$3 x+1$ SEARCH PROGRAMS

Gary T. Leavens*
Department of Computer Science, 229 Atanasoff Hall
Iowa State University, Ames, Iowa 50011-1040, U.S.A.
Mike Vermeulen
Hewlett Packard, 3404 East Harmony Road Fort Collins, CO 80525, U.S.A.
(Received November 1991 and in revised form March 1992)

Abstract

Algorithms for computing peaks of certain statistics related to the $3 x+1$ problem are described, along with data on such peaks up to 56 trillion $\left(5.6 \times 10^{13}\right)$. The data result from several years of computation. The design of the algorithms used illustrates several techniques for program optimization.

1. INTRODUCTION

The $3 x+1$ problem concerns iterates of the following function:

$$
T(n)= \begin{cases}(3 n+1) / 2, & \text { if } n \equiv 1 \quad(\bmod 2) \tag{1}\\ n / 2, & \text { if } n \equiv 0 \quad(\bmod 2)\end{cases}
$$

which takes odd integers n to $(3 n+1) / 2$ and even integers n to $n / 2$ [1]. The $3 x+1$ Conjecture asserts that, starting from any positive integer n, repeated iteration of this function eventually produces the value 1 . This conjecture is apparently intractable.

The iterates of T are simply defined. Let $T^{(0)}(n)=n$, and for all integers $k>0$, let $T^{(k)}(n)=$ $T\left(T^{(k-1)}(n)\right)$. The sequence of iterates $\left(T^{(0)}(n), T^{(1)}(n), T^{(2)}(n), \ldots\right)$ is called the T-trajectory of n. For example, the T-trajectory of 7 is:

$$
7,11,17,26,13,20,10,5,8,4,2,1,2,1,2,1, \ldots
$$

An alternative formulation of the $3 x+1$ problem considers iterates of the function H that does not map odd integers n to $(3 n+1) / 2$, but rather to $3 n+1$:

$$
H(n)= \begin{cases}3 n+1, & \text { if } n \equiv 1 \quad(\bmod 2) \tag{2}\\ n / 2, & \text { if } n \equiv 0 \quad(\bmod 2)\end{cases}
$$

The function H is modeled after the so-called hailstone algorithm, see [2]. One defines the iterates of H in the same way as T. For example, if n is 7 , then the sequence of successive iterates of H

[^0]is:
$$
7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1,4,2,1, \ldots
$$

We will call such a sequence a H-trajectory.
Notice how the H-trajectory of 7 differs from its T-trajectory. The difference is stated precisely in the following lemma. The first part states that the T-trajectory of a number is a subsequence of the corresponding H-trajectory, with the property that every even number in the sequence of iterates of H can be paired with a number in the iterate sequence of T. The second part states that every number k in the H-trajectory of n either occurs in the T-trajectory of n or else $k / 2$ does.

Lemma 1.

(a) For all $i>0$, for all $n>0$, and for all $k>0$, if $T^{(i)}(n)=k$, then there is some $j \geq 0$ such that, $H^{(j)}(n)=2 k$, and $H^{(j+1)}=k$.
(b) For all $j>0$, for all $n>0$, and for all $k>0$, if $H^{(j)}(n)=k$, then there is some $i \geq 0$ such that either $T^{(i)}(n)=k$ or $T^{(i)}(n)=k / 2$.

Proof. The proof is by induction on i, respectively j, for (a) and (b).
There are graphs in the article by Hayes that show the wildly erratic and unpredicatable behavior of the iterates of H [2]. The behavior of T is, of course, similarly wild and unpredictable.

We define certain statistics that measure various attributes of the iterates of the functions T and H. These statistics are related to the $3 x+1$ conjecture, since one counts the number of iterations needed to reach 1 , or the maximum value reached in a trajectory.

A necessary condition for $T^{(k)}(n)=1$ is that there is some m such that $T^{(m)}(n)<n$. The stopping time $\sigma(n)$ is the least whole number k such that $T^{(k)}(n)$ is less than n, with the convention that $\sigma(1)=0$. If there is no such k, then let $\sigma(n)$ be ∞. For example, $\sigma(7)=7$.

The total stopping time $\sigma_{\infty}(n)$ is the least whole number k such that $T^{(k)}(n)$ is one, with the convention that $\sigma_{\infty}(1)=0$. If there is no such k, then let $\sigma_{\infty}(n)$ be ∞. For example, $\sigma_{\infty}(7)=11$.

The value of $\operatorname{steps}(n)$ is the least whole number k such that $H^{(k)}(n)$ is one. If there is no such k, then let $\operatorname{steps}(n)$ be ∞. It is the analog of total stopping time for H. For example, $\operatorname{steps}(7)=16$.

The maximum value, max_value(n), is the least upper bound of all the integers reached by iterating H until the value of the iterates reach one. That is,

$$
\begin{equation*}
\max \operatorname{value}(n)=\operatorname{lub}\left\{H^{(k)}(n) \mid 0 \leq k \leq \operatorname{steps}(n)\right\} \tag{3}
\end{equation*}
$$

For example, max_value $(7)=52$. Using T instead of H gives an alternative definition of maximum value.

$$
\begin{equation*}
\text { alt_max_value }(n)=\operatorname{lub}\left\{T^{(k)}(n) \mid 0 \leq k \leq \sigma_{\infty}(n)\right\} \tag{4}
\end{equation*}
$$

For example, alt_max_value $(7)=26$. Except in certain special cases, the max_value of a number is always twice its alt_max_value. The proof of this simple fact depends on part (a) of the following lemma, which states that if a value occurs in the T-trajectory of a number greater than two, then it must occur before the iterates reach one.

Lemma 2.
(a) For all $n>2$, and for all k, if there is some $i \geq 0$ such that $H^{(i)}(n)=k$, then there is some $0 \leq j \leq \operatorname{steps}(n)$ such that $H^{(j)}(n)=k$; furthermore, if there is some $i \geq 0$ such that $T^{(i)}(n)=k$, then there is some $0 \leq j \leq \sigma_{\infty}(n)$ such that $T^{(j)}(n)=k$.
(b) For all $n>0$, if alt_max_value $(n) \neq n$, then \max value $(n)=2 \cdot a H_{-} \max _{-} v a l u e(n)$.

We are interested in the behavior of these statistics as n varies. Many facts are known about them, see [1]. A number of researchers have observed that if the input n is drawn randomly, say with the uniform distribution on an interval $[1, N]$, then these statistics appear to have nice limiting distributions as N approaches infinity (see, for example, [3] and [4]). Lagarias and Weiss [5] describe various random walk models intended to simulate $3 x+1$ function iterates.

Particularly interesting statistics concern the behavior of extreme values of these statistics as n varies, which we call peaks. An integer $n>0$ is a peak in a statistic f, if and only if for all $0<m<n, f(m)<f(n)$. These numbers are called peaks because if one graphs the function, then each peak will be a point higher than has been reached for smaller n. For example, 3 is a peak in max_value, because max_value $(3)=16$, max_value $(2)=2$, and max_value $(1)=1$.

This paper describes algorithms for computing such peaks; tables of peaks appear in the Appendix. The algorithmic optimizations described below were developed in a spirit of friendly competition between the two authors. Each author developed a program, and so many of our results have been validated by more than one program. The first program (by Leavens) designed to experiment with the Argus distributed programming language and system (see references [6] and [7]). A second program (by Vermeulen) was written in C, to understand the inherent costs of Argus as opposed to C. Various distributed programs have been running since 1986, although only Vermeulen's program is currently running. Vermeulen's current system, which was started in August 1990, runs on about 15 workstations (the exact number varies), searches an interval of about 100 billion per night, and has accumulated between 5 and 15 years of CPU time. (That is, if the search were run sequentially it would take about 5 CPU-years on the fastest machine, or about 15 CPU-years on the slowest.)

Peaks appear more and more rarely as one tests larger numbers. While it is easy to verify the value of $\operatorname{steps}(n)$ or max_value(n) for any particular n, it is very expensive to verify that n is a peak in either statistic, because this involves showing that all numbers less than n have a smaller value for steps or max_value.

One of the mathematical questions we have investigated is whether peaks in one statistic must be peaks in some other statistic. Since the trajectories under H and T are related (as in Lemma 1), one might guess that numbers that are peaks in a measure based on iterates of T would necessarily be peaks in a measure based on H. This is true for maximum values, but the question remains open for stopping times and steps. The relationships are summarized in Table 1.

Table 1. Relationships between peaks in various statistics.

	σ	σ_{∞}	steps	max_value	alt_max_value
σ	same				
σ_{∞}	distinct	same			
steps	distinct	unknown	same		
max_value	distinct	distinct	distinct	same	
altmax_value	distinct	distinct	distinct	same	same

The fact that peaks in max_value and alt_max_value are the same is a corollary of Lemma 2 (b).
Corollary 3. An integer $k>0$ is a peak in max_value if and only if k is also a peak in alt_max_value.

Counter-examples that distinguish between peaks in most other measures can be found by examining the tables in Appendix A.

The relationship between peaks in steps and peaks in σ_{∞} is one of the difficult open questions that often appear in the study of the $3 x+1$ problem. However, it is easy to see that the total stopping time cannot be greater than the number of steps, nor as small as half the number of steps.

Lemma 4. For all $n>0$, if $\operatorname{steps}(n) \neq \infty$, then $\operatorname{steps}(n) / 2<\sigma_{\infty}(n) \leq \operatorname{steps}(n)$.
Proof. In any H-trajectory, every step of the form $3 x+1$ is followed by a division by 2 . Thus the T-trajectory omits at most half of these steps. However, if $\operatorname{steps}(n)$ is defined, then there must be more division by 2 steps in the iteration of H than there are steps that multiply by 3 and add one.

A different relationship holds between total stopping time and steps. Let odd(n) be the number of odd integers in the iterate sequence of H (excluding 1) and even (n) be the number of even integers that occur until 1 is reached. That is:

$$
\begin{align*}
& \operatorname{odd}(n) \stackrel{\text { def }}{=} \#\left\{k \mid k \bmod 2=1, H^{(i)}(n)=k, 0 \leq i<\operatorname{steps}(n)\right\}, \tag{5}\\
& \operatorname{even}(n) \stackrel{\text { def }}{=} \#\left\{k \mid k \bmod 2=0, H^{(i)}(n)=k, 0 \leq i<\operatorname{steps}(n)\right\} \text {. } \tag{6}
\end{align*}
$$

Since every step produces an odd or an even number, the sum of odd and even is the number of steps; that is, for all $n>0, \operatorname{steps}(n)=\operatorname{odd}(n)+\operatorname{even}(n)$.

It is interesting that the number of even steps is the same as the total stopping time.
Lemma 5. For all $n>0, \sigma_{\infty}(n)=\operatorname{even}(n)$.
Proof. If $\sigma_{\infty}(n)=\infty$, then $\operatorname{even}(n)=\infty$. Furthermore, $\sigma_{\infty}(1)=0=\operatorname{even}(1)$ and $\sigma_{\infty}(2)=$ $1=\operatorname{even}(2)$.

So suppose $n>2$ and $\sigma_{\infty}(n)=m<\infty$. By Lemma 1, for each $0 \leq i \leq \sigma_{\infty}(n)$, there is some $j \geq 0$ such that $2 T^{(i)}(n)=H^{(j)}(n)$. By Lemma $2, j$ can be chosen so that $j \leq \operatorname{steps}(n)$. Thus, $\sigma_{\infty}(n) \geq \operatorname{even}(n)$. However, if $\sigma_{\infty}(n)>\operatorname{even}(n)$, then there would have to be two iterates of T with the same value (that is, $0 \leq i<l \leq \sigma_{\infty}(n)$, such that $T^{(i)}(n)=T^{(l)}(n)$), but if this happened there would be infinitely many such cases, and so $\sigma_{\infty}(n)$ would be infinite.

The above analysis does not seem to lead to a proof that peaks in steps are also peaks in total stopping time. However, the peaks do coincide at least to 12.3 billion $\left(12.3 \times 10^{9}\right)$, as the first author's program verified. So we offer the following conjecture.

Conjecture 6. An integer $k>0$ is a peak in steps if and only if k is a peak in total stopping time (σ_{∞}).

This conjecture seems difficult to prove.
The rest of the paper is organized as follows. Section 2 discusses smaller-scale efficiency issues, and describes how we turn mathematical insight into better ways to prune the search space. Section 3 draws some conclusions from this experience. Appendix A gives tables of results from the search.

From the tables we make the following observations.

- $1,2,3,7,27$, and 703 , are the only known peaks in steps, stopping time (σ), and max_value; no larger number is known to be a peak in all three of these statistics.
- $12,235,060,455$ is the largest known number that is a peak in both steps and σ; no larger number is known to be a peak in more than one of: steps, stopping time (σ), and max_value.
- Despite the previous remark, many of the peaks in steps have the same max_value, and hence their trajectories are identical after a certain number of iterations.
Unlike the peaks in steps, the maximum values reached by peaks in stopping time, σ, rarely repeat.

See also Lagarias and Weiss for more detailed comparisons in a similar vein [5].

2. SMALL SCALE DESIGN ISSUES

This section describes algorithms for iterating H and T. Another issue of practical importance, how to efficiently distribute the search among several computers, will not be discussed in this paper (see [8]).

A fundamental observation is that peaks are extremely rare. For example, in the first 50 billion positive integers, there are only 49 peaks in max_value and only 78 peaks in steps. The peaks become more and more rare as the search progresses; between 1 billion and 50 billion there are only 5 peaks in max_value and 12 peaks in steps. So a typical number is not a peak, and the main task of the search is to find this out as quickly as possible. For doing this there are three basic strategies.

- Cutting off the search by discovering that the input number is not a peak before taking it through all the iterates of H or T down to 1 (or until the values of the iterates fall below the starting value if one is searching for peaks in stopping time).
- Running the steps of the iteration algorithm faster.
- Multiplying, dividing, adding, and comparing numbers faster. Algorithms and data structures for large precision integers were important practical considerations, because the searches went well past the usual 32 bit integers, and because the iterates exceed these limits quickly. For example, max_value $(159,487)=17,202,377,752$. Such algorithms and data structures are well-known [9].

The benefits of the optimizations discussed in this section are summarized in Table 2. The speedup due to a particular optimization depends on the order in which optimizations are applied. For example, the a priori cutoff of all numbers $k \bmod 6=5$ reduces the set of numbers to be searched by a sixth if one is searching all numbers, but by a third if the set is already restricted to even numbers. The table lists the optimizations in the order that they were added to Mike Vermeulen's program, and then lists the speedup achieved by that optimization assuming the optimizations listed above it were already applied.

The speedup of seven for using polynomials results from a comparison between an assembly language program and a polynomial based program. All other speedups were measured while selectively disabling optimizations on the polynomial search.

Table 2. Effectiveness of optimizations.

Optimization	Speedup	Cumulative Speedup
None	1.00	1.0
Use Composite polynomials	7.00	7.0
Search only odd numbers	2.00	14.0
Values: a posteriori cutoffs	1.84	25.7
Ignore k mod $6=5$	1.41	36.4
Values: a priori cutoff with 8 bit polynomial	1.71	62.1
Steps: a priori cutoff using 8 bit polynomial	1.15	71.3
Use 16 bit polynomials for a priori cutoffs	1.36	97.1
Steps: a posteriori cutoffs	1.88	182.0

2.1. A Priori Cutoffs

The best way to cut off the search on a given input number is to prove that the input cannot be a peak and to ignore it without spending time on it; this is called an a priori cutoff. A less effective way to cut off the search on a given input is to prove that the number cannot be a peak after learning something about its trajectory; this is called an a posteriori cutoff.

A basic result is that it is possible, a priori, to limit the search to odd numbers. For max_value, it suffices to note that the first step of H for an even number is to divide it by two.

Lemma 7. For all $k>0$, max_value $(2 k)=\max \{2 k$, max_value $(k)\}$.
The technique used in the proof of the following corollary is an example of reasoning about the convergence of different trajectories.

Corollary 8. The number 2 is the only even peak in max_value.
Proof. Let $k>1$ be given. By the above lemma, max_value($2 k$), is the maximum of $2 k$ or max_value (k). If max_value $(2 k)=$ max_value (k), then $2 k$ is not a peak. So suppose \max value $(2 k)=2 k$. But, then $2 k$ is not a peak in max_value either, since max_value $(2 k-1) \geq$
$3(2 k-1)>2 k$. The inequality max_value $(2 k-1) \geq 3(2 k-1)$ holds because $2 k-1$ is odd, hence $H(2 k-1)=3(2 k-1)$. That $3(2 k-1)>2 k$ holds for $k>1$ holds is shown by the following:

$$
\begin{align*}
k>1 & \Rightarrow 4 k>4 \tag{7}\\
& \Rightarrow 4 k-3>1 \tag{8}\\
& \Rightarrow(6 k-3)-2 k>1 \tag{9}\\
& \Rightarrow(6 k-3)>2 k+1 \tag{10}\\
& \Rightarrow 3(2 k-1)>2 k . \tag{11}
\end{align*}
$$

Results similar to the above apply to alt_max_value as well.
For steps, the same observation about the first step of H means that an even number k will take only one more step than $k / 2$ to return to 1 .

Lemma 9. For all $k>0, \operatorname{step} s(2 k)=1+\operatorname{steps}(k)$.

Corollary 10. If k is a peak in steps, then the least even number greater than k that can be a peak in steps is $2 k$.

Proof. Let k be a peak in steps. By definition, for all $0<j<k$, steps $(j)<\operatorname{steps}(k)$. Thus by the preceding lemma, steps $(2 j)$ is constrained as follows:

$$
\begin{equation*}
\operatorname{steps}(2 j)=1+\operatorname{steps}(j) \leq \operatorname{step} s(k)=\operatorname{steps}(2 k)-1<\operatorname{steps}(2 k) \tag{12}
\end{equation*}
$$

A similar result applies to total stopping time.
By these corollaries, it is easy to predict all the even peaks in steps and max_value. Thus the search for these peaks ignores all the even numbers, giving a factor of 2 speedup.

For stopping time, the first division by two means that an even number always has a stopping time of 1 .

Lemma 11. For all $k>0, \sigma(2 k)=1$.

Corollary 12. If $k>2$ is a peak in stopping time, then k is odd.
So the search for peaks in stopping time also ignores all the even numbers.
The following results allow the search for peaks in stopping time to effectively ignore half of the odd numbers as well, that is, those that are equal to 1 modulo 4 . The lemma predicts the first iteration of T from the fact that the number is equal to 1 modulo 4 , and the corollary carries this analysis one iteration further to predict the stopping time.

Lemma 13. For all $k>0$, if $k \bmod 4=1$, then $T(k)$ is even.
Proof. Suppose $k>0$ and $k \bmod 4=1$. Then $k \bmod 2=1$, and hence $T(k)=(3 k+1) / 2$. But $(3 k+1)$ is evenly divisible by 4 :

$$
\begin{align*}
k \bmod 4=1 & \Rightarrow 3 k \bmod 4=3 \tag{13}\\
& \Rightarrow(3 k+1) \bmod 4=0 \tag{14}
\end{align*}
$$

and, therefore, $(3 k+1) / 2$ must be evenly divisible by 2 .
Corollary 14. For all $k>1$, if $k \bmod 4=1$, then $\sigma(k)=2$.

Proof. Suppose $k>1$. Then $3 k+k>3 k+1$, so $k>(3 k+1) / 4$. By the above lemma, $T(k)=(3 k+1) / 2$. But $(3 k+1) / 2>k$ and $(3 k+1) / 2$ is even, so $T^{(2)}(k)=(3 k+1) / 4$. So by definition, the stopping time of k is 2 .

Sad to say, the first author's search for peaks in stopping time never used the above idea, which would have resulted in a factor of 1.25 speedup (over and above ignoring the even numbers).

A fruitful idea for finding a priori cutoffs is to see how a number can result from (smaller) numbers in the course of iterating H or T. This should be contrasted with the techniques used above to find cutoffs in stopping time, which see what happens to the number itself when it is used as input to iterations of T. The idea of looking at convergence between the trajectories of smaller numbers and the number in question is related to the Collatz graph discussed in [1].
Lemma 15. Let j and k be given so that $0<j<k$. If there is some $m>0$ such that $H^{(m)}(j)=k$, then k cannot be a peak in steps or max_value.

Proof. Since the steps taken by k are the same as those taken by j after m initial steps, $\operatorname{steps}(j)=m+\operatorname{steps}(k)$ and max_value $(j) \geq \max$ value (k).
Lemma 16. Let j and k be given so that $0<j<k$. If there is some $m>0$ such that $T^{(m)}(j)=k$, then k cannot be a peak in stopping time, total stopping time, or alt_max_value.

The most important practical example of this kind of a priori cutoff is that if $k \bmod 6=5$, then k cannot be a peak in any of the statistics mentioned above. This is because if $k \bmod 6=5$, then k lies on the trajectory of $(2 k-1) / 3$, which is smaller than k. Indeed the iterates of H first multiply $(2 k-1) / 3$ by 3 and add 1 , obtaining $2 k$, and then divide $2 k$ by 2 obtaining k. This result is proved in the following lemma.
Lemma 17. Let $k>0$. If $k \bmod 6=5$, then $T((2 k-1) / 3)=k$ and $H^{(2)}((2 k-1) / 3)=k$.
Proof. Suppose $k>0$ and $k \bmod 6=5$. First we note that $2 k-1$ is divisible by 3 :

$$
\begin{align*}
k \bmod 6=5 & \Rightarrow 2 k \bmod 6=4 \tag{15}\\
& \Rightarrow 2 k \bmod 3=1 \tag{16}\\
& \Rightarrow(2 k-1) \bmod 3=0 . \tag{17}
\end{align*}
$$

To see where T or H maps $(2 k-1) / 3$ we must know if $(2 k-1) / 3$ is even or odd:

$$
\begin{align*}
k \bmod 6=5 & \Rightarrow 2 k \bmod 6=4 \tag{18}\\
& \Rightarrow(2 k-1) \bmod 6=3 \tag{19}\\
& \Rightarrow \frac{(2 k-1)}{3} \bmod 2=1 \tag{20}
\end{align*}
$$

The last implication above follows because there is some integer q such that:

$$
\begin{align*}
(2 k-1)=6 q+3 & \Rightarrow(2 k-1)=3(2 q)+3 \tag{21}\\
& \Rightarrow \frac{(2 k-1)}{3}=2 q+1 . \tag{22}
\end{align*}
$$

Since $(2 k-1) / 3$ is odd, according to the definitions of T and H,

$$
\begin{align*}
T\left(\frac{(2 k-1)}{3}\right) & =k \tag{23}\\
H\left(\frac{(2 k-1)}{3}\right) & =2 k \tag{24}\\
H^{(2)}\left(\frac{(2 k-1)}{3}\right) & =k \tag{25}
\end{align*}
$$

Corollary 18. Let $k>0$. If $k \bmod 6=5$, then k cannot be a peak in steps, max_value, stopping time, total stopping time, or alt_max_value.

Thus, the search programs ignore odd numbers that are equal to 5 modulo 6 , for an factor of 1.33 speedup (over a program that ignores even numbers).

The reader might see what happens when k mod $18=13$. This idea can be carried as far as one desires. For example, one could keep a table of which numbers modulo 216 cannot be peaks in max_value or steps, and a counter that gives the value of the current iterate modulo 216. One could then use the table to avoid testing numbers that have no hope of being peaks. In the extreme, one can organize the entire search by constructing the Collatz graph, but the space requirements become prohibitive.

Other a priori cutoffs are discussed below, after the introduction of composite polynomials.

2.2. A Posteriori Cutoffs

When iterating H to search for peaks in max_value, one has to check periodically to see if the values produced are greater than the value of the previous iterate (or greater than the value of the previous peak). However, these comparisons are fairly expensive for large precision numbers. It should be obvious that one does not have to make a comparison after dividing by 2 , since the next iterate is smaller than the last. Neither does one have to make a comparison after every $3 n+1$ step of iterating H, but only until the iterates have fallen below the initial value (stopped); this is due to the following result.

Lemma 19. Let $k>0$ be a peak in max_value. If for some $m>0, H^{(m)}(k)<k$, then max_value $(k)=\max \left\{H^{(i)}(k) \mid 0 \leq i \leq m\right\}$.

Proof. Let $m>0$, be such that $H^{(m)}(k)=j<k$. Since $j<k$, max_value $(j)<$ max_value (k), because k is a peak. Since after this point the H-trajectory of k is the same as that taken by j, it cannot be the case that more iterations will reach or exceed the maximum value obtained up to this point:

The way this lemma is used in an a posteriori cutoff is to stop making comparisons for purposes of finding a peak in max_value after the value of the iterates falls below the initial input number, k. Note that the lemma depends on k being a peak in max_value. If this is not the case, the maximum value may be obtained after the value of an iterate falls below its starting value. An example is the number 55 , which reaches a value of 376 before it first falls below 55 (to 47). It then goes on to reach a maximum value of 9,232 .

After the value of the iterates has fallen below the input value, one can cut off the search for peaks in steps (or total stopping time) a posteriori using the following lemma to estimate the maximum number of further iterations that will be needed.

Lemma 20. For all $k>0$, if $H^{(p)}=n \leq j$, where j is a peak in steps, then $\operatorname{steps}(k) \leq p+s t e p s(j)$.
Proof. If $n=j$, then $\operatorname{steps}(k)=p+\operatorname{steps}(j)$. If $n<j$, then, since j is a peak in steps, steps $(n)<\operatorname{steps}(j)$, by the definition of a peak.
A similar results holds for T and σ_{∞}.
In practice, the above lemma is used as follows. Let the number to be tested be k. After a step where H divides the current iterate value by two, one finds (if possible) the largest peak, j, in steps such that the current iterate's value is no greater than j, and uses the lemma above to bound $\operatorname{steps}(k)$. If this bound on $\operatorname{steps}(k)$ indicates that k is not a peak in steps, then k can be dismissed as far as steps is concerned.
The importance of this a posteriori cutoff is the empirical observation that the cutoff allows the search for peaks in steps to be cut off, on the average, after a constant number of steps. This seems to be true in any sufficiently large interval, provided that all but one or two peaks in steps less than the interval are known. That is, if one knows all the peaks in steps up to \boldsymbol{j}, and if \boldsymbol{j} is sufficiently large, then over the interval from $j+1$ to $2 j$ one should always be able to cut off
the search after an average of about 15 steps, independent of the value of $j .{ }^{1}$ Considering that the number of steps taken by n goes up logarithmically with the n, this cutoff makes sense as soon as the average (odd) number starts taking more than 15 steps worth of time plus the time required to see if the search can be cut off. Furthermore, the value of this cutoff grows as the search proceeds towards infinity. (The first author used this cutoff instead of some of cutoffs based on the polynomials discussed below.)

2.3. Speeding Up the Iterations

Even with the results above, there are still infinitely many trajectories that must be computed, at least in part, for a search. Thus these trajectories must be computed efficiently.

The hailstone algorithm in Figure 1, which finds the values of steps(n) and max_value (n) is coded in Argus [7]. This algorithm is does not save the entire H-trajectory of n, but just records the values of the statistics. (In the code \% starts a comment, // is a modulo operator and $=$ means "not equal." In the real programs, n would not be an int, it would be an object of some type of large-precision natural numbers.)

```
\% input: an integer \(n>0\)
\% output: number of steps and max.value reached
steps: int :=0
max_value: int := \(n\)
while \(n=1\) do
    if \((n / / 2)=0\)
    then \(n:=n / 2\)
    else \(n:=3 * n+1\)
        max_value := int\$max(max_value, n)
    end
    steps : \(=\) steps +1
end
```

Figure 1. The hailstone algorithm, which computes iterates of H.
The problem considered in this sub-section is finding an equivalent algorithm that can be executed in less time. The focus in this section is on the hailstone algorithm, and the search for peaks in steps and max_value.

2.9.1. Make_odd

Division by 2 is best implemented by shifting in a binary representation. Also, shifting a number by several bit positions is roughly as fast as shifting a number by one bit position. Thus, one idea for making a faster algorithm is to replace the division by 2 step in the hailstone algorithm by a step that shifts the input as many bits as necessary in order to make it odd. How effective will this be? If the value of the hailstone algorithm's variable n were uniformly distributed among the even integers by the $3 n+1$ step, then half of the time n would not be divisible by 4 , and one fourth of the time n would not be divisible by 8 , and so on. Thus the expected number of bit positions that an even number would be shifted is:

$$
\begin{equation*}
\frac{1}{2}+2\left(\frac{1}{4}\right)+3\left(\frac{1}{8}\right)+4\left(\frac{1}{16}\right)+\cdots=\sum_{i=1}^{\infty} \frac{i}{2^{i}}=2 . \tag{26}
\end{equation*}
$$

Thus on the average, shifting n by as many bits as necessary to make it odd does the work of two divisions by 2. It is, therefore, cost-effective if it takes no more than the time taken by doing two divisions.

An advantage of shifting n so that it is odd is that one no longer has to check to see whether n is odd or even, because one can write the hailstone algorithm (for odd inputs) as in Figure 2. In the figure, the procedure make_odd returns the new value of n and the number of bit positions

[^1]```
\% input: an odd integer \(n>0\)
while \(n=1\) do
 \(\% n\) is odd
 n : \(=3 * n+1\)
 \(\% \mathrm{n}\) is even
 \% check for max_value here
 \(\mathrm{n}, \mathrm{p}\) := make_odd(n)
 \% the number of steps taken this time around the loop is p+1
 \% check for a posteriori cutoffs here
end
```

Figure 2. Hailstone algorithm using make_odd.

```
% input: integers n}>0,m
while n = = do
 p,s := mBitPoly(n // 2**m)
 n := polyEval(p, n)
 % the number of steps taken this time around the loop is s
 % check for a posteriori cutoffs
end
```

Figure 3. Hailstone algorithm using composite polynomials.
that the old value of $n$ had to be shifted to make it odd. Another pleasing property of this hailstone algorithm is that one can check for cutoffs when $n$ is as low as it can be before going up again, this means that one spends less time checking for cutoffs, on the average.

### 2.9.2. Composite Polynomials

A more efficient hailstone algorithm than the above takes bigger steps, doing several iterates at a time. This idea gives a speedup of 7 over the hailstone algorithm of Figure 1. It also leads to several strategies for cutoffs.

The standard hailstone algorithm looks at the last bit of the value of the variable $n$ to decide what step to take. By looking at the last $m$ bits of the binary representation of $n$, one can decide what the next several steps that will be taken are, combine all these steps into a polynomial, and then do the work of all those steps by evaluating the polynomial at the value of $n$. An algorithm that uses this idea for computing the iterates of $H$ is shown in simplified form in Figure 3. In the figure, mBitPoly returns both a polynomial and the number of steps that the polynomial represents. Checking for max_value is described below.

There are two strategies for expressing the polynomial.
One strategy is to obtain a polynomial of the form:

$$
\frac{3^{k} x+z}{2^{m}}
$$

which is equivalent to the sequence of $k+m$ steps taken. For example, for $n=7$, the first step is to multiply by 3 and add 1 (obtaining 22), the second divides by 2 (obtaining 11), the third multiples by 3 and adds 1 (obtaining 34), and the forth divides by 2 (obtaining 17). These steps are represented by the following polynomial.

$$
\begin{equation*}
\frac{1}{2}\left(3\left(\frac{3 x+1}{2}\right)+1\right)=\frac{1}{2}\left(\frac{9 x+3}{2}+1\right)=\frac{9 x+5}{4} \tag{27}
\end{equation*}
$$

Such a polynomial is called the standard polynomial, it represents $k$ steps of the form $3 n+1$ and $m$ divisions by 2. (It will be shown below why the number of divisions by 2 is equal to the number of bits considered.) For each $n$, the standard $m$ bit polynomial for $n$ will be written Spoly $m$ ( $n$ ). This polynomial can be evaluated by multiplying by the appropriate power of 3 , adding in the appropriate integer $z$ and then shifting by the appropriate power of 2 . As in the previous section one ends up with an odd number.

A disadvantage of the standard polynomial is that the intermediate result after multiplying by the appropriate power of 3 is rather large, possibly leading to inefficient use of storage or inadvertent overflow. The second strategy overcomes this problem by doing the shifting first, and this is the strategy used by the second author's programs. The idea is to represent the steps by a "polynomial" of the following form

$$
\left\lfloor\frac{x}{2^{m}}\right\rfloor 3^{k}+y
$$

This Vermeulen polynomial also represents $k$ steps of the form $3 n+1$ and $m$ divisions by 2. For each $n$, the $m$ bit Vermeulen polynomial for $n$ will be written Vpoly $(n)$. Vermeulen polynomials will yield an answer equivalent to the normal sequence of steps when evaluated in the following manner:

1. divide by $2^{m}$ and truncate, that is, shift the binary representation right by $m$ bits,
2. multiply the result (the most significant part of $n$ ) by the appropriate power of 3 , and
3. add $y$.

The idea is that a Vermeulen polynomial represents the effect of the steps on the most significant part of $n$ only. The number $y$ represents the overflow from the least significant $m$ bits.

To explain how these polynomials are generated, consider the following examples. Items to the right of the dot (.) in last bits do not affect the other bits, and items to the left of the dot do. The following is the generation of an 8 bit Vermeulen polynomial, $\mathrm{Vpoly}_{8}(3)$.

| Hax Last bits | I | Partial poly | Iext step |
| :--- | ---: | :--- | :---: |
| .00000011 | 3 | $x$ | $\neq 3$ |
| .00001010 | 10 | $3 x+1$ | $/ 2$ |
| .0000101 | 5 | $3(x / 2)+2$ | $\neq 3$ |
| $* .0010000$ | 16 | $9(x / 2)+7$ | $/ 16$ |
| .001 | 1 | $9(x / 32)+1$ | $\# 3$ |
| .100 | 4 | $27(x / 32)+4$ | $/ 4$ |
| .1 | 1 | $27(x / 128)+1$ | $\# 3$ |
| 10.0 | 4 | $81(x / 128)+2$ | $/ 2$ |
| 10. | 2 | $81(x / 256)+2$ |  |

Notice that division by 2 removes one bit from the right, this corresponds to moving in bits from the left that are unknown. The process of computing partial polynomials stops when all the known bits are shifted out, that is, when $m$ divisions by 2 have been performed. The row with the asterisk (*) marks the partial polynomial that produces the largest intermediate result. If one is checking for peaks in max_value, then the evaluation must be broken into three steps: evaluating the partial polynomial at this point, checking for a peak in max_value, and then evaluating the rest of the polynomial. For comparison, Spoly $_{8}(3)$ is $(81 x+269) / 256$.

As another example, $V_{\text {poly }}^{8}(27)$ is $\lfloor x / 256\rfloor 2187+242$; for comparison $S_{p o l} y_{8}(27)$ is $(2187 x+$ 2903)/256.

The composite polynomial idea leads to a hailstone algorithm that is about an order of magnitude faster than the algorithm in Figure 2. It is an open question whether this approach is optimal.

The practical drawback to such an algorithm is its complexity of implementation. One needs automated tools for generating the polynominals. Furthermore, it is difficult to write the code to check for peaks in max_value or stopping time. This implementation difficulty makes the results of the algorithm less reliable (as the implementation is more difficult to verify).

### 2.4. A Priori Cutoffs Based on Composite Polynomials

Even if composite polynomials are not used in the iteration algorithm, they can be used to generate a priori cutoffs.

The second author's program uses the following lemma for a priori cutoffs in the search for peaks in steps. It allows one to ignore numbers $k$ such that $k$ mod $2^{m}$ has a $m$-bit Vermeulen polynomial less that is the same as some number smaller than $k \bmod 2^{m}$. The potential benefits

Table 3. Effectiveness of a priori cutoffs based on polynomials, percentage of numbers eliminated.

| Polynomial Width (bits) | Values | Steps |
| :--- | :---: | :---: |
| 4 | $81.25 \%$ | $43.75 \%$ |
| 8 | $92.57 \%$ | $59.76 \%$ |
| 12 | $94.48 \%$ | $67.67 \%$ |
| 16 | $96.78 \%$ | $73.98 \%$ |

of this optimization are listed in Table 3, showing that $60 \%$ of all numbers may be eliminated using an 8 bit wide table. Increasing the width of the cutoff polynomial can further speed up the search.

Lemma 21. Let $m>0$ be given. Let $0<r_{1}<r_{2}<2^{m}$, Vpoly ${ }_{m}\left(r_{1}\right)=\operatorname{Vpoly}_{m}\left(r_{2}\right)$. Then there is no $k \geq 2^{m}+r_{1}$ such that $k \bmod 2^{m}=r_{2}$ and $k$ is a peak in steps.

Proof. Let $k \geq 2^{m}+r_{1}$ be such that $k \bmod 2^{m}=r_{2}$. Let $b$ be the largest number such that $b<k$ and $b \bmod 2^{m}=r_{1}$. Since the polynomials Vpoly ${ }_{m}\left(r_{1}\right)$ and $V p o l y_{m}\left(r_{2}\right)$ are identical they represent the same number of steps. After these steps, $b$ and $k$ take the same steps since $\left(\right.$ Vpoly $\left._{m}\left(r_{1}\right)\right)(b)=\left(\operatorname{Vpoly}_{m}\left(r_{2}\right)\right)(k)$. So $k$ cannot be a peak, because $b<k$ and $\operatorname{steps}(b)=$ $\operatorname{steps}(k)$.

The second author's program cuts off the search for peaks in max_value a priori if the $m$ bit Vermeulen polynomial has as the coefficient of $x$ a term that is less than unity. For example, using 8 bit polynomials, one need not look for peaks in values when the last 8 bits are ". 00000011 ," because $V_{\text {poly }}^{8}(3)=\lfloor x / 256\rfloor 81+2$ and $81 / 256<1$ (where the coefficient is $81 / 256$ ). Another example: one does look for peaks in values when the last 8 bits are ". 00011011 " because $V$ poly $_{8}(27)=\lfloor x / 256\rfloor 2187+242$.

The potential benefits of this optimization are listed in Table 3, showing that $92 \%$ of all numbers may be eliminated using an 8 bit wide table. The actual benefits are smaller because the eliminated numbers are also detected by an A Posteriori cutoff based on Lemma 19.

This kind of cutoff is formalized using the notion of the "largest" partial polynomial. A partial polynomial is a polynomial incorporating the first $s \geq 0$ steps of the hailstone algorithm, as predicted (see above) from the least significant $m$ bits. We say that $p \geq q$ for $m$ bit partial polynomials if there is some $N>0$ such that, for all $n>N, p(n) \geq q(n)$.

Let $L V$ poly $_{m}(r)$ be the largest $m$ bit partial Vermeulen polynomial for $r$. Similarly, let $L S p o l y_{m}(r)$ be the largest $m$ bit partial standard polynomial for $r$.

Lemma 22. Let $m>0$ be given. Let poly $y_{m}(r)$ and $L$ Lpoly $_{m}(r)$ denote either the standard or Vermeulen $m$ bit polynomial and largest $m$ bit partial polynomial for $r$.

There is some $N>0$ such that for all $k>N$, if $k \bmod 2^{m}=r$ and

1. poly $y_{m}(r)(k)<k$, and
2. there is some max_value peak $j<k$ such that Lpoly ${ }_{m}(r)(k) \leq m a x \_v a l u e(j)$, then $k$ is not a peak in max_value.

Proof. Choose $N$ such that for all $k>N$ and for all predicted $m$ bit partial polynomials, $p$ and $q, p \geq q$ implies $p(k) \geq q(k)$. Now, given $k>N$, the highest value an iterate reaches before falling below its initial value, $k$, is $L$ poly $(r)(k)$, where $r=k \bmod 2^{m}$. This is because $(p o l y(r))(k)<k$, and so $n$ falls below $k$ (after the number of steps represented by the polynomial) and because by construction $(\operatorname{Lpoly}(r))(k)$ is the highest value that $n$ attains (in these first steps). Thus by Lemma 19, if $k$ is a peak in max_value, then

$$
(L p o l y(r))(k)=\text { max_value }(k)<\text { max_value }(j)
$$

which is a contradiction. So $k$ cannot be a peak in max_value.

Note that the above lemma is independent of the kind of polynomial used. In practice, the choice of $N$ is not a problem, because the input numbers soon dwarf the coefficients of the composite polynomials.

The above lemma allows one to set up a table that tells which numbers modulo $2^{m}$ need to be checked for peaks in max_value. For each $0<r<2^{m}$, one must check the two conditions of the above lemma. For sufficiently large numbers, one can check the first condition of the lemma above a priori.

One can also satisfy the second condition of the lemma a priori over a certain interval. Suppose $N$ is chosen to be the least number to satisfy the lemma and such that the first condition of the lemma can be checked a priori. Suppose the largest known peak in max_value, call it $\boldsymbol{j}$, is such that $j>N$. Finally, suppose that there is a rational number $R>0$ such that, for all $k>N$ and for all $0 \leq r \leq 2^{m}$ such that $\left(\right.$ poly $\left._{m}(r)\right)(k)<k$ :

$$
\left(L V_{p o l y}^{m}(r)\right)(k)<R \cdot k .
$$

Then, in the interval from $N$ to max_value $(j) / R$ the second condition of the lemma can be checked a priori. In fact, in such an interval, the second condition of the lemma is satisfied whenever the first condition of the lemma is satisfied.

Thus the practical justification for setting up a table of cutoffs as described above is that, for sufficiently large input numbers, the maximum value of the largest peak is many orders of magnitude greater than the inputs numbers and the coefficients of the Vermeulen polynomial cannot be very large. In fact the following result holds.

Lemma 23. Let $m>1$ be given. For all $0<r<2^{m}$, if there is some $M_{r}$ such that for all $k>M_{r}, k \bmod 2^{m}=r$ implies that $\left(V_{p o l y}^{m}(r)\right)(k)<k$, then the coefficient of $x$ in $L V p o l y_{m}(r)$ is at most $3^{j} / 2^{(j-1)}$, where $j$ is the largest integer such that $3^{j}<2^{m}$.

Proof. Every step in the hailstone algorithm of the form $3 n+1$ is followed by a step that divides by 2. Thus the coefficient of $x$ in the partial Vermeulen polynomial is made as large as possible when it is of the form $3^{j} / 2^{(j-1)}$. However, because the final polynomial is of the form $\left\lfloor x / 2^{m}\right\rfloor 3^{j+p}+y$, for some $p \geq 0,3^{j}$ must be less than $2^{m}$ if the Vermeulen polynomial is to be such that $V$ poly $y_{m}(r)(k)<k$, for all sufficiently large $k \bmod 2^{m}=r$.

As an example, for 8 bit Vermeulen polynomials, the coefficient can be at most

$$
\frac{3^{5}}{2^{4}}=\frac{243}{16}=15.1875
$$

Thus, as long as the is the largest peak $j$ in max_value is at least 16 times the input numbers being checked, then for all sufficiently large $k$ :

$$
\left(\text { Vpoly }_{8}(r)\right)(k)<k \Rightarrow\left(L_{\text {poly }}^{8}(r)\right)(k) \leq \text { max_value }(j) .
$$

This condition seems to be met for all numbers past 7, although we have no proof of this conjecture.

## 3. CONCLUSIONS

The optimizations described in Section 2 illustrate an old story: mathematical insight can greatly improve the efficiency of a program. Both authors expected that the C program would be faster because of low-level coding issues; the Argus compiler did almost no optimization, and $C$ allows one to write fast programs. There were some speedups from using faster integer arithmetic in C, but these were soon dwarfed by the algorithmic speedups. Even though Argus code is perhaps 5 to 10 times slower than C , the algorithmic improvements give a cumulative speedup by a factor of 182 . (Both programs used assembly language for time-critical parts, such as arbitrary precision integer arithmetic. However, our comments about the relative speeds of Argus and C are still accurate, because in Argus integers must be decoded before they can be processed by the CPU's native instruction set, and then encoded on return.)

Our optimizations can be analyzed in terms of Bentley's taxonomy of program efficiency improvement strategies [10]. This comparison shows that we used some standard strategies in interesting ways.

Bentley's logic rule 1 "exploit algebraic identities" states that: "If the evaluation of a logical expression is costly, replace it by an algebraically equivalent expression that is cheaper to evaluate" [10, p. 148]. (This strategy is often called "strength reduction" when one replaces the expression with one entirely equivalent.) We used this strategy several times. In Section 2.1 we noted that it was not necessary to test even numbers for peaks; this is similar to Bentley's example of eliminating the square root in a distance calculation, since all that mattered for the program was the relative distances. Another use of this strategy is in the a priori cutoffs based on convergence of trajectories, also described in Section 2.1.

Our optimization of not making a comparison for peaks in max_value after a step of division by 2, described in Section 2.2, is similar to Bentley's logic rule 5 "boolean variable elimination." Bentley remarks that his rule can be generalized to the idea of storing arbitrary conditions in the program counter [ $10, \mathrm{p} .73$ ]. We like to think that instead of storing conditions in the program counter, one pushes desired assertions about the program state back through earlier statements. That is, at the end of the loop, we want to assert that we have recorded the largest peak in max_value; in the case where the number was divided by 2 , this is automatically satisfied. This strategy was also applied at lower levels of coding. For example, in the C program when the iterates take on a value that will fit in a 32 bit integer, faster code is used that avoids the overhead needed for a complete arbitrary precision integer computation.

We described a similar optimization in Lemma 19. This lemma allows us to not check for a peak in max_value after the iterates have fallen below the initial value (stopped). This can also be thought of as an application of Bentely's logic rule 5. However, another way to think of it is an application of Bentley's loop rule 1 "code motion out of loops," because the tests for a peak in max_value cannot succeed after the iterates have stopped.

In Section 2.2 we described an a posteriori cutoff in the search for peaks in steps by estimating the maximum number of steps that an iterate can take to reach 1 . We do this by using precomputed results, the value of steps for all known peaks. This is an application of Bentley's space-for-time rule 2 "store precomputed results." (This strategy is classically called "dynamic programming" [11, Chapter 5].) To see this as an instance of Bentley's strategy, one has to imagine that our search algorithms was originally recursive, checking the precomputed results on each call. This recursive process is then transformed to an iterative one (Bentley's procedure rule 4). Then as above, one notes that the check only has to be made after division by 2.

The main idea behind our first faster iteration algorithm, discussed in Section 2.3.1, can be thought of as Bentley's expression rule 2 "exploit algebraic identities." The algebraic identity that a division by a power of two can be implemented by a shift. Since after the shift it is known that the result is odd, Bentley's logic rule 5 "boolean variable elimination" is used remove the test to see whether the number is odd. This also allows the remaining tests to be done less often, as described above.

The composite polynomials, discussed in Section 2.3.2, are an application of Bentley's space for time rule 2 "store precomputed results". However, Bentley does not describe this kind of use of precomputed results-taking one large step instead of several small steps. As Bentley notes, applying one optimization can often pave the way for others; this was certainly true of using the polynomials. For example, we also used the polynomials to invent a priori cutoffs. As Table 3 shows, increasing the bits considered in the polynomials used in the a priori cutoffs trades an increase in space for an increase the effectiveness of the cutoff (hence decreased time).

We also used Bentley's expression rule 4 "pairing computation" to search for peaks in steps and max_value at the same time. Finally, we also used his procedure rule 5 "parallelism" extensively, although we did not discuss that aspect of our programs in Section 2; see [8].
A final conclusion is that even with the ability to distribute the search programs on many fairly fast computers, and even with the ability to run such programs for years (literally), algorithmic improvements are necessary to achieve interesting results. Finding a peak becomes more and more rare as the search progresses towards infinity. To maintain interest in such a program, one must make continual improvements in its speed, so that the results appear at a more or less
constant rate. Without such algorithmic improvements as described above, the programs would never have been able to search into the trillions within our lifetimes.

That such a simple problem could exhibit such interesting mathematics was wholly surprising and a source of great pleasure.

## REFERENCES

1. J.C. Lagarias, The $3 x+1$ problem and its generalizations, The American Mathematical Monthly 92 (1), 3-23, (January 1985).
2. B. Hayes, Computer recreations: On the ups and downs of hailstone numbers, Scientific American 250 (1), 10-16 (January 1984).
3. D. Rawsthorne, Imitation of an iteration, Mathematics Magazine 58, 172-176 (1985).
4. S. Wagon, The collatz problem, Mathematical Intelligencer 7, 72-76 (1985).
5. J.C. Lagarias and A. Weiss, The $3 x+1$ problem: Two stochastic models, Annals of Applied Probability 2 (1992) (to appear).
6. B. Liskov and R. Scheifler, Guardians and actions: Linguistic support for robust, distributed programs, ACM Trans. Prog. Lang. Syst. 5 (3), 381-404 (July 1983).
7. B. Liskov, M. Day, M. Herlihy, P. Johnson, G. Leavens, R. Scheifler, and W. Weihl, Argus reference manual, Technical Report 400, Massachusetts Institute of Technology, Laboratory for Computer Science, (October 1987). An earlier version appeared as Programming Methodology Group Memo 54 in March 1987.
8. G.T. Leavens, A distributed search program for the $3 x+1$ problem, Technical Report 89-22, Iowa State University, Department of Computer Science, Ames, Iowa, (November 1989).
9. D.E. Knuth, Seminumerical Algorithms, The Art of Computer Programming, Volume 2, Addison-Wesley Publishing Co., Reading, Mass., (1969).
10. J.L. Bentley, Writing Eff cient Programs, Software Series, Prentice-Hall, Englewood Cliffs, N.J., (1982).
11. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Software Engineering Series, Computer Science Press, Inc., Potomac, Maryland, (1978).

## APPENDIX A TABLES OF PEAKS

This appendix contains tables of results from the various search programs.

## A.1. Peaks in More than One Statistic

A few numbers have been found to be peaks in several statistics. In a sense, these are the most interesting numbers we found.

Tables 8-10 list the peaks in both steps and total stopping time; these are known to be identical up to 12.3 billion ( $12.3 \times 10^{9}$ ).

Table 4 lists numbers that are peaks in other combinations of statistics; each entry is filled in if the number is a peak in the corresponding function and left empty otherwise.

Table 4. Peaks in more than one statistic.

| $n$ | steps $(n)$ | $\sigma(n)$ | max_value $(n)$ |
| ---: | ---: | ---: | ---: |
| 1 | 0 | 0 | 1 |
| 2 | 1 | 1 | 2 |
| 3 | 7 | 4 | 16 |
| 7 | 16 | 7 | 52 |
| 27 | 111 | 59 | 9,232 |
| 703 | 170 | 81 | 250,504 |
| 26,623 | 307 |  | $106,358,020$ |
| 270,271 |  | 164 | $24,648,077,896$ |
| 626,331 | 508 | 176 |  |
| $63,728,127$ | 949 | 376 |  |
| $12,235,060,455$ | 1,184 | 547 |  |

## A.2. Maximum Values

The peaks in max_value are listed in Tables 5 and 6. These tables are complete up to 56 trillion ( $5.6 \times 10^{13}$ ). The peaks up to 100 billion ( $100 \times 10^{9}$ ) have been verified by two programs. Mike Vermeulen's program found all the peaks above 100 billion.

Of particular interest here are the peaks at $27,6,631,675,319,804,831$, and $3,716,509,988,199$. Also listed in the tables is the ratio of the peak's maximum value reached to the previous maximum value reached (labeled "ratio") and the approximate expansion factor (labeled $s(n)$ ), where $s(n)$ is max_value $(n) /(2 n)$.

Table 5, Peaks in max_value up to $n=5,000,000$.

| $n$ | max_value(n) | ratio | $s(n)$ |
| :---: | :---: | :---: | :---: |
| 1 | 1 |  | 0.5 |
| 2 | 2 | 2.0 | 0.5 |
| 3 | 16 | 8.0 | 2.7 |
| 7 | 52 | 3.3 | 3.7 |
| 15 | 160 | 3.1 | 5.3 |
| 27 | 9,232 | 57.7 | $1.7 \times 10^{2}$ |
| 255 | 13,120 | 1.4 | $2.5 \times 10^{1}$ |
| 447 | 39,364 | 3.0 | $4.4 \times 10^{1}$ |
| 639 | 41,524 | 1.1 | $3.2 \times 10^{1}$ |
| 703 | 250,504 | 6.0 | $1.8 \times 10^{2}$ |
| 1,819 | 1,276,936 | 5.1 | $3.5 \times 10^{2}$ |
| 4,255 | 6,810,136 | 5.3 | $8.0 \times 10^{2}$ |
| 4,591 | 8,153,620 | 1.2 | $8.9 \times 10^{2}$ |
| 9,663 | 27,114,424 | 3.3 | $1.4 \times 10^{3}$ |
| 20,895 | 50,143,264 | 1.8 | $1.2 \times 10^{3}$ |
| 26,623 | 106,358,020 | 2.1 | $2.0 \times 10^{3}$ |
| 31,911 | 121,012,864 | 1.1 | $1.9 \times 10^{3}$ |
| 60,975 | 593,279,152 | 4.9 | $4.9 \times 10^{3}$ |
| 77,671 | 1,570,824,736 | 2.6 | $1.0 \times 10^{4}$ |
| 113,383 | 2,482,111,348 | 1.6 | $1.1 \times 10^{4}$ |
| 138,367 | 2,798,323,360 | 1.1 | $1.0 \times 10^{4}$ |
| 159,487 | 17,202,377,752 | 6.1 | $5.4 \times 10^{4}$ |
| 270,271 | 24,648,077,896 | 1.4 | $4.6 \times 10^{4}$ |
| 665,215 | 52,483,285,312 | 2.1 | $3.9 \times 10^{4}$ |
| 704,511 | 56,991,483,520 | 1.1 | $4.0 \times 10^{4}$ |
| 1,042,431 | 90,239,155,648 | 1.6 | $4.3 \times 10^{4}$ |
| 1,212,415 | 139,646,736,808 | 1.5 | $5.8 \times 10^{4}$ |
| 1,441,407 | 151,629,574,372 | 1.1 | $5.3 \times 10^{4}$ |
| 1,875,711 | 155,904,349,696 | 1.0 | $4.2 \times 10^{4}$ |
| 1,988,859 | 156,914,378,224 | 1.0 | $3.9 \times 10^{4}$ |
| 2,643,183 | 190,459,818,484 | 1.2 | $3.6 \times 10^{4}$ |
| 2,684,647 | 352,617,812,944 | 1.9 | $6.6 \times 10^{4}$ |
| 3,041,127 | 622,717,901,620 | 1.8 | $1.0 \times 10^{5}$ |
| 3,873,535 | 858,555,169,576 | 1.4 | $1.1 \times 10^{5}$ |
| 4,637,979 | 1,318,802,294,932 | 1.5 | $1.4 \times 10^{5}$ |

Table 6. Peaks in max_value from $n=5,000,000$ upwards.

| $n$ | max_value( $n$ ) | ratio | $s(n)$ |
| :---: | :---: | :---: | :---: |
| 5,656,191 | 2,412,493,616,608 | 1.8 | $2.1 \times 10^{5}$ |
| 6,416,623 | 4,799,996,945,368 | 2.0 | $3.7 \times 10^{5}$ |
| 6,631,675 | 60,342,610,919,632 | 12.6 | $4.5 \times 10^{6}$ |
| 19,638,399 | 306,296,925,203,752 | 5.1 | $7.7 \times 10^{6}$ |
| 38,595,583 | 474,637,698,851,092 | 1.5 | $6.1 \times 10^{6}$ |
| 80,049,391 | 2,185,143,829,170,100 | 4.6 | $1.4 \times 10^{7}$ |
| 120,080,895 | 3,277,901,576,118,580 | 1.5 | $1.4 \times 10^{7}$ |
| 210,964,383 | 6,404,797,161,121,264 | 2.0 | $1.5 \times 10^{7}$ |
| 319,804,831 | 1,414,236,446,719,942,480 | 220.8 | $2.2 \times 10^{9}$ |
| 1,410,123,943 | 7,125,885,122,794,452,160 | 5.0 | $2.5 \times 10^{9}$ |
| 8,528,817,511 | 18,144,594,937,356,598,024 | 2.5 | $1.1 \times 10^{9}$ |
| 12,327,829,503 | 20,722,398,914,405,051,728 | 1.1 | $8.4 \times 10^{8}$ |
| 23,035,537,407 | 68,838,156,641,548,227,040 | 3.3 | $1.5 \times 10^{9}$ |
| 45,871,962,271 | 82,341,648,902,022,834,004 | 1.2 | $9.0 \times 10^{8}$ |
| 51,739,336,447 | 114,639,617,141,613,998,440 | 1.4 | $1.1 \times 10^{9}$ |
| 59,152,641,055 | 151,499,365,062,390,201,544 | 1.3 | $1.3 \times 10^{9}$ |
| 59,436,135,663 | 205,736,389,371,841,852,168 | 1.4 | $1.7 \times 10^{9}$ |
| 70,141,259,775 | 420,967,113,788,389,829,704 | 2.0 | $3.0 \times 10^{9}$ |
| 77,566,362,559 | 916,613,029,076,867,799,856 | 2.2 | $5.9 \times 10^{9}$ |
| 110,243,094,271 | 1,372,453,649,566,268,380,360 | 1.5 | $6.2 \times 10^{9}$ |
| 204,430,613,247 | 1,415,260,793,009,654,991,088 | 1.0 | $3.4 \times 10^{9}$ |
| 231,913,730,799 | 2,190,343,823,882,874,513,556 | 1.5 | $4.7 \times 10^{9}$ |
| 272,025,660,543 | 21,948,483,635,670,417,963,748 | 10.0 | $4.0 \times 10^{10}$ |
| 446,559,217,279 | 39,533,276,910,778,060,381,072 | 1.8 | $4.4 \times 10^{10}$ |
| 567,839,862,631 | 100,540,173,225,585,986,235,988 | 2.5 | $8.8 \times 10^{10}$ |
| 871,673,828,443 | 400,558,740,821,250,122,033,728 | 4.0 | $2.3 \times 10^{11}$ |
| 2,674,309,547,647 | 770,419,949,849,742,373,052,272 | 1.9 | $2.9 \times 10^{11}$ |
| 3,716,509,988,199 | 207,936,463,344,549,949,044,875,464 | 269.9 | $5.6 \times 10^{13}$ |
| 9,016,346,070,511 | 252,229,527,183,443,335,194,424,192 | 1.21 | $2.7 \times 10^{13}$ |

## A.s. Steps and Total Stopping Time

Peaks in steps are listed in Tables 8-10. These tables are complete up to 56 trillion ( $5.6 \times 10^{13}$ ). The peaks up to 100 billion ( $100 \times 10^{9}$ ) have been verified by two programs. Mike Vermeulen's program found all the peaks above 100 billion. It seems that every peak in steps is also a peak in total stopping time, $\sigma_{\infty}$, although we have only verified this conjecture up to $12.3 \times 10^{9}$. That is Tables $8-10$ also contain all peaks in total stopping time up to 12.3 billion.

Also listed in these tables are the difference between each peak's number of steps and the previous peak's number of steps, the value of the stopping time $\sigma(n)$, the value of $\sigma_{\infty}(n)$, and the maximum value reached. Many of the peaks in steps have the same max_value, and hence their trajectories are identical after a certain number of iterations. For example, $H^{(6)}(27)=94=H^{(10)}(73)$.

Of particular interest here are the peaks at $n$ equal to $27,63,728,127$, and $3,743,559,068,799$ which have large increments in the number of steps and the peaks that are simply twice the previous peak in steps, found in Table 7.

## A.4. Stopping Time

Peaks in stopping time, $\sigma$, are not necessarily peaks in steps, and conversely peaks in steps are not necessarily peaks in stopping time. The same remark applies to total stopping time.

Table 11 lists the peaks in stopping time. The list is complete up to 6.8 trillion ( $6.8 \times 10^{12}$ ); however, only the peaks up to 1.043 trillion ( $1.043 \times 10^{12}$ ) are confirmed by two programs. The most interesting of these peaks is $12,235,060,455$.

Also listed are the difference between each peak's stopping time and the stopping time of the previous peak (labeled "diff."), the value of ateps for that peak, the total stopping time $\sigma_{\infty}$, and the maximum value reached. Unlike the peaks in steps, the maximum values reached by these peaks rarely repeat.

Table 7. Even peaks in steps.

| peak $(n)$ | steps $(n)$ |
| ---: | ---: |
| 2 | 1 |
| 6 | 8 |
| 18 | 20 |
| 54 | 112 |
| $31,466,382$ | 705 |
| $127,456,254$ | 950 |
| $537,099,606$ | 965 |
| $1,341,234,558$ | 987 |
| $9,780,657,630$ | 1,132 |
| $63,389,366,646$ | 1,220 |
| $404,970,804,222$ | 1,308 |
| $7,487,118,137,598$ | 1,550 |

Table 8. Peaks in steps up to $n=100,000$.

| $n$ | steps(n) | diff. | $\sigma(n)$ | $\sigma_{\infty}(n)$ | max_value( $n$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 |  | 0 | 0 | 1 |
| 2 | 1 | 1 | 1 | 1 | 2 |
| 3 | 7 | 6 | 4 | 5 | 16 |
| 6 | 8 | 1 | 1 | 6 | 16 |
| 7 | 16 | 8 | 7 | 11 | 52 |
| 9 | 19 | 3 | 2 | 13 | 52 |
| 18 | 20 | 1 | 1 | 14 | 52 |
| 25 | 23 | 3 | 2 | 16 | 88 |
| 27 | 111 | 88 | 59 | 70 | 9,232 |
| 54 | 112 | 1 | 1 | 71 | 9,232 |
| 73 | 115 | 3 | 2 | 73 | 9,232 |
| 97 | 118 | 3 | 2 | 75 | 9,232 |
| 129 | 121 | 3 | 2 | 77 | 9,232 |
| 171 | 124 | 3 | 5 | 79 | 9,232 |
| 231 | 127 | 3 | 12 | 81 | 9,232 |
| 313 | 130 | 3 | 2 | 83 | 9,232 |
| 327 | 143 | 7 | 21 | 91 | 9,232 |
| 649 | 144 | 1 | 2 | 92 | 9,232 |
| 703 | 170 | 26 | 81 | 108 | 250,504 |
| 871 | 178 | 8 | 35 | 113 | 190,996 |
| 1,161 | 181 | 3 | 2 | 115 | 190,996 |
| 2,223 | 182 | 1 | 8 | 116 | 250,504 |
| 2,463 | 208 | 26 | 21 | 132 | 250,504 |
| 2,919 | 216 | 8 | 26 | 137 | 250,504 |
| 3,711 | 237 | 21 | 37 | 150 | 481,624 |
| 6,171 | 261 | 24 | 58 | 165 | 975,400 |
| 10,971 | 267 | 6 | 8 | 169 | 975,400 |
| 13,255 | 275 | 8 | 8 | 174 | 497,176 |
| 17,647 | 278 | 3 | 73 | 176 | 11,003,416 |
| 23,529 | 281 | 3 | 2 | 178 | 11,003,416 |
| 26,623 | 307 | 26 | 65 | 194 | 106,358,020 |
| 34,239 | 310 | 3 | 92 | 196 | 18,976,192 |
| 35,655 | 323 | 13 | 135 | 204 | 41,163,712 |
| 52,527 | 339 | 16 | 18 | 214 | 106,358,020 |
| 77,031 | 350 | 11 | 89 | 221 | 21,933,016 |

Table 9. Peaks in steps from $\boldsymbol{n}=\mathbf{1 0 0 , 0 0 0}$ to $\boldsymbol{n}=\mathbf{5 , 0 0 0 , 0 0 0 , 0 0 0}$.

| $n$ | steps(n) | diff. | $\sigma(n)$ | $\sigma_{\infty}(n)$ | max_value( $n$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 106,239 | 353 | 3 | 97 | 223 | 104,674,192 |
| 142,587 | 374 | 21 | 24 | 236 | 593,279,152 |
| 156,159 | 382 | 8 | 37 | 241 | 41,163,712 |
| 216,367 | 385 | 3 | 83 | 243 | 11,843,332 |
| 230,631 | 442 | 57 | 73 | 278 | 76,778,008 |
| 410,011 | 448 | 6 | 75 | 282 | 76,778,008 |
| 511,935 | 469 | 21 | 16 | 295 | 76,778,008 |
| 626,331 | 508 | 39 | 176 | 319 | 7,222,283,188 |
| 837,799 | 524 | 16 | 105 | 329 | 2,974,984,576 |
| 1,117,065 | 527 | 3 | 2 | 331 | 2,974,984,576 |
| 1,501,353 | 530 | 3 | 2 | 333 | 90,239,155,648 |
| 1,723,519 | 556 | 26 | 176 | 349 | 46,571,871,940 |
| 2,298,025 | 559 | 3 | 2 | 351 | 46,571,871,940 |
| 3,064,033 | 562 | 3 | 2 | 353 | 46,571,871,940 |
| 3,542,887 | 583 | 21 | 180 | 366 | 294,475,592,320 |
| 3,732,423 | 596 | 13 | 8 | 374 | 294,475,592,320 |
| 5,649,499 | 612 | 16 | 116 | 384 | 1,017,886,660 |
| 6,649,279 | 664 | 52 | 146 | 416 | 15,208,728,208 |
| 8,400,511 | 685 | 21 | 214 | 429 | 159,424,614,880 |
| 11,200,681 | 688 | 3 | 2 | 431 | 159,424,614,880 |
| 14,934,241 | 691 | 3 | 2 | 433 | 159,424,614,880 |
| 15,733,191 | 704 | 13 | 8 | 441 | 159,424,614,880 |
| 31,466,382 | 705 | 1 | 1 | 442 | 159,424,614,880 |
| 36,791,535 | 744 | 39 | 34 | 466 | 159,424,614,880 |
| 63,728,127 | 949 | 205 | 376 | 592 | 966,616,035,460 |
| 127,456,254 | 950 | 1 | 1 | 593 | 966,616,035,460 |
| 169,941,673 | 953 | 3 | 2 | 595 | 966,616,035,460 |
| 226,588,897 | 956 | 3 | 2 | 597 | 966,616,035,460 |
| 268,549,803 | 964 | 8 | 5 | 602 | 966,616,035,460 |
| 537,099,606 | 965 | 1 | 1 | 603 | 966,616,035,460 |
| 670,617,279 | 986 | 21 | 18 | 616 | 966,616,035,460 |
| 1,341,234,558 | 987 | 1 | 1 | 617 | 966,616,035,460 |
| 1,412,987,847 | 1,000 | 13 | 8 | 625 | 966,616,035,460 |
| 1,674,652,263 | 1,008 | 8 | 13 | 630 | 966,616,035,460 |
| 2,610,744,987 | 1,050 | 42 | 46 | 656 | 966,616,035,460 |
| 4,578,853,915 | 1,087 | 37 | 81 | 679 | 966,616,035,460 |
| 4,890,328,815 | 1,131 | 44 | 135 | 706 | 319,497,287,463,520 |

Table 10. Peaks in ateps from $n=5,000,000,000$ upwards.

| $n$ | steps( $n$ ) | diff. | $\sigma(n)$ | $\sigma_{\infty}(n)$ | max_value(n) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9,780,657,630 | 1,132 | 1 | 1 | 707 | 319,497,287,463,520 |
| 12,212,032,815 | 1,153 | 21 | 15 | 720 | 319,497,287,463,520 |
| 12,235,080,455 | 1,184 | 31 | 547 | 739 | 1,037,298,361,093,836 |
| 13,371,194,527 | 1,210 | 26 | 62 | 755 | 319,497,287,463,520 |
| 17,828,259,369 | 1,213 | 3 | 2 | 757 | 319,497,287,463,520 |
| 31,694,683,323 | 1,219 | 6 | 7 | 761 | 319,497,287,463,520 |
| 63,389,366,646 | 1,220 | 1 | 1 | 762 | 319,497,287,463,520 |
| 75,128,138,247 | 1,228 | 8 | 7 | 767 | 319,497,287,463,520 |
| 133,561,134,663 | 1,234 | 6 | 10 | 771 | 319,497,287,463,520 |
| 158,294,678,119 | 1,242 | 8 | 15 | 776 | 319,497,287,463,520 |
| 166,763,117,679 | 1,255 | 13 | 35 | 784 | 319,497,287,463,520 |
| 202,485,402,111 | 1,307 | 52 | 270 | 816 | 2,662,587,439,048,656 |
| 404,970,804,222 | 1,308 | 1 | 1 | 817 | 2,662,567,439,048,656 |
| 426,635,908,975 | 1,321 | 13 | 40 | 825 | 2,662,567,439,048,656 |
| 568,847,878,633 | 1,324 | 3 | 2 | 827 | 2,662,567,439,048,656 |
| 674,190,078,379 | 1,332 | 8 | 5 | 832 | 2,662,567,439,048,656 |
| 881,715,740,415 | 1,335 | 3 | 329 | 834 | $5,234,135,688,127,384$ |
| 989,345,275,647 | 1,348 | 13 | 165 | 842 | 1,219,624,271,099,764 |
| 1,122,382,791,663 | 1,356 | 8 | 16 | 847 | 2,662,567,439,048,656 |
| 1,444,338,092,271 | 1,408 | 52 | 202 | 879 | 1,219,624,271,099,764 |
| 1,899,148,184,679 | 1,411 | 3 | 72 | 881 | 1,037,298,361,093,936 |
| 2,081,751,768,559 | 1,437 | 26 | 606 | 897 | 79,988,992,024,030,705,960 |
| 2,775,669,024,745 | 1,440 | 3 | 2 | 899 | 79,988,992,024,030,705,960 |
| 3,700,892,032,993 | 1,443 | 3 | 2 | 901 | 79,988,992,024,030,705,960 |
| 3,743,559,068,799 | 1,549 | 106 | 65 | 966 | 79,988,992,024,030,705,960 |
| 7,487,118,137,598 | 1,550 | 1 | 1 | 967 | 79,988,992,024,030,705,960 |
| 7,887,663,552,367 | 1,563 | 13 | 70 | 975 | 79,988,992,024,030,705,960 |
| 10,516,884,736,489 | 1,566 | 3 | 2 | 977 | 79,988,992,024,030,705,960 |
| 14,022,512,981,985 | 1,569 | 3 | 2 | 979 | 79,988,992,024,030,705,960 |
| 19,536,224,150,271 | 1,585 | 16 | 327 | 989 | 3,813,091,869,769,158,724 |
| 26,262,557,464,201 | 1,588 | 3 | 2 | 991 | 79,988,902,024,030,705,960 |
| 27,667,550,250,351 | 1,601 | 13 | 10 | 999 | 79,988,992,024,030,705,960 |
| 38,903,934,249,727 | 1,617 | 16 | 211 | 1,009 | 1,180,174,841,128,253,392 |
| 48,575,069,253,735 | 1,638 | 21 | 13 | 1,022 | 1,180,174,841,128,253,392 |
| 51,173,735,510,107 | 1,651 | 13 | 21 | 1,030 | 1,180,174,841,128,263,392 |

Table 11. Peaks in stopping time, $\sigma$.

| $n$ | $\sigma(n)$ | diff. | steps $(n)$ | $\sigma_{\infty}(n)$ | max_value $(n)$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0 |  | 0 | 0 | 1 |
| 2 | 1 | 1 | 1 | 1 | 2 |
| 3 | 4 | 3 | 7 | 5 | 16 |
| 7 | 7 | 4 | 16 | 11 | 52 |
| 27 | 59 | 52 | 111 | 70 | 9,232 |
| 703 | 81 | 22 | 170 | 108 | 250,504 |
| 10,087 | 105 | 24 | 223 | 142 | $2,484,916$ |
| 35,655 | 135 | 30 | 323 | 204 | $41,163,712$ |
| 270,271 | 164 | 29 | 406 | 256 | $24,648,077,896$ |
| 362,343 | 165 | 1 | 360 | 228 | $565,335,124$ |
| 381,727 | 173 | 8 | 373 | 236 | $565,335,124$ |
| 626,331 | 176 | 3 | 508 | 319 | $7,222,283,188$ |
| $1,027,431$ | 183 | 7 | 377 | 239 | $17,808,240,724$ |
| $1,126,015$ | 224 | 41 | 527 | 331 | $90,239,155,648$ |
| $8,088,063$ | 246 | 22 | 566 | 356 | $16,155,154,672$ |
| $13,421,671$ | 287 | 41 | 608 | 382 | $1,591,706,254,336$ |
| $20,638,335$ | 292 | 5 | 694 | 435 | $89,243,211,616$ |
| $26,716,671$ | 298 | 6 | 658 | 413 | $3,696,858,621,088$ |
| $56,924,955$ | 308 | 10 | 742 | 465 | $7,209,046,267,252$ |
| $63,728,127$ | 376 | 68 | 949 | 592 | $966,616,035,460$ |
| $217,740,015$ | 395 | 19 | 793 | 395 | $2,516,021,527,120$ |
| $1,200,991,791$ | 398 | 3 | 873 | 547 | $35,681,506,677,556$ |
| $1,827,397,567$ | 433 | 25 | 928 | 581 | $118,736,698,851,769,012$ |
| $2,788,008,987$ | 447 | 14 | 944 | 591 | $81,887,769,175,732$ |
| $12,235,060,455$ | 547 | 100 | 1,184 | 739 | $1,037,298,361,093,936$ |
| $898,696,369,947$ | 550 | 3 | 1,136 | 712 | $791,612,079,014,220,715,456$ |
| $2,081,751,768,559$ | 606 | 56 | 1,437 | 897 | $79,988,992,024,030,705,960$ |
|  |  |  |  |  |  |


[^0]:    *Leavens's work was supported in part by the National Science Foundation under Grant CCR-9108654 by the ISU Achievement Foundation and by a GenRad/AEA Faculty Development Fellowship; while graduate students at MIT both authors' work was supported in part by the National Science Foundation under Grants DCR-8510014 and CCR-8716884, and the Defense Advanced Research Projects Agency under Contract No0014-83-K-0125. Computer support was provided in part by the National Science Foundation under Grant DCR 8503662.

    The work described in this report was done while the authors were graduate students at MIT, and hence was supported indirectly by MIT, the Laboratory for Computer Science, and in particular by professors Barbara Liskov and Bill Weihl.

    While the Argus group has benefited from having a running application, Paul Johnson has been helpful beyond the call of duty in fixing problems with the Argus system (and our programs!) in a timely manner. Paul has also helped with assembly language programming. We also thank all the members of the Argus group for putting up with the hailstone system with such good grace.

    Thanks also to Kelvin Nilsen who helped correct an earlier draft.

[^1]:    ${ }^{1}$ We recorded data for the 100,000 odd numbers in the interval from $17,828,259,369$ to $17,828,459,369$. Note that $\mathbf{1 7 , 8 2 8 , 2 5 9 , 3 6 9}$ is a peak in steps. In this interval the average number of steps is 276.

