (1950) $247-262$.
[6] B. Epstein, Tables for the distribution of the number of exceedances, The Annals of Mathematical Statistics 25 (1954) 762-768.
7] J. Wesolowski, M. Ahsanullah, Distributional properties of exceedance statistics, The Annals of Mathematical Statistics 50 (3) (1998) $543-565$.
[8] S.A. Matveychuk, I. Yu Petunin, A generalization of the Bernoulli model arising in order statistics, I/II Ukrainian Mathematical Journal 42 (518-528/43) (1990/1991) 779-785.
[9] N.L. Johnson, S. Kotz, Further comments on Matveychuk and Petunin's generalized Bernoulli model, and nonparametric tests of homogeneity, Journal of Statistical Planning and Inference 41 (1994) 61-72.
[10] W. Katzenbeisser, The distribution of two sample location exceedance test statistics under Lehmann alternatives, Statistics Hefte (now Papers) 26 (1985) 131-138.
[11] W. Katzenbeisser, The exact power of two-sample location tests based on exceedances against shift alternatives, Mathematische Operationsforschung und Statistik 20 (1989) 47-54.
[12] I.G. Bairamov, S. Kotz, On distributions of exceedances associated with order statistics and record values for arbitrary distributions, Statistical Papers 42 (2) (2001) 171-185.
[13] I. Bairamov, M.K. Khan, On exceedances of record and order statistics, Proceedings of the American Mathematical Society 135 (6) (2007) 1935-1945.
[14] I. Bairamov, S. Eryilmaz, Joint behavior of preceedances and exceedances in random threshold models, Australian and New Zeland Journal of Statistics (2008) 209-216.
[15] S.S. Wilks, Mathematical Statistics, John Wiley \& Sons, Inc, New York-London, 1962.
[16] I.G. Bairamov, Some distribution free properties of statistics based on record values and characterizations of the distributions through a record, Journal of Applied Statistical Science 5 (1) (1997) 17-25.
[17] I.G. Bairamov, O.L. Gebizlioğlu, 1998, Asymptotic distributions of statistics based on order statistics and record values, International conference, Asymptotical Methods in Probability and statistics, St. Petersburg, pp. 20-23.
[18] H.A. David, Order Statistics, Wiley, New York, 1981.

[^0]: E-mail address: nturhan@science.ankara.edu.tr.

