
Computers Math. Appli¢. Vol. 24, No. 11, pp. 79-99, 1992 0097-4943/92 $5.03 + 0.00 
Printed in Great Britain. All rights rescued Copyright~)1992 Pergamon Press Ltd 

3x + 1 S E A R C H  P R O G R A M S  

GARY T. LEAVENS* 
Department of Computer Science, 229 Atanasoff Hall 
Iowa State University, Ames, Iowa 50311-1040, U.S.A. 

MIKE VERMEULEN 

Hewlett Packard, 3404 East Harmony Road 

Fort Collins, CO 80525, U.S.A. 

(Received November 1991 and in revised/arm March 199~) 

Abstract - -Algor i thms for computing peaks of certain statistics related to the 3.~ + 1 problem are 
described, along with data on such peaks up to 56 trillion (5.6 x 1013). The data result from several 
years of computation. The design of the algorithms used illustrates several techniques for program 
optimization. 

1. INTRODUCTION 

The 3z + 1 problem concerns iterates of the following function: 

I (3n+1)/2, if n--1 (rood2), 
T(n) 

n/2, if n -- 0 (mod 2). (1) 
k 

which takes odd integers n to (3n + 1)/2 and even integers n to n/2 [1 I. The 3z + I Conjecture 
asserts that,  starting from any positive integer n, repeated iteration of this function eventually 
produces the value 1. This conjecture is apparently intractable. 

The iterates of T are simply defined. Let T(°)(n) = n, and for all integers k > 0, let T(k)(n) = 
T(T(k-1)(n)) .  The sequence of iterates (T(°)(n),TO)(n),T(2)(n),...) is called the T-trajectory 
of n. For example, the T-trajectory of 7 is: 

7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 2, I, 2, 1, . . .  

An alternative formulation of the 3z % 1 problem considers iterates of the function H that does 
not map odd integers n to (3n + 1)/2, but  rather to 3n + 1: 

I 3n+1, if n-1 (rood2), H(n) 
n/2, if n - -  0 (mod 2). (2) 

% 

The function H is modeled after the so-called hailstone algorithm, see [2]. One defines the iter- 
ates of H in the same way as T. For example, if n is 7, then the sequence of successive iterates of H 
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is: 

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ... 

We will call such a sequence a H-trajector~l. 
Notice how the H-trajectory of 7 differs from its T-trajectory. The difference is stated precisely 

in the following lemma. The first part states that the T-trajectory of a number is a subsequence 
of the corresponding H-trajectory, with the property that every even number in the sequence of 
iterates of H can be paired with a number in the iterate sequence of T. The second part states 
that every number k in the H-trajectory of n either occurs in the T-trajectory of n or else k/2 
does. 

LEMMA I. 

(a) For all i > O, for all n > O, and for all k > O, i f  T(i)(n)  = k, then there is some j >_ 0 such 
that, H(J)(n) = 2k, and H(j+l) = k. 

(b) For all j > O, for all n >. O, and for a/l k > 0, if H(J)(n) = k, then there is some i >_ 0 such 
that either T(i)(n)  = k or T(i)(n)  = k/2. 

PROOF. The proof is by induction on i, respectively j ,  for (a) and (b). I 
There are graphs in the article by Hayes that show the wildly erratic and unpredicatable 

behavior of the iterates of H [2]. The behavior of T is, of course, similarly wild and unpredictable. 
We define certain statistics that measure various attributes of the iterates of the functions T 

and H. These statistics are related to the 3z + 1 conjecture, since one counts the number of 
iterations needed to reach I, or the maximum value reached in a trajectory. 

A necessary condition for T(t)(n) = I is that there is some m such that T(m)(n) < n. The stop- 
ping time #(n) is the least whole number k such that T(t)(n) is less than n, with the convention 
that ~r(1) = 0. If there is no such k, then let ~(n) be oo. For example, or(7) = 7. 

The total stopping time #oo(n) is the least whole number k such that T(t)(n) is one, with the 
convention that aoo(1) = 0. If there is no such k, then let aoo(n) be co. For example, ~oo(7) = 11. 

The value of steps(n) is the least whole number k such that H(t ) (n )  is one. If there is no 
such k, then let steps(n) be oo. It is the analog of total stopping time for H. For example, 
steps(7) = 16. 

The maximum value, max_value(n), is the least upper bound of all the integers reached by 
iterating H until the value of the iterates reach one. That is, 

max_value(n) = lub{H(t)(n) I0 < k < steps(n)}. (3) 

For example, max_value(7) = 52. Using T instead of H gives an alternative definition of maxi- 
mum value. 

air_max_value(n) = lub{T(t)(n) 10 < k < aoo(n)}. (4) 

For example, air_max_value(7) = 26. Except in certain special cases, the max_value of a number 
is always twice its air_max_value. The proof of this simple fact depends on part (a) of the following 
lemma, which states that if a value occurs in the T-trajectory of a number greater than two, then 
it must occur before the iterates reach one. 

LZMMA 2. 

(a) For all n > 2, and/or all k, if there is some i >_ 0 such that H(i)(n) -- k, then there is 
some 0 <_ j <_ steps(n) such that H(J)(n) = k; furthermore, i f  there is some i > 0 such that 
T(i)(n) = k, then there is some 0 <_ j < ~oo(n) such that T(J)(n) = k. 

(b) For all n > O, i f  air_max_value(n) ~ n, then max_value(n) = 2.  alt_maz_value(n). II 

We are interested in the behavior of these statistics as n varies. Many facts are known about 
them, see [1]. A number of researchers have observed that if the input n is drawn randomly, 
say with the uniform distribution on an interval [I, N], then these statistics appear to have nice 
limiting distributions as N approaches infinity (see, for example, [3] and [4]). Lagarias and 
Weiss [5] describe various random walk models intended to simulate 3z + 1 function iterates. 
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Particularly interesting statistics concern the behavior of extreme values of these statistics 
as n varies, which we call peaks. An integer n > 0 is a peak in a statistic f ,  if and only if for all 
0 < m < n, f (m)  < f(n).  These numbers are called peaks because if one graphs the function, 
then each peak will be a point higher than has been reached for smaller n. For example, 3 is a 
peak in max_value, because max_value(3) = 16, max_value(2) = 2, and max_value(l) = 1. 

This paper describes algorithms for computing such peaks; tables of peaks appear in the 
Appendix. The algorithmic optimizations described below were developed in a spirit of friendly 
competition between the two authors. Each author developed a program, and so many of our 
results have been validated by more than one program. The first program (by Leavens) designed 
to experiment with the Argus distributed programming language and system (see references [6] 
and [7]). A second program (by Vermeulen) was written in C, to understand the inherent costs 
of Argus as opposed to C. Various distributed programs have been running since 1986, although 
only Vermeulen's program is currently running. Vermeulen's current system, which was started 
in August 1990, runs on about 15 workstations (the exact number varies), searches an interval of 
about 100 billion per night, and has accumulated between 5 and 15 years of CPU time. (That 
is, if the search were run sequentially it would take about 5 CPU-years on the fastest machine, 
or about 15 CPU-years on the slowest.) 

Peaks appear more and more rarely as one tests larger numbers. While it is easy to verify the 
value of steps(n) or max_value(n) for any particular n, it is very expensive to verify that n is a 
peak in either statistic, because this involves showing that all numbers less than n have a smaller 
value for steps or max_value. 

One of the mathematical questions we have investigated is whether peaks in one statistic 
must be peaks in some other statistic. Since the trajectories under H and T are related (as in 
Lemma 1), one might guess that numbers that are peaks in a measure based on iterates of T 
would necessarily be peaks in a measure based on H. This is true for maximum values, but 
the question remains open for stopping times and steps. The relationships are summarized in 
Table 1. 

Table 1. Relat ionships between peaks  in various statistics.  

~r 

~oo 

steps 

alLmax_~alue 

a aoo step8 max_~alue alLmax_~alue 

sarfle 

dist inct  same 

distinct u n k n o w n  same 

distinct  dist inct  distinct 

distinct distinct distinct 

sa,lne 

Jlg~e 88A'ne 

The fact that peaks in max_value and air_max_value are the same is a corollary of Lemma 2 (b). 

COROLLARY 3. An integer k > 0 is a peak in max_value if and only ff k /s a/so a peak in 
alt_max_value. 1 

Counter-examples that distinguish between peaks in most other measures can be found by 
examining the tables in Appendix A. 

The relationship between peaks in steps and peaks in a~  is one of the difficult open questions 
that often appear in the study of the 3z + 1 problem. However, it is easy to see that the total 
stopping time cannot be greater than the number of steps, nor as small as half the number of 
steps. 

LEMMA 4. For a/l n > 0, i f  steps(n) ~ oo, then steps(n)~2 < aoo(n) < steps(n). 

PROOF. In any H-trajectory, every step of the form 3z + 1 is followed by a division by 2. Thus 
the T-trajectory omits at most half of these steps. However, if steps(n) is defined, then there 
must be more division by 2 steps in the iteration of H than there are steps that multiply by 3 
and add one. 1 
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A different relationship holds between total stopping time and steps. Let odd(n) be the number 
of odd integers in the iterate sequence of H (excluding 1) and even(n) be the number of even 
integers that  occur until 1 is reached. That  is: 

odd(n) d.~ ~ ( k  [ k mod 2 = 1, H(i)(n) = k, 0 <_ i < steps(n)}, (5) 

even(n) d.f = # { k  I k rood 2 = 0, HCi)(n) = k, 0 _< i < stepsCn)}. (6) 

Since every step produces an odd or an even number, the sum of odd and even is the number 
of steps; that  is, for all n > 0, steps(n) = odd(n) + even(n). 

It is interesting that  the number of even steps is the same as the total stopping time. 

LEMMA 5. For a/l n > 0, ~oo(n) = even(n). 

PROOF. If ~oo(n) = oo, then even(n) = oo. Furthermore, ~oo(1) = 0 = even(l) and ~oo(2) = 
1 = even(2). 

So suppose n > 2 and ~oo(n) = rn < oo. By Lemma 1, for each 0 < i < ~oo(n), there is 
some j > 0 such that  2T(i)(n) = HO)(n). By Lemma 2, j can be chosen so that  j < steps(n). 
Thus, aoo(n) _> even(n). However, if aoo(n) > even(n), then there would have to be two iterates 
of T with the same value (that is, 0 < i < 1 < aoo(n), such that  T(i)(n) = T(0(n)),  but if this 
happened there would be infinitely many such cases, and so ~oo(n) would be infinite. | 

The above analysis does not seem to lead to a proof that  peaks in steps are also peaks in total 
stopping time. However, the peaks do coincide at least to 12.3 billion (12.3 x 109), as the first 
author's program verified. So we offer the following conjecture. 

CONJECTURE 6. An integer k > 0 is a peak in steps if and only if k is a peak in torn/stopping 
time (~oo ). 

This conjecture seems difficult to prove. 
The rest of the paper is organized as follows. Section 2 discusses smaller-scale efficiency issues, 

and describes how we turn mathematical insight into better ways to prune the search space. 
Section 3 draws some conclusions from this experience. Appendix A gives tables of results from 
the search. 

From the tables we make the following observations. 

• 1, 2, 3, 7, 27, and 703, are the only known peaks in steps, stopping time (~r), and max_value; 
no larger number is known to be a peak in all three of these statistics. 

• 12,235,060,455 is the largest known number that  is a peak in both steps and a; no larger 
number is known to be a peak in more than one of: steps, stopping time (tr), and mar_value. 

• Despite the previous remark, many of the peaks in steps have the same max_value, and 
hence their trajectories are identical after a certain number of iterations. 

Unlike the peaks in steps, the maximum values reached by peaks in stopping time, ~r, rarely 
repeat. 

See also Lagarias and Weiss for more detailed comparisons in a similar vein [5]. 

2. S M A L L  S C A L E  DESIGN ISSUES 

This section describes algorithms for iterating H and T. Another issue of practical importance, 
how to efficiently distribute the search among several computers, will not be discussed in this 
paper (see [81). 

A fundamental observation is that  peaks are extremely rare. For example, in the first 50 billion 
positive integers, there are only 49 peaks in max_value and only 78 peaks in steps. The peaks 
become more and more rare as the search progresses; between 1 billion and 50 billion there are 
only 5 peaks in maz_value and 12 peaks in steps. So a typical number is not a peak, and the 
main task of the search is to find this out as quickly as possible. For doing this there are three 
basic strategies. 
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• Cutting off the search by discovering that  the input number is not a peak before taking it 
through all the iterates of H or T down to 1 (or until the values of the iterates fall below 
the start ing value if one is searching for peaks in stopping time). 

• Running the steps of the iteration algorithm faster. 

• Multiplying, dividing, adding, and comparing numbers faster. Algorithms and data  struc- 
tures for large precision integers were important  practical considerations, because the 
searches went well past the usual 32 bit integers, and because the iterates exceed these 
limits quickly. For example, maz_value(159,487) = 17,202,377,752. Such algorithms and 
data  structures are well-known [9]. 

The benefits of the optimizations discussed in this section are summarized in Table 2. The 
speedup due to a particular optimization depends on the order in which optimizations are applied. 
For example, the a priori cutoff of all numbers k mod 6 = 5 reduces the set of numbers to be 
searched by a sixth if one is searching all numbers, but  by a third if the set is already restricted 
to even numbers. The table lists the optimizations in the order that  they were added to Mike 
Vermeulen's program, and then lists the speedup achieved by that  optimization assuming the 
optimizations listed above it were already applied. 

The speedup of seven for using polynomials results from a comparison between an assembly 
language program and a polynomial based program. All other speedups were measured while 
selectively disabling optimizations on the polynomial search. 

Table 2. Effectiveness of optimizations. 

Optimization Speedup Cumulative Speedup 
None 

Use Composite polynomials 

Search only odd numbers 

Values: ¢ pos~eriori cutoffs 
Ignore k mod 6 -- 5 
Values: a priori cutoff with 8 bit polynomial 
Steps: a priori cutoff using 8 bit polynomial 
Use 16 bit polynomials for a priori cutoffs 
Steps: a posteriori cutoffs 

1.00 1.0 
7.00 7.0 
2.00 14.0 
1.84 25.7 
1.41 36.4 
1.71 62.1 
1.15 71.3 
1.36 97.1 
1.88 182.0 

2.1. A Priori Cutoffs 

The best way to cut off the search on a given input number is to prove that  the input cannot 
be a peak and to ignore it without spending time on it; this is called an a priori cutoff. A less 
effective way to cut off the search on a given input is to prove that  the number cannot be a peak 
after learning something about  its trajectory; this is called an a posteriori cutoff. 

A basic result is that  it is possible, a priori, to limit the search to odd numbers. For maz_value, 
it suffices to note that  the first step of H for an even number is to divide it by two. 

LEMMA 7. For all k > O, max_value(2k) = max{2k, maz_value(k)}. 

The technique used in the proof of the following corollary is an example of reasoning about  
the convergence of different trajectories. 

COROLLARY 8. The number  2 is the only even peak in maz_value. 

PROOF. Let k > 1 be given. By the above lemma, maz_~alue(2k), is the maximum of 2k 
or maz_value(k). If maz_value(2k) = maz_value(k), then 2k is not a peak. So suppose 
maz_value(2k) = 2k. But,  then 2k is not a peak in maz_value either, since maz_value(~,k - I )  ~ 
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3(2k- 1) > 2k. The inequality maz_valne(~k - I) >_ 3(2k- 1) holds because 2k- 1 is odd, hence 
H(2k - 1) = 3(2k - 1). That 3(2k - 1) > 2k holds for k > I holds is shown by the following: 

k > 1 : : ~ 4 k > 4  (7) 

4k - 3 > 1 (S) 

: .  (6k  - 3)  - 2k  > 1 (9)  

(6k - 3) > 2k + 1 (10) 

::~ 3(2k - I) > 2k. (11) 

| 
Results similar to the above apply to aILmaz_valne as well. 

For steps, the same observation about the first step of H means that an even number k will 
take only one more step than k/2 to return to 1. 

LEMMA 9. For aII k > O, steps(2k) = 1 + steps(k). 

COROLLARY I0. If k is a peak in steps, then the least even number greater than k that can be 
a peak in steps is 2k. 

PROOF. Let k be a peak in steps. By definition, for all 0 < j < k, steps(j) < steps(b). Thus by 
the preceding lemma, steps(2j) is constrained as follows: 

s t e p s ( 2 j )  = 1 + s t e p s ( j )  _< s t e p s ( b )  = s t e p s ( 2 k )  - 1 < s t e p , ( 2 k ) .  (12) 

| 
A similar result applies to total stopping time. 

By these corollaries, it is easy to predict all the even peaks in steps and mar_value. Thus the 
search for these peaks ignores all the even numbers, giving a factor of 2 speedup. 

For stopping time, the first division by two means that an even number always has a stopping 
time of 1. 

LEMMA 11. For all k > 0, #(2k) = 1. 

COROLLARY 12. Ilk > 2 is a peak in stoppin K time, then k is odd. 

So the search for peaks in stopping time also ignores all the even numbers. 
The following results allow the search for peaks in stopping time to effectively ignore half of 

the odd numbers as well, that is, those that are equal to i modulo 4. The |emma predicts the 
first iteration of T from the fact that the number is equal to I modulo 4, and the corollary carries 
this analysis one iteration further to predict the stopping time. 

LEMMA 13. For a]] k > 0, ilk mod 4 = I, then T(k) is even. 

PROOF. Suppose k > 0 and k rood 4 = 1. Then k mod 2 - 1, and hence T(k)  = (3k + 1)/2. But 
(3k + 1) is evenly divisible by 4: 

k rood 4 = 1 =~ 3k mod 4 = 3 (13) 

=~ (3k + 1) mod 4 = 0, (14) 

and, therefore, (3k + 1)/2 must be evenly divisible by 2. | 

COROLLARY 14. For all k > I, ilk mod 4 = I, then or(k) = 2. 
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PROOF. Suppose k > 1. Then 3k + k > 3k + 1, so k > (3k + 1)/4. By the above lemma, 
T(k)  = (3k + 1)/2. But (3k + 1)/2 > k and (3k + 1)/2 is even, so T(2)(k) = (3k + 1)/4. So by 
definition, the stopping time of k is 2. | 

Sad to say, the first author's search for peaks in stopping time never used the above idea, which 
would have resulted in a factor of 1.25 speedup (over and above ignoring the even numbers). 

A fruitful idea for finding a pr/ori cutoffs is to see how a number can result from (smaller) 
numbers in the course of iterating H or T. This should be contrasted with the techniques used 
above to find cutoffs in stopping time, which see what happens to the number itself when it is 
used as input to iterations of T. The idea of looking at convergence between the trajectories of 
smaller numbers and the number in question is related to the Coilatz graph discussed in [1]. 

LEMMA 15. Let j and k be given so that O < j < k. I f  there is some m > O such that H(m)( j )  = k, 
then k cannot be a peak in steps or max_value. 

PROOF. Since the steps taken by k are the same as those taken by j after m initial steps, 
steps(j)  = m + steps(k) and max_value(j) >_ mar_value(k). | 

LEMMA 16. Let j and k be given so that 0 < j < k. I f  there is some m > 0 such that T(m)( j )  = k, 
then k cannot be a peak in stopping time, total stopping time, or air_max_value. | 

The most important practical example of this kind of a priori cutoff is that  if k mod 6 = 5, 
then k cannot be a peak in any of the statistics mentioned above. This is because if k mod 6 = 5, 
then k lies on the trajectory of (2k - 1)/3, which is smaller than k. Indeed the iterates of H first 
multiply (2k - 1)/3 by 3 and add 1, obtaining 2k, and then divide 2k by 2 obtaining k. This 
result is proved in the following lemma. 

LEMMA 17. Let k > O. I l k  mod 6 = 5, then T((2k - 1)/3) = k and H(2)((2k - 1)/3) = k. 

PROOF. Suppose k > 0 and k mod 6 = 5. First we note that  2k - 1 is divisible by 3: 

k mod 6 = 5 =~ 2k mod 6 = 4 

:=~ 2k mod 3 - 1 

::~ (2k - 1) mod 3 - 0. 

(15) 

(16) 

(17) 

To see where T or H maps (2k - 1)/3 we must know if (2k - 1)/3 is even or odd: 

k mod 6 = 5 =~ 2k mod 6 = 4 

==~ (2k - 1) mod 6 = 3 

(2k- 1) 
=~ mod 2 -- 1. 

3 

(18) 
(19) 

(20) 

The last implication above follows because there is some integer q such that:  

( 2 k -  1) = 6q Jr 3 ~ ( 2 k -  1) - 3(2q) + 3  

(2k- 1) 
::~ ~ = 2q+  1. 

(21) 

(22) 

Since (2k - 1)/3 is odd, according to the definitions of T and H, 

H I ( 2 k ~  1) 1 =2& 

H(~) I ( 2 k 3  I ) I  - k. 

(23) 

(24) 

(25) 

| 
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COROLLARY 18. Let k > 0. If k mod 6 = 5, then k cannot be a peak in steps, max_value, 
stopping time, total stopping time, or alt=maz_value. | 

Thus, the search programs ignore odd numbers that are equal to 5 modulo 6, for an factor 
of 1.33 speedup (over a program that ignores even numbers). 

The reader might see what happens when k mod 18 = 13. This idea can be carried as far as 
one desires. For example, one could keep a table of which numbers modulo 216 cannot be peaks 
in max_value or steps, and a counter that gives the value of the current iterate modulo 216. One 
could then use the table to avoid testing numbers that have no hope of being peaks. In the 
extreme, one can organize the entire search by constructing the Collatz graph, but the space 
requirements become prohibitive. 

Other a priori cutoffs are discussed below, after the introduction of composite polynomials. 

~.$. A Posteriori Cutoffs 

When iterating H to search for peaks in max_value, one has to check periodically to see if the 
values produced are greater than the value of the previous iterate (or greater than the value of 
the previous peak). However, these comparisons are fairly expensive for large precision numbers. 
It should be obvious that one does not have to make a comparison after dividing by 2, since the 
next iterate is smaller than the last. Neither does one have to make a comparison after every 
3n + 1 step of iterating H, but only until the iterates have fallen below the initial value (stopped); 
this is due to the following result. 

LEMMA 19. Let k > 0 be a peak in max_value. If  for some m > O, H(m)(k) < k, then 
max_value(k) = max{H(i)(k) l O < i < m}. 

PROOF. Let m > 0, be such that H(m)(k) = j < k. Since j < k, max_value(j) < max_value(k), 
because k is a peak. Since after this point the H-trajectory of k is the same as that taken by j,  
it cannot be the case that more iterations will reach or exceed the maximum value obtained up 
to this point: | 

The way this lemma is used in an a posteriori cutoff is to stop making comparisons for purposes 
of finding a peak in max_value after the value of the iterates falls below the initial input number, k. 
Note that the lemma depends on k being a peak in max_value. If this is not the case, the ma~mum 
value may be obtained after the value of an iterate falls below its starting value. An example is 
the number 55, which reaches a value of 376 before it first falls below 55 (to 47). It then goes on 
to reach a maximum value of 9,232. 

After the value of the iterates has fallen below the input value, one can cut off the search for 
peaks in steps (or total stopping time) a posteriori using the following lemma to estimate the 
maximum number of further iterations that will be needed. 

LEMMA 20. For all k > O, i fH  (P) = n _< j,  where j is apeakin  steps, then steps(k) <_ p+steps(j). 

PROOF. If n = j ,  then steps(k) -- p + steps(j) .  If n < j ,  then,  since j is a peak in steps, 
steps(n) < steps(j), by the definition of a peak. | 

A similar results holds for T and aoo. 
In practice, the above lemma is used as follows. Let the number to be tested be k. After a 

step where H divides the current iterate value by two, one finds (if possible) the largest peak, j ,  
in steps such that the current iterate's value is no greater than j ,  and uses the lemma above to 
bound steps(k). If this bound on steps(k) indicates that k is not a peak in steps, then k can be 
dismissed as far as steps is concerned. 

The importance of this a posteriori cutoff is the empirical observation that the cutoff allows 
the search for peaks in steps to be cut off, on the average, after a constant number of steps. This 
seems to be true in any sufficiently large interval, provided that all but one or two peaks in steps 
less than the interval are known. That is, if one knows all the peaks in steps up to j,  and if j 
is sufficiently large, then over the interval from j + 1 to 2j one should always be able to cut off 
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the search after an average of about  15 steps, independent of the value of j.x Considering that  
the number of steps taken by n goes up logarithmically with the n, this cutoff makes sense as 
soon as the average (odd) number starts  taking more than 15 steps worth of time plus the time 
required to see if the search can be cut off. Furthermore, the value of this cutoff grows as the 
search proceeds towards infinity. (The first author used this cutoff instead of some of cutoffs 
based on the polynomials discussed below.) 

g.3. Speedin 9 Up the Iterations 

Even with the results above, there are still infinitely many trajectories that  must be computed, 
at least in part,  for a search. Thus these trajectories must be computed efficiently. 

The hailstone algorithm in Figure 1, which finds the values of steps(n) and maz_value(n) is 
coded in Argus [7]. This algorithm is does not save the entire H- t ra jec tory  of n, but  just  records 
the values of the statistics. (In the code Y. starts a comment, / / i s  a modulo operator and "= 
means "not equal." In the real programs, n would not be an i n t ,  it would be an object of some 
type of large-precision natural  numbers.) 

g i n p u t :  a n  i n t e g e r  n > 0 
g o u t p u t :  number  of  s t e p s  and  max_value  reached 
s t e p s :  i n t  := 0 
max_va].ue : int : = n 
while n "= 1 do 

if  (n / /  2) = 0 
then  n := n / 2 
e l s e  n :ffi 3*n + 1 

max_value  := i n t S a a x ( m a x _ v a l u e ,  n )  
end  
s t e p s  := s t e p s  + 1 

end  

Figure 1. The hailstone algorithm, which computes i terates of H.  

The problem considered in this sub-section is finding an equivalent algorithm that  can be 
executed in less time. The focus in this section is on the hailstone algorithm, and the search for 
peaks in steps and maz_value. 

g.3.1. Make_odd 

Division by 2 is best implemented by shifting in a binary representation. Also, shifting a number 
by several bit positions is roughly as fast as shifting a number by one bit position. Thus, one idea 
for making a faster algorithm is to replace the division by 2 step in the hailstone algorithm by a 
step that  shifts the input as many bits as necessary in order to make it odd. How effective will 
this be? If the value of the hailstone algorithm's variable n were uniformly distributed among 
the even integers by the 3n + 1 step, then half of the time n would not be divisible by 4, and one 
fourth of the time n would not be divisible by 8, and so on. Thus the expected number of bit 
positions that  an even number would be shifted is: 

(1) 
+ 2  + 3  + 4  + . . . =  ~ = 2. (26) 

i=1 

Thus on the average, shifting n by as many bits as necessary to make it odd does the work of 
two divisions by 2. It is, therefore, cost-effective if it takes no more than the time taken by doing 
two divisions. 

An advantage of shifting n so that  it is odd is that  one no longer has to check to see whether n 
is odd or even, because one can write the hailstone algorithm (for odd inputs) as in Figure 2. In 
the figure, the procedure make_odd returns the new value of n and the number of bit positions 

lWe recorded data for the I00,000 odd numbers  in the interval from 17,828,259,369 to 17,828,459,369, Note 
t ha t  17,828,259,369 is a peak in steps. In this  interval the average number  of steps is 276. 
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L~ut:  an odd intsger n > 0 
while n "= 1 do 

n is o d d  

n :- 3*n + 1 
n is e v e n  

7. check for max_value here 
n, p :-make_odd(n) 

the nmaber of steps taken this  time around the loop is p+l 
check for a poster~ori cutoffs here 

end 

Figure 2. Hailstone algorithm using m61~e_odd. 

i npu t :  i n t e g e r s  n > O, m > 0 
while n --  1 do 

p, s := mBitPoly(n / /  2**m) 
n :ffi p o l y E v a l ( p ,  n) 
7. the  number of s t e p s  t aken  t h i s  t ime around the  loop i s  s 
7. check for a posteriori cutoffs 

end 

Figure 3. Hailstone algorithm using composite polynomials. 

that the old value of n had to be shifted to make it odd. Another pleasing property of this 
hailstone algorithm is that one can check for cutoffs when n is as low as it can be before going 
up again, this means that one spends less time checking for cutoffs, on the average. 

~.3.~. Composite Polynomials 
A more efficient hailstone algorithm than the above takes bigger steps, doing several iterates 

at a time. This idea gives a speedup of 7 over the hailstone algorithm of Figure 1. It also leads 
to several strategies for cutoffs. 

The standard hailstone algorithm looks at the last bit of the value of the variable n to decide 
what step to take. By looking at the last m bits of the binary representation of n, one can decide 
what the next several steps that will be taken are, combine all these steps into a polynomial, and 
then do the work of all those steps by evaluating the polynomial at the value of n. An algorithm 
that uses this idea for computing the iterates of H is shown in simplified form in Figure 3. In 
the figure, mBitPoly returns both a polynomial and the number of steps that the polynomial 
represents. Checking for max_value is described below. 

There axe two strategies for expressing the polynomial. 
One strategy is to obtain a polynomial of the form: 

3kx + z 
2,n , 

which is equivalent to the sequence of ]c + m steps taken. For example, for n = 7, the first step 
is to multiply by 3 and add 1 (obtaining 22), the second divides by 2 (obtaining 11), the third 
multiples by 3 and adds 1 (obtaining 34), and the forth divides by 2 (obtaining 17). These steps 
are represented by the following polynomial. 

+ 

Such a polynomial is called the standard polynomial, it represents k steps of the form 3 n + l  and m 
divisions by 2. (It will be shown below why the number of divisions by 2 is equal to the number 
of bits considered.) For each , ,  the standard m bit polynomial f o r ,  will be written Spoly,,,(n). 
This polynomial can be evaluated by multiplying by the appropriate power of 3, adding in the 
appropriate integer z and then shifting by the appropriate power of 2. As in the previous section 
one ends up with an odd number. 
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A disadvantage of the standard polynomial is that the intermediate result after multiplying 
by the appropriate power of 3 is rather large, possibly leading to inefficient use of storage or 
inadvertent overflow. The second strategy overcomes this problem by doing the shifting first, 
and this is the strategy used by the second author's programs. The idea is to represent the Steps 
by a '~olynomial" of the following form 

This Vermeulen polynomial also represents k steps of the form 3n + 1 and m divisions by 2. For 
each n, the m bit Vermeulen polynomial for n will be written Vpolym(n ). Vermeulen polynomials 
will yield an answer equivalent to the normal sequence of steps when evaluated in the following 
manner: 

1. divide by 2"* and truncate, that is, shift the binary representation right by m bits, 

2. multiply the result (the most significant part of n) by the appropriate power of 3, and 

3. add y. 

The idea is that a Vermeulen polynomial represents the effect of the steps on the most significant 
part of n only. The number y represents the overflow from the least significant m bits. 

To explain how these polynomials are generated, consider the following examples. Items to the 
right of the dot (.) in last bits do not affect the other bits, and items to the left of the dot do. 
The following is the generation of an 8 bit Vermeulen polynomial, VpolYs(3 ). 

Max Las t  b i t s  M P a r t i a l  po ly  | e x t  step 
.00000011 3 x *3 
.00001010 10 3x+l /2  
.0000101 5 3 (x /2 )+2  *3 

* .0010000 16 9 (x /2 )+7  /16 
.001 1 9(x /32)+1 *3 
.100 4 27(x/32)+4 / 4  
. I  I 27 (x /128)+I  *3 

10.0 4 81(x/128)+2 /2  
I0 .  2 81(x/256)+2 

Notice that division by 2 removes one bit from the right, this corresponds to moving in bits 
from the left that are unknown. The process of computing partial polynomials stops when all the 
known bits are shifted out, that is, when m divisions by 2 have been performed. The row with the 
asterisk (*) marks the partial polynomial that produces the largest intermediate result. If one is 
checking for peaks in max_value, then the evaluation must be broken into three steps: evaluating 
the partial polynomial at this point, checking for a peak in ma~_value, and then evaluating the 
rest of the polynomial. For comparison, Spolys(3 ) is (81x + 269)/256. 

As another example, Vpolys(27 ) is [x/256J 2187 + 242; for comparison Spolys(27 ) is (2187x + 
2903)/2 6. 

The composite polynomial idea leads to a hailstone algorithm that is about an order of mag- 
nitude faster than the algorithm in Figure 2. It is an open question whether this approach is 
optimal. 

The practical drawback to such an algorithm is its complexity of implementation. One needs 
automated tools for generating the polynominals. Furthermore, it is difficult to write the code to 
cheek for peaks in maz_value or stopping time. This implementation difficulty makes the results 
of the algorithm less reliable (as the implementation is more difficult to verify). 

2.4. A Priori Cutoffs Based on Composite Polynomials 

Even if composite polynomials are not used in the iteration algorithm, they can be used to 
generate a priori cutoffs. 

The second author's program uses the following lemma for a priori cutoffs in the search for 
peaks in steps. It allows one to ignore numbers k such that k rood 2 rn has a m-bit Vermeulen 
polynomial less that is the same as some number smaller than k rood 2 ra. The potential benefits 
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Table 3. Effectiveneu of a priori  cutotfs based on polynomials, 

percentage of numbers e!imi~ated. 

Polynomial Width (bits) Values  Steps 
4 81.25% 43.75% 

8 92.57% 59.76% 
12 94.48% 6 7 . 6 ~  
16 96.78% 73.98% 

of this optimization are listed in Table 3, showing that  60% of all numbers may be eliminated 
using an 8 bit wide table. Increasing the width of the cutoff polynomial can further speed up the 
search. 

LEMMA 21. Let m > 0 be given. Let 0 < rx < r2 < 2 m, Vpoly,n(rl) = Vpoly,n(r2). Then there 
is no k > 2 m + rl such that k mod 2 ~ = r2 and k is a peak in steps. 

PROOF. Let k > 2 m + r l  be such that  k mod 2 m = r2. Let b be the largest number such 
that  b < k and b rood 2 m = r l .  Since the polynomials Vpolym(rl) and Vpolyrn(r2 ) are identical 
they represent the same number of steps. After these steps, b and k take the same steps since 
(VpolYm(rl))(b) = (Vpolym(r2))(k). So k cannot be a peak, because b < k and steps(b) = 
steps(k). I 

The second author 's  program cuts off the search for peaks in max_value a priori if the m bit 
Vermeulen polynomial has as the coefficient of z a term that  is less than unity. For example, using 
8 bit polynomials, one need not look for peaks in values when the last 8 bits are ".00000011," 
because Vpolys(3 ) = Lx/256J81 + 2 and 81/256 < 1 (where the coefficient is 81/256). An- 
other example: one does look for peaks in values when the last 8 bits are ".00011011" because 
Vpolys(27) = [x/256J 2187 + 242. 

The potential  benefits of this optimization are listed in Table 3, showing that  92% of all 
numbers may be eliminated using an 8 bit wide table. The actual benefits are smaller because 
the eliminated numbers are also detected by an A Posteriori cutoff based on Lemma 19. 

Th~s kind of cutoff is formalized using the notion of the "largest" partial polynomial. A partial 
polynomial is a polynomial incorporating the first s > 0 steps of the hailstone algorithm, as 
predicted (see above) from the least significant m bits. We say that  p >_ q for m bit partial 
polynomials if there is some N > 0 such that ,  for all n > N, p(n) > q(n). 

Let LVpolym(r ) be the largest m bit partial Vermeulen polynomial for r. Similarly, let 
LSpoly m (r) be the largest m bit partial standard polynomial for r. 

L~.MMA 22. Let m > 0 be given. Let polym(r ) and Lpolym(r ) denote either the standard or 
Vermeulen m bit polynomial and largest m bit partial polynomial for r. 

There is some N > 0 such that for a/l k > N, i l k  mod 2 ra = r and 

1. poly ( )(k) < k, and 

2. there is some max_value peak j < k such that I, polym(r)(k ) < max_value(j), 

then k is not a peak in max_value. 

PaOOF. Choose N such that  for all k > N and for all predicted m bit partial polynomials, p and 
q, p > q implies p(k) > q(k). Now, given k > N,  the highest value an iterate reaches before falling 
below its initial value, k, is Lpoly(r)(k), where r = k mod 2 m. This is because (poly(r))(k) < k, 
and so n falls below k (after the number of steps represented by the polynomial) and because 
by construction (Lpoly(r))(k) is the highest value that  n attains (in these first steps). Thus by 
Lemma 19, if k is a peak in max_value, then 

(Zpoly(r))(k) = max_value(k) < max_value(j), 

which is a contradiction. So k cannot be a peak in max_value. II 
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Note that the above lemma is independent of the kind of polynomial used. In practice, the 
choice of N is not a problem, because the input numbers soon dwarf the coefficients of the 
composite polynomials. 

The above lemma allows one to set up a table that tells which numbers modulo 2 m need to 
be checked for peaks in max_value. For each 0 < r < 2 m, one must check the two conditions of 
the above lemma. For sufficiently large numbers, one can check the first condition of the lemma 
above a priori. 

One can also satisfy the second condition of the lemma a priori over a certain interval. Sup- 
pose N is chosen to be the least number to satisfy the lemma and such that the first condition 
of the lemma can be checked a priori. Suppose the largest known peak in max_value, call it j ,  is 
such that j > N. Finally, suppose that there is a rational number R > 0 such that, for all k > N 
and for all 0 < r < 2 m such that (polym(r))(k)  < k: 

(LVpolym(r))(t) < R.  k. 

Then, in the interval from N to maz_value( j ) /R  the second condition of the lemma can be 
checked a priori. In fact, in such an interval, the second condition of the lemma is satisfied 
whenever the first condition of the lemma is satisfied. 

Thus the practical justification for setting up a table of cutoffs as described above is that, 
for sufficiently large input numbers, the maximum value of the largest peak is many orders of 
magnitude greater than the inputs numbers and the coefficients of the Vermeulen polynomial 
cannot be very large. In fact the following result holds. 

LEMMA 23. Let m > 1 be given. For a/! 0 < r < 2 m, h e there is some Mr such that for all 
k > Mr, k mod 2 "~ = r implies that (Vpolym(r))(k)  < k, then the coefficient o f x  in LVpolym(r ) 
is at most  31/2 ( j - l ) ,  where j is the largest integer such that 3 i < 2 m. 

PROOF. Every step in the hailstone algorithm of the form 3n + 1 is followed by a step that 
divides by 2. Thus the coefficient of x in the partial Vermeulen polynomial is made as large as 
possible when it is of the form 3//2 (j-D. However, because the final polynomial is of the form 
[x/2mJ31 +p + y, for some p ~ 0, 3 / must be less than 2 m if the Vermeulen polynomial is to be 
such that Vpolym(r)(k ) < k, for all sufficiently large k mod 2 m = r. | 

As an example, for 8 bit Vermeulen polynomials, the coefficient can be at most 

35 243 
= 15.1875. 

~ =  16 

Thus, as long as the is the largest peak j in max_value is at least 16 times the input numbers 
being checked, then for all sufficiently large k: 

(Vpolys(r))(k) < k ( Vpolys(r))(k) < max_value(j). 

This condition seems to be met for all numbers past 7, although we have no proof of this conjec- 
ture. 

3. CONCLUSIONS 

The optimizations described in Section 2 illustrate an old story: mathematical insight can 
greatly improve the efficiency of a program. Both authors expected that the C program would 
be faster because of low-level coding issues; the Argus compiler did almost no optimization, 
and C allows one to write fast programs. There were some speedups from using faster integer 
arithmetic in C, hut these were soon dwarfed by the algorithmic speedups. Even though Argus 
code is perhaps 5 to 10 times slower than C, the algorithmic improvements give a cumulative 
speedup by a factor of 182. (Both programs used assembly language for time-critical parts, such 
as arbitrary precision integer arithmetic. However, our comments about the relative speeds of 
Argus and C are still accurate, because in Argus integers must be decoded before they can be 
processed by the CPU's native instruction set, and then encoded on return.) 
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Our optimizations can be analyzed in tern~ of Bentley's taxonomy of program efficiency im- 
provement strategies [10]. This comparison shows that we used some standard strategies in 
interesting ways. 

Bentley's logic rule 1 "exploit algebraic identities" states that: "If the evaluation of a logi- 
cal expression is costly, replace it by an algebraically equivalent expression that is cheaper to  
evaluate" [10, p. 148]. (This strategy is often called "strength reduction" when one replaces the 
expression with one entirely equivalent.) We used this strategy several times. In Section 2.1 
we noted that it was not necessary to test even numbers for peaks; this is similar to Bentley's 
example of eliminating the square root in a distance calculation, since all that mattered for the 
program was the relative distances. Another use of this strategy is in the a priori cutoffs based 
on convergence of trajectories, also described in Section 2.1. 

Our optimization of not making a comparison for peaks in maz_value after a step of division 
by 2, described in Section 2.2, is similar to Bentley's logic rule 5 "boolean variable elimination." 
Bentley remarks that his rule can be generalized to the idea of storing arbitrary conditions in the 
program counter [10, p. 73]. We like to think that instead of storing conditions in the program 
counter, one pushes desired assertions about the program state back through earlier statements. 
That is, at the end of the loop, we want to assert that we have recorded the largest peak in 
maz_value; in the case where the number was divided by 2, this is automatically satisfied. This 
strategy was also applied at lower levels of coding. For example, in the C program when the 
iterates take on a value that will fit in a 32 bit integer, faster code is used that avoids the 
overhead needed for a complete arbitrary precision integer computation. 

We described a similar optimization in Lemma 19. This lemma allows us to not check for a 
peak in raaz_value after the iterates have fallen below the initial value (stopped). This can also 
be thought of as an application of Bentely's logic rule 5. However, another way to think of it is 
an application of Bentley's loop rule 1 "code motion out of loops," because the tests for a peak 
in maz_value cannot succeed after the iterates have stopped. 

In Section 2.2 we described an a posteriori cutoff in the search for peaks in s~eps by estimat- 
ing the maximum number of steps that an iterate can take to reach 1. We do this by using 
precomputed results, the value of steps for all known peaks. This is an application of Bentley's 
space-for-time rule 2 "store precomputed results." (This strategy is classically called "dynamic 
programming" [11, Chapter 5].) To see this as an instance of Bentley's strategy, one has to 
imagine that our search algorithms was originally recursive, checking the precomputed results 
on each call. This recursive process is then transformed to an iterative one (Bentley's procedure 
rule 4). Then as above, one notes that the check only has to be made after division by 2. 

The main idea behind our first faster iteration algorithm, discussed in Section 2.3.1, can be 
thought of as Bentley's expression rule 2 "exploit algebraic identities." The algebraic identity 
that a division by a power of two can be implemented by a shift. Since after the shift it is known 
that the result is odd, Bentley's logic rule 5 ~'boolean variable elimination" is used remove the 
test to see whether the number is odd. This also allows the remaining tests to be done less often, 
as described above. 

The composite polynomials, discussed in Section 2.3.2, are an application of Bentley's space 
for time rule 2 "store precomputed results". However, Bentley does not describe this kind of use 
of precomputed results--taking one large step instead of several small steps. As Bentley notes, 
applying one optimization can often pave the way for others; this was certainly true of using the 
polynomials. For example, we also used the polynomials to invent a priori cutoffs. As Table 3 
shows, increasing the bits considered in the polynomials used in the a priori cutoffs trades an 
increase in space for an increase the effectiveness of the cutoff (hence decreased time). 

We also used Bentley's expression rule 4 "pairing computation" to search for peaks in steps and 
maz_value at the same time. Finally, we also used his procedure rule 5 '~parallelism" extensively, 
although we did not discuss that aspect of our programs in Section 2; see [8]. 

A final conclusion is that even with the ability to distribute the search programs on many fairly 
fast computers, and even with the ability to run such programs for years (literally), algorithmic 
improvements are necessary to achieve interesting results. Finding a peak becomes more and 
more rare as the search progresses towards infinity. To maintain interest in such a program, one 
must make continual improvements in its speed, so that the results appear at a more or less 
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constant rate. Without such algorithmic improvements as described above, the programs would 
never have been able to search into the trillions within our lifetimes. 

That such a simple problem could exhibit such interesting mathematics was wholly surprising 
and a source of great pleasure. 
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A P P E N D I X  A 
TABLES OF PEAKS 

This appendix contains tables of results from the various search programs. 

A.I. Peaks in More than One Statistic 

A few numbers have been found to be peaks in several statistics. In a sense, these are the most interesting 
numbers we found. 

Tables 8-10 list the peaks in both steps and total stopping time; these are known to be identical up to 12.3 
billion (12.3 × 109). 

Table 4 lists numbers that are peaks in other combinations of statistics; each entry is filled in if the number is 
a peak in the corresponding function and left empty otherwise. 

Table 4. Peaks in more than one statistic. 

• tepo(n) .(n) m,,_,alue(n) 
1 0 0 1 

2 1 1 2 

3 7 4 16 

7 16 7 52 

27 111 59 9,232 

703 170 81 250,504 

26,623 307 106,358,020 

270,271 164 24,648,077,896 

626,331 508 176 

63,728,127 949 376 

12,235,060,455 1,184 547 

A.e. Maximum Values 

The peaks in mar-value are listed in Tables 5 and 6. These tables are complete up to 56 trillion (5.6 × 1013). 
The ppalt, up to  100 billion (100 × 10 ~) have been verified by two programs. Mike Vermeulen's program found all 
the peaks above 100 billion. 

Of pa r t i~ Ia r  interest here are the peaks at 27, 6,631,675, 319,804,831, and 3,716,509,988,199. Also listed in 
the tables is the ratio of the peak's maximum wdue reached to the previous maximum v,due reached (labeled 
"ratio") and the approxim,~te expansion factor (labeled s(n)), where a(n) is m~_~alue(n)/(2n). 
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Table 5. Peaks in m~.,~61~e up to n -- 5,000,000. 

n rna=_,41~e(n) ratio *(n) 

I 

2 

3 

7 

15 

27 

255 

447 

639 

703 

1,819 

4,255 

4,591 

9,663 

20,895 

26,623 

31,911 

60,975 

77,671 

113,383 

138,367 

159,487 

270,271 

665,215 

704,511 

1,042,431 

1,212,415 

1,441,407 

1,875,711 

1,988,859 

2,643,183 

2,684,647 

3,041,127 

3,873,535 

4,637,979 

1 0.5 

2 2.0 0.5 

16 8.0 2.7 

52 3.3 3.7 

160 3.1 5.3 

9,232 57.7 1.7 X 102 

13,120 1.4 2.5 X I01 

39,364 3.0 4.4 X I01 

41,524 1.1 3.2 X 101 

250,504 6.0 1.8 X 102 

1,276,936 5.1 3.5 X 102 

6,810,136 5.3 8.0 X 102 

8,153,620 1.2 8.9 X 102 

27,114,424 3.3 1.4 X 103 

50,143,264 1.8 1.2 X 103 

106,358,020 2.1 2.0 X I03 

121,012,864 1.1 1.9 X 10 z 

593~279,152 4.9 4.9 × 103 

1,570~824,736 2.6 1.0 X 104 

2,482,111,348 1.6 1.1 X 10 a 

2,798,323,360 I . I  1.0 X 104 

17,202,377,752 6.1 5.4 X 10 4 

24,648,077,896 1.4 4.6 X 104 

52,483,285,312 2.1 3.9 X 104 

56,991,483,520 1.1 4.0 X 104 

90,239,155,648 1.6 4.3 X 104 

139,646,736,808 1.5 5.8 X 104 

151,629,574,372 1.1 5.3 X 104 

155,904,349,696 1.0 4.2 X 104 

156,914,378,224 1.0 3.9 X 104 

190,459,818,484 1.2 3.6 X 104 

352,617,812,944 1.9 6.6 X 104 

622,717,901,620 1.8 1.0 X 105 

858,555,169,576 1.4 1.1 X 10 s 

1,318,802,294,932 1.5 1.4 X 105 
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Table 6. Peaks in m~_e*lle from n = 5,000,030 upwards. 

m~_,,t ,e( . )  r ~ o  o(~) 
5,656,191 2,412,493,616,608 1.8 2.1 x l 0  s 

6,416,623 4,799,996,945,368 2.0 3.7 x los  

6,631,675 60,342,610,919,632 12.6 4.5 × 10 e 

19,638,399 306,296,925,203,752 5.1 7.7 x los 

38,595,583 474,637,698,851,092 1.5 6.1 x 10 e 

80,049,391 2,185,143,829,170,100 4.6 1.4 x 107 

120,080,895 3,277,901,576,118,580 1.5 1.4 × 107 

210,964,383 6,404,797,161,121,264 2.0 1.5 x 107 

319,804,831 1,414,236,446,719,942,480 220.8 2.2 x 109 

1,410,123,943 7,125,885,122,794,452,160 5.0 2.5 × 109 

8,528,817,511 18,144,594,937,356,598,024 2.5 1.1 × 109 

12,327,829,503 20,722,398,914,405,051,728 1.1 8.4 x 108 

23,035,537,407 68,838,156,641,548,227,040 3.3 1.5 × 109 

45,871,962,271 82,341,648,902,022,834,004 1.2 9.0 x 10 s 

51,739,336,447 114,639,617,141,613,998,440 1.4 1.1 × 109 

59,152,641,055 151,499,365,062,390,201,544 1.3 1.3 x 109 

59,436,135,663 205,736,389,371,841,852,168 1.4 1.7 x 109 

70,141,259,775 420,967,113,788,389,829,704 2.0 3.0 x 109 

77,566,362,559 916,613,029,076,867,799,856 2.2 5.9 × 109 

110,243,094,271 1,372,453,649,566,268,380,360 1.5 6.2 x 109 

204,430,613,247 1,415,260,793,009,654,991,088 1.0 3.4 × 109 

231,913,730,799 2,190,343,823,882,874,513,556 1.5 4.7 x 109 

272,025,660,543 21,948,463,635,670,417,963,748 10.0 4.0 × 101° 

446,559,217,279 39,533,276,910,778,060,381,072 1.8 4.4 × 101° 

567,839,862,631 100,540,173,225,585,986,235,988 2.5 8.8 x 10 l° 

871,673,828,443 400,558,740,821,250,122,033,728 4.0 2.3 × 1011 

2,674,309,547,647 770,419,949,849,742,373,052,272 1.9 2.9 × 1011 

3,716,509,988,199 207,936,463,344,549,949,044,875,464 269.9 5.6 x 1013 

9,016,346,070,511 252,229,527,163,443,335,194,424,192 1.21 2.7 x 1013 

A.3. Steps and Tof,,I Stopping Time 

Peaks in steps are listed in Tables 8-10. These tables are complete up  to 56 trillion (5.6 × 101s). The  peaks 
up to 100 billion (100 × los)  have been verified by two programs. Mike Vermeulen's program found All the peaks 
above 100 billion. It seems t ha t  every peak in steps is also a peak in total  s topping time, ~oo, a l though we have 
only verified this conjecture up to 12.3 × 109. Tha t  is Tables 8-10 also contain all peaks in total  s topping t ime up 
to 12.3 billion. 

Also listed in these tables are the difference between each peak's  number  of steps and  the previous peak's  
number  of steps, the value of the stopping time ~(n) ,  the value of ~oo(n), and  the maximum value reached. Many 
of the peaks in steps have the same maz_~ahte, and hence their  trajectories are identical after a certain number  
of i terations.  For example, H(e)(27) = 94 = H(1°)(73). 

Of par t icnlar  interest  here are the  peaks at  n equal to 27, 63,728,127, and  3,743,559,068,799 which have large 
increments  in the  number  of steps and  the peaks tha t  are simply twice the previous peak in steps, found in Table 7. 

A.~. Sfoppino Time 

Peaks in s topping time, Gr, are not  necessarily peaks in step,, and  conversely peaks in steps are not  necessarily 
peaks in stopping time. The  same remark applies to total  s topping time. 

Table 11 lists the  peaks in stopping time. The  list is complete up  to 6.8 trillion (6.8 × 1012); however, only the 
peaks up to 1.043 trillion (1.043 × 101~) are confirmed by two programs. The  most  interesting of these peaks is 
12,235,060,455. 

Also listed me the  difference between each peak's  s topping t ime and  the stopping t ime of the previous peak 
(labeled "diff."), the value of steps for tha t  peak, the total  s topping t ime ~roo, and  the maximum value reached. 
Urdike the peaks in steps, the  max imum values reached by these peaks rarely repeat.  

24s11-6 
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2 

3 

6 

7 

9 

18 

25 

27 

54 

73 

97 

129 

171 

231 

313 

327 

649 

703 

871 

1,161 

2,223 

2,463 

2,919 

3,711 

6,171 

10,971 

13,255 

1~,647 
23,529 

26,623 

34,239 

35,655 
52,527 

77,o31 

Table T. Even peaks in Iteps. 

pc.t(.) .,p.(~) 
2 

6 

18 

54 

31,466,382 

127,456,254 

53T,099,606 

1,341,234,558 

9,780,657,630 

63,389,366,646 

404,970,804,222 

7,487,118,137,598 

Table 8. Peaks in stepa 

1 

8 

20 

112 

705 

950 

965 

98T 

1,132 

1,220 

1,308 

1,550 

up to n = 100, O00. 

.-p.(~) 
0 

1 

7 

8 

16 

19 

20 

23 

111 

112 

115 

118 

121 

124 

127 

0 0 1 

1 1 1 2 

6 4 5 16 

1 1 6 16 

8 7 11 52 

3 2 13 52 

1 1 14 52 

3 2 16 88 

88 59 TO 9,232 

1 1 71 9,232 

3 2 73 9,232 

3 2 75 9,232 

3 2 77 9,232 

3 5 79 9,232 

3 12 81 9,232 

130 3 2 83 9,232 

143 7 21 91 9,232 

144 1 2 92 9,232 

170 26 81 108 250,504 

178 8 35 113 190,996 

181 3 2 115 190,996 

182 1 8 116 250,504 

208 26 21 132 250,504 

216 8 26 137 250,504 

23T 21 37 150 481,624 

261 24 58 165 975,400 

267 6 8 169 975,400 

275 8 8 174 497,176 

278 3 73 176 11,003,416 

281 3 2 178 11,003,416 

307 26 65 194 106,358,020 

310 3 92 196 18,9T6,192 

323 13 135 204 41,163,712 

339 16 18 214 106,358,020 

350 11 89 221 21,933,016 
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Table 9. Peaks in atep# from n = 100,000 to n = 5,000,000,000. 

n , , p , ( , )  d~. ~(~) . . ( . )  , , ~ . , , I , , ( , )  
106,239 

142,587 

156,159 

216,367 

230,631 

410,011 

511,935 

626,331 

837,799 

1,117,065 

1,501,353 

1,723,519 

2,298,025 

3,064,033 
3,542,887 
3,732,423 
5,649,499 

6,649,279 
8,400,511 

11,200,681 

14,934,241 
15,733,191 
31,466,382 

36,791,535 
63,728,127 

127,456,254 

169,941,673 

226,588,897 

268,549,803 

537,099,606 

670,617,279 

1,341,234,558 

1,412,987,847 

1,674,652,263 

2,610,744,987 

4,578,853,915 

4,890,328,815 

353 3 97 223 104,674,192 

374 21 24 236 593,279,152 

382 8 37 241 41,163,712 

38.5 3 83 243 11,843,332 

442 57 73 278 76,778,008 

448 6 75 282 76,778,008 

469 21 16 295 76,778,008 

508 39 176 319 7,222,283,188 

524 16 105 329 2,974,984,576 

527 3 2 331 2,974,984,576 

530 3 2 333 90,239,155,648 

556 26 176 349 46,571,871,940 

559 3 2 351 46,571,871,940 

562 3 2 353 46,571,871,940 

583 21 180 366 294,475,592,320 

596 13 8 374 294,475,592,320 

612 16 116 384 1,017,886,660 

664 52 146 416 15,208,728,208 

685 21 214 429 159,424,614,880 

688 3 2 431 159,424,614,880 

691 3 2 433 159,424,614,880 

704 13 8 441 159,424,614,880 

705 1 I 442 159,424,614,880 

744 39 34 466 159,424,614,880 

949 205 376 592 966,616,035,460 

950 1 1 593 966,616,035,460 

953 3 2 595 966,616,035,460 
956 3 2 597 966,616,035,460 

964 8 5 602 966,616,0.35,460 

M5 1 1 603 966,616,035,460 

986 21 18 616 966,616,035,460 
987 1 1 617 966,616,035,460 

1,000 13 8 625 966,616,035,460 

1,008 8 13 630 966,616,035,460 

1,0.50 42 46 6.56 966,616,035,460 

1,087 37 81 679 966,616,035,460 

1,131 44 135 706 319,497,287,463,520 
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T.~ble 10. Peaks in Jfepm f r o m .  = 5,000,000,000 upwards. 

. ,.p.(.) ~r. ~(.) ~oo(-) ....-..~-(-) 
9,780,657,630 

12,212,032,815 
12,235,06o,455 
13,371,194,52T 
17,828,259,369 
31,664,683,323 
03,389,366,646 
75,128,138,247 

133,561,134,663 
158,294,678,119 
166,763,117,679 
202,48~,402,111 
404,970,804,222 
426,635,908,975 
568,847,878,633 
674,120,078,379 
881,T15,740,415 
989,345,275,647 

1,122,382,791,663 
1,444,338,092,271 
1,899,148,164,679 
2,081,751,768,559 
2,775,669,024,745 
3,700,892,032,993 
3,743,559,068,T99 
7,487,118,137,598 
7,887,663,552,367 

10,516,884,736,489 
14,022,512,981,085 
19,536,224,150,271 
26,262,557,464,201 
27,667,550,250,351 
38,903,934,249,727 
48,575,069,253,735 

51,173,735,510,107 

1,132 1 1 707 319,497,287,463,520 

1,153 21 15 720 319,497,287,463,520 

1,184 31 547 739 1,037,298,361,093,936 

1,210 26 62 755 319,497,287,463,520 

1,213 3 2 757 319,497,287,403,520 

1,219 6 7 761 319,497,287,463,520 

1,220 1 1 762 319,497,287,403,520 
1,228 8 7 767 319,497,287,403,520 

1,234 6 10 771 319,49Tt28T,463,520 
1,242 8 15 776 319,49T,28T,463,520 

1,255 13 35 784 319,497,287,463,520 

1,307 52 270 816 2,662,567,439,048,656 
1,308 1 1 817 2,662,567,439,048,656 

1,321 13 40 825 2,662,567,439,048,656 
1,324 3 2 827 2,662,567,439,048,656 
1,332 8 5 832 2,662,567,439,048,656 
1,335 3 329 834 5,234,135,688,127,384 
1,348 13 165 842 1,219,624,271,099,764 
1,356 8 16 847 2,662,567,439,048,656 
1,408 52 202 879 1,219,624,271,099,764 

1,411 3 72 881 1,037,298,361,0~3,936 
1,437 26 606 897 79,988,992,034,030,705,960 
1,440 3 2 899 79,988,992,024,030,705,960 
1,443 3 2 901 79,988,992,034,030,705,960 
1,549 106 65 966 79,988,992,024,030,T05,960 
1,550 1 1 967 79,988,992,024,030,705,960 
1,503 13 70 975 79,988,992,034,030,705,960 
1,566 3 2 977 T9,988,992+024,030,T05,960 
1,569 3 2 979 79,988,992,024,030,705,960 
1,585 16 327 989 3,813,091,869,769,158,724 
1,588 3 2 991 79,988,992,024,030,705,960 
1,601 13 I0 999 79,988,992,024,030,705,960 
1,617 16 211 1 , 0 0 9  1,180,174,841,128,253,392 
1,638 21 13 1 , 0 2 2  1,180,174,641,128,253,392 
1,651 13 21 1 , 0 3 0  1,180,174,841,1 28,2r~3,392 
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Table 11. Peaks in stopping time, ¢. 

I 0 0 0 

2 1 1 1 1 

3 4 3 7 5 
7 7 4 16 11 

27 59 52 111 70 

703 81 22 170 108 

10,087 105 24 223 142 

35,655 135 30 323 204 

270,271 164 29 406 256 

362,343 165 I 360 228 

381,727 173 8 373 236 

626,331 176 3 508 319 

1,027,431 183 7 377 239 

1,126,015 224 41 527 331 

8,088,063 246 22 566 356 

13,421,671 287 41 608 382 

20,638,335 292 5 694 435 

26,716,671 298 6 658 413 

56,924,955 308 I0 742 465 

63,728,127 376 68 949 592 

217,740,015 395 19 793 395 

1,200,991,791 398 3 873 547 

1,827,397,567 433 25 928 581 
2,788,008,987 447 14 944 591 

12,235,060,455 547 100 1,184 739 

898,696,369,947 550 3 1,136 712 

2,081,751,768,559 606 56 1,437 897 

I 

2 

16 

52 

9,232 
250,504 

2,484,916 
41,163,712 

24,648,077,896 
565,335,124 
565,335,124 

7,222,263,188 

17,808,240,724 

90,239,155,648 
16,155,154,672 

1,591,706,254,336 

89,243,211,616 
3,696,858,621,088 
7,209,046,267,252 

966,616,035,460 
2,516,021,527,120 

35,681,506,677,550 
118,736,698,851,769,012 

81,887,769,175,732 
1,037,298,361,093,936 

791,612,079,014,220,715,456 
79,988,992,024,030,705,960 


