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Tissue concentrations of endogenous chemicals and nutrients are in large part regulated by membrane
transporters through their substrate specificity and differential tissue distributions. These transporters
also play a key role in the disposition of therapeutic agents thus affecting their efficacy and safety profile.
A transporter-mediated tissue targeting strategy, where the structural features recognized by the trans-
porters are incorporated into the therapeutic molecule, is emerging as an effective approach in drug dis-
covery. In this digest, we review this phenomenon and highlight recent cases in the design of liver and
kidney targeted drug molecules.
� 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
The efficacy and safety profile of drugs are dictated by their tar-
get selectivity, pharmacokinetics, tissue distribution and free drug
concentrations in targeting organs. Many efficacious compounds
fail in development due to adverse responses derived from expo-
sure in non-targeted organs.1 Tissue-selective delivery of pharma-
cological agents is emerging as an effective approach to enhance
the efficacy and improve the therapeutic window in drug discov-
ery. Delivery of active molecules to targeted organ by tissue-
targeted carrier including antibody, peptide, aptamer, micelles or
nanoparticles, has been explored over the years.2–6 The subsequent
diffusion of the released active molecule into systemic circulation
has limited the application of these platforms. In addition, the
identification of carriers with appropriate ADME properties
remains a major hurdle in the field.

Tissue concentrations of endogenous chemicals and nutrients
are in large part regulated through their structure-dependent
interactions with the networks of influx and efflux membrane
transporters. Local disposition of chemicals is also directly affected
by protein binding, passive partitioning into lipid and membrane
matrix, and sequestration by lysosomes in their acidic pH environ-
ment. Over 400 membrane transporters are involved in the forma-
tion of the traffic networks through their differential distribution
throughout the body. The ATP-binding cassette transporters
(ABC-transporters) use the energy from ATP hydrolysis to direct
their substrates movement. Most solute carrier protein (SLC)
transporters mediate the influx of their substrates either by facili-
tated diffusion as a channel, or by active transport against concen-
tration gradient with coupled ion exchange as driving force. Over
the years, knowledge of the identity, substrate specificity, and
the distribution profile of these influx and efflux transporters
across species has increased considerably.7,8 A transporter-medi-
ated tissue-targeting strategy, where the structural features recog-
nized by the transporters are incorporated into the therapeutic
molecule design, is emerging as an effective approach in drug dis-
covery. In this digest, we review this phenomenon and highlight
recent cases in the design of liver and kidney targeted drug
molecules.

Liver targeting: Orally ingested drugs reach the liver after
absorption in the intestine mainly via the portal blood before their
distribution into the systemic circulation. A high blood flow (�1 L/
min in human) carries nutrients and other chemicals into the liver
for metabolic processing and/or re-distribution to other organs. A
number of organic cation and anion transporters are highly
expressed on intestinal enterocytes and hepatocytes and mediate
the uptake of these nutrients through their selective and overlap-
ping substrate specificity. Organic cation transporter 1 (OCT1),
organic anion transporter 2 (OAT2), sodium taurocholate co-trans-
porting polypeptide (NTCP), and organic anion transporting poly-
peptide protein 1B1 (OATP1B1) and 1B3 (OATP1B3) are highly
expressed in liver. The existence of these abundant and tissue spe-
cific transporters provides opportunities to explore liver-targeted
drug design, utilizing the core structure recognition elements on
their substrates. Expression analysis of key drug transporters from
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Table 2
Transporter specificity of some statins

Compounds Transporter specificity Refs.

Atorvastatin (1) OATP1B1 15
Pravastatin (2) OATP1B1, OATP1B2 16
Rosuvastatin (3) OATP1B1, 1B3, 2B1, NTCP 17
Pitavastatin (4) OATP1B1, OATP1B3 18

Table 1
Major OATP transporter distribution in human8,9

Transporter Tissue distribution

OATP1A2 Brain and retina
OATP2B1 Liver, kidney, intestine, lung, placenta
OATP1B1 Liver
OATP1B3 Liver
OATP4C1 Liver, kidney
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mouse, rat, dog, monkey and human has revealed the presence of
both overlapping and species-specific distribution patterns
(Table 1). Therefore the capacity of these common transporters
needs to be further evaluated to facilitate the design of tissue-tar-
geted molecules with well understood cross species difference and
low potential risk of drug-drug interaction.8,9

Statins: Statins are a class of competitive inhibitors of 3-
hydroxy-3-methyl-glutaryl coenzyme-A (HMG-CoA) reductase,
the rate-limiting enzyme in cholesterol biosynthesis highly
expressed in liver. Earlier systemically distributed HMG-CoA
reductase inhibitors reduced cholesterol but also caused a number
of dose-limiting adverse responses in animal studies. Drug leakage
into the muscle is thought to be associated with the incidence of
myopathy.10,11 Statins used in the clinic are liver-targeted mole-
cules, with the restricted tissue disposition feature essential for
their clinic tolerability. Statins are substrates of OATPs that are
highly expressed in the liver and intestines. Most OATP substrates
are anionic amphipathic molecules as exemplified by bile acids.
The beta-hydroxy heptanoic acid moiety, shared among many stat-
ins (Fig. 1), is the core structural element for the reversible binding
in the active site of HMG-CoA reductase. It also serves as the hom-
ing moiety for liver-targeting through its interaction with the OATP
transporters. With a similar unbound free fraction of 4% in plasma
and liver, the liver concentrations of atorvastatin (1) in rats
reached 50–60 and 160–420-fold higher over that in plasma and
muscle respectively.12 Altered plasma drug exposure has been
observed for some statins in subjects with OATP1B1 polymorphism
or upon the co-administration of other OATP1B1 inhibitors, impli-
cating its dominant contribution in regulating their disposi-
tions.13,14 These observations also reveal the importance of
utilizing multiple transporter networks in the design of tissue-tar-
geted molecules to mitigate the risk of drug–drug interaction.

In addition to OATP1B1, other OATPs with an overlapping sub-
strate recognition feature also contribute to the uptake and enrich-
ment of many statins in liver (Table 2). After initial absorption in
intestine and uptake by liver via the portal blood, pravastatin (2)
and pitavastatin (4) are excreted into bile and reabsorbed in the
gut, forming an entero-hepatic recirculation circuit. This recycling
process, on top of the transporter-mediated direct uptake in
hepatocytes, contributes significantly to their enhanced liver
Figure 1. Statins.
exposure.19 Studies of the lactone (prodrug) and acid forms of stat-
ins (5 and 6, Fig. 2) demonstrated the interconversion between the
two forms influences their transporter interaction and contributes
to their pharmacokinetic difference.20

Glucokinase activators: Glucokinase (GK) converts cellular glu-
cose to glucose-6-phosphate for subsequent metabolism and
serves as a key regulator of glucose homeostasis. Small molecule-
based allosteric activators of GK in liver promote hepatic glucose
uptake, reduce hyperglycemia, and they may represent promising
opportunity in the treatment of type 2 diabetes (T2D).21 However,
earlier systemically distributed GK-activators suffered from a dose-
limited hypoglycemia response, from excessive GK activation in
pancreatic b-cells leading to insulin overproduction.22,23 To
mitigate the risk of the excessive GK activation in pancreas,
liver-targeted carboxylic acid-containing GK-activators were
designed with a preferential activation of the enzyme in
hepatocytes over that in pancreatic b-cells. Besides a low passive
permeability to minimize distribution into extra-hepatic tissues,
these molecules were optimized as OATP substrates for enhanced
liver uptake. These efforts resulted in the discovery of hepato-
selective GK-activators.24 Replacing the methyl with the carboxylic
acid in the systemically distributed 7 (Fig. 3) led to the liver-
selective compound 8, a potent GK-activator with a >50-fold
liver-to-pancreas ratio of tissue distribution in rodent and non-
rodent species. In contrast to compound 7, compound 8 reduced
fasting and postprandial glucose with no hypoglycemia in diabetic
models, leading to its selection as a development candidate for
treating diabetes.25

Stearoyl-CoA desaturase-1(SCD1) inhibitors: Another recent
example of liver-targeted molecules is the design of SCD1 inhibi-
tors by scientists at Merck Frosst Laboratories. SCD1 is a long chain
fatty acyl-CoA desaturase highly expressed in liver, and mainly
responsible for the de novo production of oleic acid. Elevated
SCD1 activity is associated with obesity and several forms of can-
cers. SCD1 inhibition reduces de novo lipogenesis and improves
insulin sensitivity in obese diabetic models. SCD1 inhibitors repre-
sent promising agents in the treatment of several disorders includ-
ing type 2 diabetes, nonalcoholic steatohepatitis (NASH) and
cancers. However, systemic SCD1 inhibition also causes dose-lim-
iting adverse responses of dry skin and hair loss in association with
excessive local lipid depletion.26 To mitigate these adverse events
while maintaining therapeutic effects, liver-selective SCD1 inhibi-
tors were designed using a set of complementary assays to guide
the optimization of structure–activity-relationship (SAR). First,
compounds with enhanced potency in hepatocytes over HepG2
cells were selected in a direct target-engagement based cell assay,
Figure 2. Simvastatin lactone and simvastatin acid.



Figure 5. Renal selective alkylglucoside.Figure 3. Glucokinase activators from Pfizer.

J. Zhou et al. / Bioorg. Med. Chem. Lett. 25 (2015) 993–997 995
leveraging the high preservation of drug transporters in fresh
hepatocytes. Concurrently, compounds with low passive cell
permeability were selected to minimize diffusion-mediated
non-selective tissue disposition. In addition, a tracer-based direct
target-engagement assay in liver was used to guide the SAR opti-
mization in vivo. This effort led to the identification of MK-8245
(Fig. 4 and 9), a tetrazole acetic acid-based liver-targeted SCD1
inhibitor. Compound 9 is a substrate of OATP1B1 and OATP1B3,
with a liver-to-plasma distribution ratio of >10-fold and a liver-
to-skin ratio of >30-fold across a number of species including
mouse, rat, dog and monkey. In contrast to the systemically dis-
tributed compound 10 which caused severe hair loss, skin and
eye abnormalities within 7 days of oral treatment in DIO mice,
compound 9 did not elicit any of these adverse responses
after 4-weeks of daily dosing at efficacious doses, leading to its
selection as a clinic candidate for the treatment of diabetes and
dyslipidemia.27,28

In summary, both liver-targeted enzyme inhibitors and alloste-
ric activators have been successfully designed by embedding the
core structure recognition elements of OATP substrates. This
approach has emerged as a practical strategy to enhance liver
exposure over other organs for enhanced efficacy or improved
therapeutic window.

Kidney targeting: Kidney is the key organ involved in the bal-
anced regulation of nutrients, water and electrolytes in the body
through filtration, secretion and reabsorption. When blood enters
the afferent arteriole, approximately 20% of the volume is filtered
by the glomerulus into the nephron. The rest returns to the peritu-
bular capillaries and back to the trunk blood. In a healthy adult, the
glomerular filtration rate (GFR) is about 180 L/day. Substances
with low plasma protein binding are filtered into the renal tubule
including salts, glucose, amino acids, urea, and other metabolites.
Most electrolytes, amino acids, glucose and peptides are reab-
sorbed during their transit in the tubule space through active
transporters or osmotic gradient, with less than 1% of the total fluid
passing through kidney is excreted as urine. Tubular secretion, the
process of transferring chemicals from peritubular capillaries to
the tubular lumen involves multiple transporters including OCT,
OAT, OATP, sodium phosphate transporter (NPT) and ABC-trans-
porters.29 Despite an increasing knowledge of their expression
and substrate specificity, little has been published on how to lever-
age these transporters for targeted delivery of molecules to kidney.

During earlier searches for a kidney-targeting platform, alkyl
glucosides were found to be effective vectors with an optimal chain
length from 7 to 11 carbon units, with the fluorescent analog of
Figure 4. SCD-1 inhibitors.
Glc-S-C8-NBD (Fig. 5 and 11) being 200-times more concentrated
in kidney over plasma.30,31 The origin of this chain length depen-
dency, which may implicate the involvement of a transporter-
mediated process, remains unresolved. Interestingly, these alkyl
glucosides also inhibited a sodium glucose co-transporter (SGLT)-
like activity in kidney brush border membrane vesicle (BBMV).32

As far as renal targeting using a sugar moiety is concerned, its dis-
covery may trace back to Phlorizin (Fig. 6 and 14) which contains
an O-glucoside moiety. It was first isolated in 1835 from the bark
of apple trees and only recently identified as a dual SGLT1 and
SGLT2 inhibitor.

Among the multiple glucose transporters in kidney, SGLT2
is a high capacity/low affinity (Km �2 mM) transporter highly
Figure 6. SGLT2 inhibitors.



Figure 7. Proposed scheme illustrating the key components in transporter-
mediated drug enrichment in kidney. The different uptake transporters of glucose
on the tubule epithelium (SGLT-2, SGLT-1, etc) are represented as [A]. The putative
transporters to take up glucoside-like structure are represented as [B]. In
post-glomerular tubule fluid, the filtered drugs (with high affinity to glucose-
transporters) will accumulate in tubular lumen through binding to highly expressed
transporter [A]. Meanwhile active uptake of drug molecules along the tubule by
transporter [B] enables local enrichment of drug concentration.
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expressed in the apical membrane of the renal proximal tubule (S1
segment).33,34 Approximately 90% of glucose post filtration in rat is
reabsorbed through SGLT2 and the rest of glucose is reabsorbed via
the high affinity SGLT1 glucose transporter in the distal tubule seg-
ment. Genetic deletion of SGLT2 leads to daily loss of up to 150 g
glucose without apparent side effects, supporting the development
of SGLT2 inhibitors for treating diabetes.35 By suppressing glucose
reabsorption in the proximal tubules and enhancing glucose loss
in the urine, inhibition of SGLT2 lowers blood glucose and also
reduces overall caloric load. Dapagliflozin (12), Canagliflozin (13)
and Ipragliflozin (18) are potent competitive SGLT2 selective inhib-
itors with IC50 of 5 nM, 2 nM and 7 nM, respectively.36,37 The gluco-
side moiety, shared among SGLT2 inhibitors, has been recognized as
the core structural element in eliciting the high affinity interaction
with SGLT2 transporter. The prodrug T-1095 (15), Remogliflozin
(16) and Sergliflozin (17) share the same O-glucoside motif as in
Phlorizin (14). Modifying the aryl region of these O-glucosides
can improve selectivity over other glucose transporters (SGLT1,
SGLT3, SGLT6, GLUT1, GLUT12) as exemplified by Remogliflozin
and Sergliflozin.38–42 The O-glucoside linkage can be hydrolytically
labile in vivo via a potential b-glucosidase-mediated cleavage.
Replacing it with the C-glucoside linkage overcomes this potential
liability which leads to the discovery of C-glucosyl SGLT2 inhibitors,
Dapagliflozin (12) and Canagliflozin (13). These two drug molecules
reduce HbA1c and cause weight loss in obese diabetic patients.
Since their mode of action in lowering glucose is independent on
the degree of insulin deficiency or insulin resistance, SGLT2 inhibi-
tors are complementary to other anti-diabetic medications. Other
C-glucosides, LX-4211 (19), TS-071 (20) and Ertugliflozin (21), have
also been nominated for clinical evaluation.43–46

In spite of an extensive SAR knowledge on SGLT2 inhibitors,
there is little literature on their renal disposition in relationship
to the local target engagement. Some SGLT2 inhibitors were
reported to maintain high drug concentrations in kidney. For
example, TS-071 (20) has a kidney-to-plasma ratio of 24–35 folds
with its main elimination via liver metabolism in rat.47 However,
the underlining mechanism that induces enhanced renal disposi-
tion for this type of molecules remains unknown. High expression
level of SGLT2 in renal proximal tubule surface is one of the factors,
inferring from the mouse kidney membrane proteins containing
�15 pmole of high affinity 3H-dapagliflozin binding site.48 In addi-
tion to the renal enrichment profile, several SGLT2 inhibitors share
a low renal clearance rate across species.49,50 Despite of low renal
clearance, effective urinary glucose excretion can be achieved after
a single dose of these SGLT2 inhibitors which reflects substantial
local target engagement. These phenomena are suggestive of
extensive retention or recirculation of the drug molecules during
the tubule transition.

In view of these evidences, it is tempting to propose the pres-
ence of a transporter-mediated drug enrichment process for the
glucosyl-containing molecules in the renal tubular space of kidney
as illustrated by the Scheme in Figure 7. In this scheme, transporter
[A] represents different uptake transporters of glucose (SGLT2,
SGLT1, etc) that are highly expressed on the renal tubule
epithelium. Inhibitors from glomerular filtration directly bind to
transporter [A] with high affinity to block transcellular glucose
flux. These drug molecules passing down the tubule could be
re-absorbed by putative transporter [B] into the peri-tubular capil-
laries and possibly recirculate back to tubule fluid after systemic
circulation. This transporter mediated reabsorption in couple with
recirculation process may contribute significantly to the high drug
level in kidney. The glucoside structure of the kidney-targeting
molecules might be a common structural motif for transporter rec-
ognition. It would be interesting to test if the chain length depen-
dency of the renal enriched alkyl glucosides (i.e., compound 11) is
partially coupled to this process.
Prospective and summary: In summary, selective tissue targeting
as a systematic approach to improve efficacy and reduce adverse
effects has been widely recognized. Some principles, based on
the accumulating knowledge during the development of liver-
targeted compounds, are being actively explored for the design of
compounds with preferred tissue distribution. Different classes of
liver-targeted drugs have been developed to improve therapeutic
window through specific substructure recognition by the liver-
enriched high capacity transporters. Analysis of recent literature
suggests that the kidney disposition of glucosyl-containing SGLT2
inhibitors may be impacted by the active transport via renal
SGLT-like transporters, despite the lack of direct evidence. Here
we propose that a transporter-mediated local enrichment process
might occur in the renal tubular space for some transporter-sub-
strate analogs, leading to an enhanced renal disposition. To date,
there is a limited literature on selectively targeting tissues beyond
liver and kidney. We would like to encourage the exploration of
transporter-mediated tissue-targeting strategy more proactively.
It is therefore of importance to gain further knowledge on the
expression pattern and their substrate recognition feature of these
transporters for the future design of tissue-targeted molecules.
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