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To the memory of my father, both as a father and as a mathematical collaborator.

Abstract

A common statement made when discussing the efficiency of compression programs like JPEG is that
the transformations used, the discrete cosine or wavelet transform, decorrelate the data. The standard
measure used for the information content of the data is the probabilistic entropy. The data can, in this
case, be considered as the sampled values of a function. However no sampling independent definition of
the entropy of a function has been proposed. Such a definition is given and it is shown that the entropy so
defined is the same as the entropy of the sampled data in the limit as the sample spacing goes to zero.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with the lossless compression of data consisting of the values of a real-
valued function. An example is provided by a digitized photo. Such a photo can be compressed
using the JPEG program, which in the older version involves a discrete cosine transform, while
JPEG2000 is wavelet based. These transforms are said to decorrelate the data. Such a statement
is based on the concept of entropy. The entropy of the transformed data is less than the entropy
of the original data.
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The concept of entropy used here is not the metric entropy discussed by my father on page
150 of [2] nor the Kolmogoroff complexity, but, as sons are wont to do, I consider the other
type of entropy, the probabilistic entropy as introduced by Shannon [1], which is defined in the
following section.

The entropy of a stream of data is a number H . There is a theorem (see e.g. [3] for an overview
of compression) that there exist algorithms which compress the data stream into not more than
H bits per datum on average and that if the data derive from a iid source, that one can do no
better. Huffmann and arithmetic coding do this. Thus to quantify how well a data transformation
decorrelates the data, one should compare the entropy before and after the transformation.

The standard way of measuring a function is to sample it, i.e., to record its values at a sequence
of points. If the measured values are digitized (quantized) then one could also use the entropy of
these values as the entropy of the function. This definition of the entropy of a function depends on
the details of the sampling. We propose a definition of the entropy of a function which is sampling
independent. It is shown that for two types of sampling, point sampling for a continuous function
and mean sampling for a Lebesgue integrable function, the two concepts yield the same value as
the sampling spacing tends to zero. Some simple examples are given.

2. Definitions

Definition 1 (Entropy). Let X be a discrete random variable which takes values in a finite
alphabet A and let p(x) > 0 be the probability that X = x for x ∈ A. Then the entropy
H(X) of X is

H(X) = −
∑
x∈A

p(x) log2 p(x).

Note that the entropy of a data stream only depends on the probabilities of occurrence of the
different letters of the alphabet and not on their meanings, which in our case is the interpretation
as real numbers.

If we define p log2 p to be zero when p = 0, then the entropy H is a continuous function of
the probabilities in the extended range p(x) ≥ 0.

For a given size alphabet, the entropy is the highest if the probabilities are all equal. Then
H(X) = log2 |A|. The entropy is the lowest if one of the probabilities is 1. Then only one letter
occurs and H(X) = 0.

Let f be a continuous real-valued function defined on an interval I = [a, b]. We want to
define the entropy of f . There are two problems. The first is that there is a continuum of values.
The second is that f is not a discrete random variable but a continuous random variable.

The approach usually taken to solve the first problem is to sample the function. Assume that
f is a continuous real-valued function defined on I = [a, b]. Let a positive integer n be fixed,
h = (b − a)/n and xi = a + (i+ 1/2)h for i = 0, . . . , n − 1. Then the sampled function is

Sn( f )(i) = f (xi ) (1)

for i = 0, . . . , n − 1. We call this point sampling, at the mid-points of the intervals with which
the sample is associated.

The other case that we consider is that when f ∈ L1([a, b]). In this case, the i-th sample of
f is

Sn( f )(i) = h−1
∫ xi+h/2

xi−h/2
f (x)dx (2)
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where h is defined as above and i = 0, . . . , n − 1. This we call mean sampling. Note that if f is
measurable and bounded, then f ∈ L1([a, b]).

Now we have a discrete variable which takes on a continuum of values. The next step is to
quantize these values in order to obtain a finite number of values/letters. Given f as above let
q > 0 be the quantum. The quantization of the real numbers which we take is

Qq( f )(x) = (i+ 1/2)q if iq ≤ x < (i+ 1)q. (3)

Qq( f ) is a simple function which approximates f .
Generally speaking the formula for entropy is used even if it is not known whether the discrete

random variable X satisfies the conditions of Definition 1. If one is given a string x1x2 . . . xN of
letters with xi in a finite alphabet A, then one uses the relative frequencies of occurrences of the
letters in place of the probabilities.

More precisely, let c(x) denote the number of occurrences of the letter x in a string of length
N . We define p(x) = c(x)/N and use these as probabilities in the formula for the entropy. As
an example, let us quantize the values of the samples of a bounded function Qq Sn( f )(i). Since
f is bounded, only a finite number of values occur. Proceeding as above, we can calculate the
“entropy” of the quantized sequence of samples.

Example 1. Let f (x) = x on [0, 1]. Fix n and take q = 1/n. Then Sn( f )(i) = (i + 1/2)/n
for i = 0, . . . , n − 1. The quantization has been chosen so that the values don’t change
Qq Sn(i) = (i+ 1/2)/n. Each of the n values occurs exactly once

H(Qq Sn( f )) = −
n−1∑
i=0

(1/n) log2(1/n) = log2 n.

So one of the simplest functions has the highest possible entropy. This also shows why probability
based compression methods such as the Huffmann coding are unable to significantly compress
files containing numbers. The explanation is that the letters/numbers are strongly correlated. The
simplicity of the function is reflected in the correlation of the numbers, not in their probability
distributions.

3. Entropy and sampling

In this section, we will assume for the sake of simplicity that [a, b] = [0, 1].

Definition 2 (Entropy of a Function). Let f be a measurable essentially bounded real-valued
function defined on [0, 1] and let q > 0. Let Ii = [iq, (i + 1)q) and Bi = f −1(Ii ). Then the
entropy Hq( f ) of f at quantization level q is

Hq( f ) = −
∑

i

µ(Bi ) log2{µ(Bi )}. (4)

Here µ is the Lebesgue measure. Note that as f is measurable, so are the Bi (see e.g., [4] for
details on the measure theory that we use here and in the proof of the following theorem). In
addition,

[0, 1] =
⋃

i

Bi

as a finite disjoint union and so
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µ(Bi ) = 1

as a finite sum.
There is a somewhat similar concept, that of differential entropy, which is used for another

purpose. Suppose that one has a real-valued bounded continuous random variable X with a
continuous probability function ρ(x). Let h > 0. Then for each i , there is an xi ∈ [(i− 1)h, ih)
with

ρ(xi )h =
∫ ih

(i−1)h
ρ(x)dx .

This converts the continuous random variable X into a discrete random variable Xh with
probabilities P(Xh = xi ) = ρ(xi )h. Only a finite number of these probabilities is non-zero
since X is bounded. The entropy of Xh is

H(Xh) = −
∑

i

ρ(xi )h log2(ρ(xi )h) = −
∑

i

ρ(xi )log2(ρ(xi ))h − log2 h.

As h → 0 the sum converges to the integral−
∫
ρ(x) log2 ρ(x)dx which is called the differential

entropy of X . log2 h converges to −∞ unfortunately, but the integral expression is nevertheless
used for other purposes.

The analogy to our case is when f is a continuous real-valued function f : [0, 1] → R which
induces the probability measure µ f (A) = µ( f −1(A)) for any A ⊂ R. But this measure cannot
in general be written as ρ(x)dµ(x) sinceµ f is not necessarily absolutely continuous with respect
to µ, in particular, not when f is constant on a set of non-zero measure.

The main theorem which justifies the above definition is:

Theorem 1. Using the terminology of Definition 2, let f be continuous for point sampling and
f be measurable and essentially bounded for mean sampling. The sampling spacing is 1/n. Let
Sn( f ) be the corresponding sampling of Eq. (1) respectively (2). Fix q > 0 and let Qq Sn be
the quantization of the samples with resolution q as given in Eq. (3). Let cn(i) be the number
of occurrences of the value (i + 1/2)q in Qq Sn and pn(i) be the relative probability of the
occurrence of the value (i+ 1/2)q

pn(i) =
cn(i)∑

j
cn( j)

=
cn(i)

n
.

Then

lim
n→∞
−

∑
i

pn(i) log2 pn(i) = Hq( f ). (5)

In other words, the entropy of the quantized samples of a function converges to the entropy of
the quantized function as the sampling spacing goes to zero.

Proof. Let ε > 0 be given. Let Ai be the union of those sampling intervals [ri, j (1/n), (ri, j
+ 1)(1/n)) for which iq ≤ f ((ri, j + 1/2)(1/n)) < (i+ 1)q for point sampling and

iq ≤
∫ (ri, j+1)(1/n)

ri, j (1/n)
f (x)dx < (i+ 1)q

for mean sampling. Then
⋃

i Ai = [0, 1], cn(i) = µ(Ai )/(1/n) and pn(i) = µ(Ai ).
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Using the terminology of the definition of the entropy of f , Bi = {x | iq ≤ f (x) < (i+ 1)q}
and we have

⋃
i Bi = [0, 1]. Let M be the number of sets Bi with positive measure. Let δ > 0

be such that∣∣∣∣∣∑
i

µ(Bi ) log2 µ(Bi )−
∑

i

pi log2 pi

∣∣∣∣∣ < ε

whenever maxi |µ(Bi )− pi | < δ. We take the sum only over the M non-zero Bi .
For each Bi , there is a closed set Ci contained in Bi such that µ(Bi \ Ci ) ≤ δ/(20M). As a

closed subset of [0, 1], Ci is a countable disjoint union of closed intervals Ji, j . Choose mi so that

µ(Ci )−

mi∑
j=1

µ(Ji, j ) ≤ δ/(20M).

Replace each Ji, j by half-open intervals (closed on the left and open on the right) J̃i, j whose end
points are multiples of the sample spacing 1/n, such that J̃i, j ⊆ Ji, j , and which are the largest
intervals with this property. Now choose n so large that

mi∑
j=1

µ(Ji, j )−

mi∑
i=1

µ( J̃i, j ) ≤ δ/(20M).

As a consequence,

µ(Ci )−

mi∑
j=1

µ( J̃i, j ) ≤ δ/(10M).

Note that in each interval J̃i, j , we have iq ≤ f < (i + 1)q. Thus the sampled value for each
sampling subinterval is (i+ 1/2)q and

⋃mi
j=1 J̃i, j ⊆ Ai for both types of sampling.

Since Bi ⊇ Ci ⊇
⋃mi

j=1 J̃i, j ,

µ(Bi )− µ

(
mi⋃
j=1

J̃i, j

)
≤ δ/(10M).

Summing over i

1− µ

(⋃
i

mi⋃
j=1

J̃i, j

)
≤ δ/10.

Now
⋃

i Ai = [0, 1], so

µ

(⋃
i

Ai

)
− µ

(⋃
i

mi⋃
j=1

J̃i, j

)
=

∑
i

(
µ(Ai )− µ

(
mi⋃
j=1

J̃i, j

))
≤ δ/10.

Each of the summands is positive, so for each i ,

µ(Ai )− µ

(
mi⋃
j=1

J̃i, j

)
≤ δ/10.
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Because pn(i) = µ(Ai ), we want to show that |µ(Bi )− µ(Ai )| ≤ δ for all i . But

|µ(Bi )− µ(Ai )| ≤

∣∣∣∣∣µ(Bi )− µ

(
mi⋃
j=1

J̃i, j

)∣∣∣∣∣+
∣∣∣∣∣µ(Ai )− µ

(
mi⋃
j=1

J̃i, j

)∣∣∣∣∣
≤ δ/(10M)+ δ/10 < δ. �

As can be seen from the proof, the theorem would hold for other types of sampling and other
types of quantization.

4. Examples

Example 2. This is a continuation of Example 1 with f (x) = x on [0, 1]. Take q = 2−`. Then
Qq( f )(x) = i + 1/2 for i2−` ≤ x < (i + 1)2−`, i = 0, . . . , n − 1. Thus µ{x | Qq f (x) =
(i+ 1/2)q} = 2−` and Hq( f ) = ` = − log2 q.

Let us sample with n = 2k . Then the sampling points are xi = (i + 1/2)2−k with
sampled values Sn( f )(i) = (i + 1/2)2−k . If k ≤ `, that is if the quantization is finer than
the sampling, then the quantization does not change the sampled values. There are 2k different
values. H(Qq Sn( f )) = k = log2 n.

If k > `, each of the 2` quantization intervals contains 2k−` samples. Thus pi = 2k−`/2k
=

2−` and H(Qq Sn( f )) = ` = Hq( f ) which is in accordance with the theorem.

Example 3. A continuation of the previous case in which differences are taken. As before, the
sampled values Sn( f )(i) = (i + 1/2)2−k . Instead of this sequence, we take d(0) = (1/2)2−k

and d(i) := Sn( f )(i)− Sn( f )(i− 1) = 2−k for i = 1, . . . , n− 1. Then cn((1/2)2−k) = 1 while
cn(2−k) = n − 1. The entropy of the transformed sequence is

H(D) = −
1
n

log2
1
n
−

n − 1
n

log2
n − 1

n
→ 0

as n→∞. As the original sequence can be reconstructed from the first value and the differences,
the transformation has produced a lossless compression with a high compression factor. The
original signal had an entropy of log2 n while the compressed signal has a entropy of o(n).

Example 4. Let f (x) =
√

x on [0, 1] and take q = 2−`. Then Qq f (x) = (i+ 1/2)q for i2−` ≤
√

x < (i+1)2−` or i22−2`
≤ x < (i+1)22−2`. So µ{x | Qq f (x) = (i+1/2)q} = (2i+1)2−2`

and

Hq( f ) = −
2`−1∑
i=0

(2i+ 1)2−2` log2(2i+ 1) log2((2i+ 1)2−2`)

= 2`− 2−2`
2`−1∑
i=0

(2i+ 1) log2(2i+ 1).
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