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a b s t r a c t

In this study, two independent samples X1, X2, . . . , Xn and Y1, Y2, . . . , Ym with respective
distribution functions F and Q are considered. The joint asymptotic distributions of
exceedance statistics defined as the number of Y observations falling into a random interval
of order statistics constructed from the X sample is investigated. The results can be used in
the context of a two-sample problem.
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1. Introduction

Exceedance statistics have been widely used in survival analysis, reliability, construction of hypothesis testing especially
for two-sample problems. Distributions of exceedance statistics are closely related to the tolerance and invariant confidence
intervals containing the general distributedmass. Tolerance intervalswere discussed in [1–3]. Invariant confidence intervals
are discussed in [4]. A first discussion on exceedance statistics, their properties and applications can be found in [5,6].
Wesolowski and Ahsanullah [7] investigated the distributional properties of the various exceedance statistics. Matveychuk
and Petunin [8] and Johnson and Kotz [9] used exceedance statistics for the construction of the two-sample hypothesis test.
Katzenbeisser [10,11] proposed a test criteria by using exceedance statistics for testing whether the two random samples
are from the same population or not. Bairamov and Petunin [4] introduced the notion of an invariant confidence interval
containing the main distributed mass of a general population and showed that the only order statistics can be invariant
confidence intervals for the class of all continuous distributions. Recently [12–14] studied exact and limiting distributions
of exceedance statistics for both order statistics and record values when the underlying distribution is arbitrary.

Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be samples obtained from populations with distribution functions F and Q ,
respectively, where F ,Q ∈ ℑc and ℑc is the class of all continuous distribution functions. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n
and Y1:m ≤ Y2:m ≤ · · · ≤ Ym:m be the order statistics constructed from X1, X2, . . . , Xn and Y1, Y2, . . . , Ym, respectively.

For any integerm ≥ 1, define

Sm = #

j ≤ m : Yj ≤ X


(1)

which denotes the number of Y1, Y2, . . . , Ym falling below the threshold X .
Denote by Srsm the number of Y observations falling into the random interval (Xr:n, Xs:n), i.e.

Srsm = # {k ≤ m : Yk ∈ (Xr:n, Xs:n)} 1 ≤ r < s ≤ n. (2)

Denote

▽1 = (−∞, X1:n] , ▽2 = (X1:n, X2:n] , . . . , ▽n = (Xn−1:n, Xn:n] , ▽n+1 = (Xn:n, ∞) .
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and define binary random variables

ξ k
i =


1, Yk ∈ ▽i
0, Yk ∉ ▽i

, k = 1, 2, . . . ,m; i = 1, 2, . . . , n + 1

Si =

n+1
i=1

ξ k
i , k = 1, 2, . . . ,m.

It is obvious that Si denotes the number of observations Y1, Y2, . . . , Ym falling into interval ▽i (i = 1, 2, . . . , n + 1).

Proposition 1.1. Let the hypothesis H0 be defined as H0 : F (x) = Q (x) and the composite alternative H1 is H1 : F (x) ≠

Q (x) ; F ,Q ∈ ℑc . Assume that H0 is true then, for 0 ≤ ik ≤ m, k = 1, 2, . . . , n + 1, i1 + i2 + · · · + in+1 = m the joint
probability mass function of random variables ζ1, ζ2, . . . , ζn+1 is

P {ζ1 = i1, ζ2 = i2, . . . , ζn+1 = in+1} =
1 n+m
n

 .
Proof. If H0 is true, then we have

P {ζ1 = i1, ζ2 = i2, . . . , ζn+1 = in+1} =
n!m!

i1!i2! · · · in+1!


· · ·


x1<x2<···<xn

F i1(x1) [F(x2) − F(x1)]i2 · · ·

× [F(xn) − F(xn−1)]in dF(x1)dF(x2) · · · dF(xn)

=
n!m!

i1!i2! · · · in+1!

i1!i2! · · · in+1!

(i1 + i2 + · · · + in+1 + n)!

=
1 n+m
n

 . (3)

It is not difficult to observe (3) can also be interpreted as follows: let the hypothesis H0 be true and let Z1, Z2, . . . , Zn be the
ordered layout of the order statistics of both samples, then

P{Z1 < Z2 < · · · < Zn+m} =
1 n+m
n

 .
For example

P{X1:n ≤ X2:n ≤ · · · ≤ Xn:n ≤ Y1:m ≤ Y2:m ≤ · · · ≤ Ym:m} =
1 n+m
n

 .
(See [15, p. 442]). �

In this paper, the distribution and asymptotic behavior of the exceedance statistics S1, S2, S3 defined as the number of
observations of Y ′s falling into △1 = (−∞, X1:n] , ∆2 = (X1:n, Xn:n] , ∆3 = (Xn:n, ∞) are studied respectively.

2. Joint distribution of exceedance statistics based on order statistics

Theorem 2.1. Assume that X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are samples from populationswith d.f. F and Q , respectivelywhere
F ,Q ∈ ℑc . Let

△1 = (−∞, X1:n] , ∆2 = (X1:n, Xn:n] , ∆3 = (Xn:n, ∞)

and

ξ k
i =


1, Yk ∈ ∆i
0, Yk ∉ ∆i

k = 1, 2, . . . ,m, i = 1, 2, 3.

Then

P {S1 = k, S2 = l − k, S3 = m − l} =


l−k+n−2

n−2


m+n

n

 (4)

where S1 + S2 + S3 = m, S1 ∈ [0,m], S2 ∈ [0,m], S3 ∈ [0,m].
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Proof.

P {S1 = k, S2 = l − k, S3 = m − l} =


i1,i2,...,im

P

Yi1 ∈ ∆1, Yi2 ∈ ∆1, . . . , Yik ∈ ∆1,

Yik+1 ∈ ∆2, Yik+2 ∈ ∆2, . . . , Yil ∈ ∆2, Yil+1 ∈ ∆3, Yil+2 ∈ ∆3, . . . , Yim ∈ ∆3,


(5)

where the sum extends over allm! permutations obtained from 1, 2, . . . ,m. �

Denote by Fi,j(x, y) the joint distribution function of order statistics Xi:n and Xj:n. Applying the continuous total probability
formula to (5), conditioning on X1:n and Xn:n we have

P {S1 = k, S2 = l − k, S3 = m − l}

=
m!

k! (l − k)! (m − l)!

 
−∞<x1<x2<∞

P

Yi1 ∈ (−∞, X1:n] , . . . , Yik ∈ (−∞, X1:n] ,

Yik+1 ∈ (X1:n, Xn:n] , . . . , Yil ∈ (X1:n, Xn:n] ,

Yil+1 ∈ (Xn:n, ∞) , . . . , Ym ∈ (Xn:n, ∞) | X1:n = x1, Xn:n = x2

dF1,n (x1, x2)

=
m!

k! (l − k)! (m − l)!
n!

(n − 2)!


∞

−∞

 x2

−∞

[F (x1)]k [F (x2) − F (x1)]l−k+n−2 [1 − F (x2)]m−l f (x2)f (x1)dx1dx2

=


l−k+n−2

n−2


m+n

n

 .

Thus, the proof is completed.

3. Asymptotic distributions of exceedance statistics

Lemma 3.1.

lim
n→∞

sup
0≤x≤1

P Srsm
m

≤ x


− P {Q (Xs:n) − Q (Xr:n) ≤ x}
 = 0

for r-th and s-th order statistics (1 ≤ r < s ≤ n).

Following results are given for the F = Q case. (see [16,17]).

Corollary 3.1. Let H0 : F(x) = Q (x). Then

lim
n→∞

sup
0≤x≤1

P Srsm
m

≤ x


− P {F (Xs:n) − F (Xr:n) ≤ x}
 = 0

Bairamov [16]. Let Wrs = F (Xs:n) − F (Xr:n), then the probability density function of Wrs is

fWrs (x) =
1

B(s − r, n − s + r + 1)
xs−r−1(1 − x)n−s+r , 0 ≤ x ≤ 1

David [18].

Theorem 3.1. The asymptotic distribution of (S1/m, S2/m, S3/m) is

lim
m→∞

P

S1
m

≤ x1,
S2
m

≤ x2,
S3
m

≤ x3


= lim

m→∞
P {S1 ≤ [mx1] , S2 ≤ [mx2] , S3 ≤ [mx3]}

= (x2)n − (x2 − x1)n − nx1 (1 − x3)n−1 . (6)

Proof. By substituting S3 = m − S1 − S2 in (6) we reach

P {S1 ≤ mx1, S2 ≤ mx2, S3 ≤ mx3} = P {S1 ≤ [mx1] , S2 ≤ [mx2] ,m − [mx3] ≤ S1 + S2}

=

[mx1]
k=0

[mx2]
l=m−[mx3]+k


l − k + n − 2

n − 2



m + n

n
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where [x] denotes the integer part of x. Let t = l − k

P {S1 ≤ mx1, S2 ≤ mx2, S3 ≤ mx3} =
1

m + n
n

 [mx1]
k=0

[mx2]−k
t=m−[mx3]


t + n − 2
n − 2



=
1

m + n
n

 [mx1]
k=0


[mx2]−k

t=0


t + n − 2
n − 2


−

m−[mx3]−1
t=0


t + n − 2
n − 2



=
1

m + n
n

 [mx1]
k=0


[mx2] − k + n − 2 + 1

[mx2] − k


−

[mx1]
k=0


m − [mx3] − 1 + n − 2 + 1

m − [mx3] − 1



=
1

Cn
n+m


[mx1]
k=0

([mx2] − k + n − 1)!
([mx2] − k)! (n − 1)!

−

mx1
k=0

(m − [mx3] + n − 2)!
(m − [mx3] − 1)! (n − 1)!



=
1

Cn
n+m

 1
(n − 1)!

[mx1]
k=0

([mx2] − k + n − 1)!
([mx2] − k)!  

I1

−
1

(n − 1)!

[mx1]
k=0

(m − [mx3] − k + n − 2)!
(m − [mx3] − k − 1)!  

I2

 .

On the other hand, I1 is simplified using the equations

n2
k=n1

ak =

n−n1
k=n−n2

an−k (7)

n
t=1

t(t + 1) · · · (t + m) =
1

m + 2
n (n + 1) · · · (n + m + 1) . (8)

I1 =
1

(n − 1)!

[mx1]
k=0

([mx2] − k + n − 1)!
([mx2] − k)!

=
1

(n − 1)!

[mx1]
k=0

([mx2] − k + 1) ([mx2] − k + 2) · · · ([mx2] − k + n − 1)

=
1

(n − 1)!

[mx2]
k=[mx2−mx1]

(k + 1) (k + 2) · · · (k + n − 1)

=
1

(n − 1)!

[mx2+1]
k=1

k (k + 1) (k + 2) · · · (k + n − 2) −

[mx2−mx1]
k=1

k (k + 1) (k + 2) · · · (k + n − 2)


=

1
n!

[([mx2] + 1) ([mx2] + 2) · · · ([mx2] + n) − ([mx2 − mx1])

× ([mx2] − [mx1] + 1) · · · ([mx2] − [mx1] + n − 1)] (9)

I2 =
1

(n − 1)!

[mx1]
k=0

(m − [mx3] + n − 2)!
(m − [mx3] − 1)!

=
1

(n − 1)!

[mx1]
k=0

(m − [mx3]) (m − [mx3] + 1) · · · (m − [mx3] + n − 2)

=
1

(n − 1)!
([mx1] + 1) (m − [mx3]) (m − [mx3] + 1) · · · (m − [mx3] + n − 2).

Under the simplifications of I1 and I2, the joint distribution function of S1/m, S2/m and S3/m is obtained as,

P {S1 ≤ mx1, S2 ≤ mx2, S3 ≤ mx3} = I1 − I2

=
1

m + n
n

 1
n!

([mx2] + 1) ([mx2] + 2) · · · ([mx2] + n)
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−
1
n!

([mx2 − mx1]) ([mx2 − mx1] + 1) · · · ([mx2 − mx1] + n − 1)

−
1

(n − 1)!
(([mx1] + 1) (m − [mx3])

× (m − [mx3] + 1) · · · (m − [mx3] + n − 2)) (10)

where [mx1] ≤ [mx2] ,m − [mx3] ≤ [mx2] , m − [mx3] + [mx1] ≤ [mx2].
By applying limits to P {S1 ≤ mx1, S2 ≤ mx2, S3 ≤ mx3} in (10), the result is

lim
m→∞

P {S1 ≤ mx1, S2 ≤ mx2, S3 ≤ mx3} = (x2)n − (x2 − x1)n − nx1 (1 − x3)n−1 (11)

where x1, x2, x3 ∈ [0, 1]. As a special case of (11) for n = 2

lim
m→∞

P {S1 ≤ mx1, S2 ≤ mx2, S3 ≤ mx3} = (x2)2 − (x2 − x1)2 − 2x1 (1 − x3)1

where x1, x2, x3 ∈ [0, 1]. When S1, S2 and S3 ∈ [0,m] the probability is verified in the sense that

P {S1 ≤ m, S2 ≤ m, S3 ≤ m} =
1

m + n
n

 m
k=0

m−k
t=0


t + n − 2
n − 2



=
n!m!

(m + n)!
1
n!

(m + 1)(m + 2) · · · (m + n)

= 1. �

3.1. Asymptotic distribution of exceedance statistics when the random threshold is Xn:n

Assume that X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be samples from populations with d.f. F and Q respectively where
F ,Q ∈ ℑc . Let Xn:n is a random threshold and ∆1 = (−∞, Xn:n] , ∆2 = (Xn:n, ∞) are intervals. And let us define the
variables

ξ k
i =


1, Yk ∈ ∆i
0, Yk ∉ ∆i

k = 1, 2, . . . ,m, i = 1, 2

and

Si =

m
k=1

ξ k
i .

Let S1 and S2 be exceedances, obtained from the sample Y1, Y2, . . . , Ym, denoting the numbers of observations below and
above the random threshold Xn:n respectively where S1 + S2 = m, S1 ∈ [0,m] and S2 ∈ [0,m].

Theorem 3.2. Let S1 ∈ [0,m] and S2 ∈ [0,m] where S1 + S2 = m. Then the joint asymptotic distribution of S1
m and S2

m random
variables is

lim
m−→∞

P

S1
m

≤ x1,
S2
m

≤ x2


= xn1 − (1 − x2)n , x1 + x2 > 1

lim
m−→∞

P

S1
m

≤ x1


= xn1, x1 ∈ [0, 1] , x2 > 1

lim
m−→∞

P

S2
m

≤ x2


= xn2, x2 ∈ [0, 1] , x1 > 1.

Proof. The joint probability function of S1 and S2 is

P {S1 = k, S2 = m − k} =


i1,i2,...,im

P

Yi1 ∈ ∆1, Yi2 ∈ ∆1, . . . , Yik ∈ ∆1, Yik+1 ∈ ∆2, Yik+2 ∈ ∆2, . . . , Yim ∈ ∆2


=

m!

k! (m − k)!


P

Yi1 ∈ (−∞, x] , Yi2 ∈ (−∞, x] , . . . ,

Yik ∈ (−∞, x] , Yik+1 ∈ (x, ∞) , Yik+2 ∈ (x, ∞) , . . . , Yim ∈ (x, ∞)

n [F (x)]n−1 f (x) dx

=
m!

k! (m − k)!
n
 1

0
tn+k−1 [1 − t]m−k dt
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=
n (n + k − 1)! (m − k)!

(m + n)!
m!

k! (m − k)!

=
nm!

(m + n)!
(k + 1) (k + 2) · · · (n + k − 1) . (12)

The marginal distribution function of S1
m is

P

S1
m

≤ x1


=

[mx1]
k=0

nm!

(n + m)!
(k + 1)(k + 2) · · · (n + k − 1)

=

[mx1+1]
k=1

nm!

(n + m)!
k(k + 1)(k + 2) · · · (n + k − 2)

=
nm!

(n + m)!


1

n − 2 + 2
[mx1 + 1] [mx1 + 2] · · · [mx1 + n]


=

1
(m + 1) (m + 2) · · · (m + n)

[mx1 + 1] [mx1 + 2] · · · [mx1 + n] . (13)

The marginal distribution function S2
m is obtained by using the same procedure in Eq. (13)

P

S2
m

≤ x2


=

[mx2]
k=0

k+i=m

m
i=0

P {S1 = k, S2 = i}

=

[mx2]
k=0

nm!

(n + m)!

(n + k − 1)!
k!

=
1

(m + 1) (m + 2) · · · (m + n)
[mx2 + 1] [mx2 + 2] · · · [mx2 + n] . (14)

The joint distribution of the random variables S1
m and S2

m is

P

S1
m

≤ x1,
S2
m

≤ x2


= P {S1 ≤ mx1,m − S1 ≤ mx2} = P {m − mx2 ≤ S1 ≤ mx1}

=

[mx1]
k=[m−mx2]

P {S1 = k} =

[mx1]
k=[m−mx2]

k+i=m

m
i=0

P {S1 = k, S2 = i}

=

[mx1]
k=[m−mx2]

nm!

(n + m)!

(n + k − 1)!
k!

=
nm!

(n + m)!

[mx1]
k=[m−mx2]

(k + 1)(k + 2) · · · (k + n − 1)

=
nm!

(n + m)!


1

n − 2 + 2
[mx1 + 1] [mx1 + 2] · · · [mx1 + 1 + n − 2 + 1]

−
1

n − 2 + 2
[m − mx2] [m − mx2 + 1] · · · [m − mx2 + n − 2 + 1]


. (15)

The equations in (13)–(15) are simplified by (8). Thus, we derived the asymptotic distribution of S1
m and S2

m by using
(13)–(15) whenm → ∞.

lim
m−→∞

P

S1
m

≤ x1,
S2
m

≤ x2


= xn1 − (1 − x2)n , x1 + x2 > 1

lim
m−→∞

P

S1
m

≤ x1


= xn1, x1 ∈ [0, 1] , x2 > 1

lim
m−→∞

P

S2
m

≤ x2


= xn2, x2 ∈ [0, 1] , x1 > 1

Thus, the proof is completed. �
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3.2. Asymptotic distribution of exceedance statistics when the random threshold is X1:n

Assume that X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be samples from populations with d.f. F and Q respectively where
F ,Q ∈ ℑc . Let X1:n is a random threshold and ∆1 = (−∞, X1:n] , ∆2 = (X1:n, ∞) are intervals. And let us define the
variables

ξ k
i =


1, Yk ∈ ∆i
0, Yk ∉ ∆i

k = 1, 2, . . . ,m, i = 1, 2

and

Si =

m
k=1

ξ k
i .

Let S1and S2 be exceedances, obtained from the sample Y1, Y2, . . . , Ym, denoting the numbers of observations below and
above the random threshold X1:n respectively where S1 + S2 = m, S1 ∈ [0,m] and S2 ∈ [0,m] .

Theorem 3.3. Let S1 ∈ [0,m] and S2 ∈ [0,m] ,where S1+S2 = m. Then the joint asymptotic distribution of S1
m and S2

m random
variables is

lim
m−→∞

P

S1
m

≤ x1,
S2
m

≤ x2


= xn2 − (1 − x1)n , x1, x2 ∈ [0, 1] , x1 + x2 > 1

lim
m−→∞

P

S1
m

≤ x1


= 1 − (1 − x1)n , x1 ∈ [0, 1] , x2 > 1

lim
m−→∞

P

S2
m

≤ x2


= 1 − (1 − x2)n, x2 ∈ [0, 1] , x1 > 1.

Proof. The joint probability function of S1 and S2 is

P {S1 = k, S2 = m − k} =


i1,i2,...,im

P

Yi1 ∈ ∆1, Yi2 ∈ ∆1, . . . , Yik ∈ ∆1, Yik+1 ∈ ∆2, Yik+2 ∈ ∆2, . . . , Yim ∈ ∆2


=

m!

k! (m − k)!
n


∞

−∞

[F (x)]k [1 − F (x)]m+n−k−1 dF (x)

=
nm!

(m + n)!
(m − k + 1) (m − k + 2) · · · (m + n − k − 1) . (16)

The marginal distribution function of S1
m is

P

S1
m

≤ x1


=

[mx1]
k=0

nm!

(n + m)!
(m − k + 1)(m − k + 2) · · · (m + n − k − 1)

=
nm!

(n + m)!

m
t=[m−mx1]

(t + 1)(t + 2) · · · (n + t − 1)

= 1 −
[m − mx1] [m − mx1 + 1] · · · [m − mx1 + n − 2 + 1]

(m + 1) (m + 2) · · · (m + n)
. (17)

The marginal distribution function S2
m is obtained by using the same procedure in Eq. (17)

P

S2
m

≤ x2


=

[mx2]
k=0

P {S2 = k}

=

[mx2]
k=0

nm!

(n + m)!

(n + m − k − 1)!
(m − k)!

= 1 −
[m − mx2] [m − mx2 + 1] · · · [m − mx2 + n − 2 + 1]

(m + 1) (m + 2) · · · (m + n)
. (18)

The joint distribution function of the random variables S1
m and S2

m is

P

S1
m

≤ x1,
S2
m

≤ x2


= P {S1 ≤ mx1,m − S1 ≤ mx2}

= P {m − mx2 ≤ S1 ≤ mx1}
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=

[mx1]
k=[m−mx2]

P {S1 = k}

=

[mx1]
k=[m−mx2]

k+i=m

m
i=0

P {S1 = k, S2 = i}

=

[mx1]
k=[m−mx2]

nm!

(n + m)!

(n + m − k − 1)!
(m − k)!

=
nm!

(n + m)!

[m−m+mx2]
t=[m−mx1]

(t + 1) (t + 2) · · · (t + n − 1)

=
1

(m + 1) (m + 2) · · · (m + n)
[[mx2 + 1] [mx2 + 2]

· · · [mx2 + 1 + n − 1] − [m − mx1] [m − mx1 + 1] · · · [m − mx1 + n − 1]] . (19)

The equations in (17)–(19) are simplified by (7) and (8). Thus, we derived asymptotic distribution of S1
m and S2

m by using
(17)–(19) whenm → ∞.

lim
m−→∞

P

S1
m

≤ x1,
S2
m

≤ x2


= xn2 − (1 − x1)n , x1, x2 ∈ [0, 1] , x1 + x2 > 1

lim
m−→∞

P

S1
m

≤ x1


= 1 − (1 − x1)n , x1 ∈ [0, 1] , x2 > 1

lim
m−→∞

P

S2
m

≤ x2


= 1 − (1 − x2)n, x2 ∈ [0, 1] , x1 > 1

Thus, the proof is completed. �

4. Numerical results

In the following we provide numerical values for the exact distribution for different values of n and m.

n = 3,m = 4
l\k 0 1 2 3 4
0 0.02857
1 0.05714 0.02857
2 0.08571 0.05714 0.02857
3 0.11429 0.08571 0.05714 0.02857
4 0.14286 0.11429 0.08571 0.05714 0.02857

n = 5,m = 4
l\k 0 1 2 3 4
0 0.00794
1 0.03175 0.00794
2 0.07937 0.03175 0.00794
3 0.15873 0.07937 0.03175 0.00794
4 0.27778 0.15873 0.07937 0.03175 0.00794

n = 4,m = 5
l\k 0 1 2 3 4 5
0 0.00794
1 0.02381 0.00794
2 0.04762 0.02381 0.00794
3 0.07937 0.04762 0.02381 0.00794
4 0.11905 0.07937 0.04762 0.02381 0.00794
5 0.16667 0.11905 0.07937 0.04762 0.02381 0.00794
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n = 4,m = 7
l\ k 0 1 2 3 4 5 6 7
0 0.00303
1 0.00909 0.00303
2 0.01818 0.00909 0.00303
3 0.03030 0.01818 0.00909 0.00303
4 0.04545 0.03030 0.01818 0.00909 0.00303
5 0.06364 0.04545 0.03030 0.01818 0.00909 0.00303
6 0.08485 0.06364 0.04545 0.03030 0.01818 0.00909 0.00303
7 0.10909 0.08485 0.06364 0.04545 0.03030 0.01818 0.00909 0.00303

These results could be advised for use in two-sample hypothesis tests in many areas as described in the Introduction
section.
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