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ABSTRACT 

Applying Baxter’s method of the Q-operator to the set of Sekiguchi’s commuting partial differential 
operators we show that Jack polynomials Py”) (x1, , xn) are eigenfunctions of a one-parameter 
family of integral operators Qz. The operators Qz are expressed in terms of the Dirichlet-Liouville 
n-dimensional beta integral. From a composition of n operators Q, we construct an integral op- 
erator S, factorising Jack polynomials into products of hypergeometric polynomials of one vari- 
able. The operator S, admits a factorisation described in terms of restricted Jack polynomials 
Pf’g)(xi, . . ..xk. 1, . . . . 1). Using the operator QZ for z = 0 we give a simple derivation of a previously 
known integral representation for Jack polynomials. 

1. INTRODUCTION 

The method of Q-operator has been introduced by Rodney Baxter [3,4] who 
used it to solve the eight-vertex model. Baxter’s original Q-operator was a finite 
matrix, which commuted with the transfer-matrix of the model. Later on, Pas- 
quier and Gaudin [31] discovered a connection between the classical Bicklund 
transformation and a Q-operator for the periodic Toda lattice. Their Q-op- 
erator was a certain integral operator with a simple kernel. Recent develop- 
ments transformed the method into a unified approach used for solving quan- 
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turn integrable systems, with several families having been extensively treated 
(see, e.g., [5,23,8,19,32,34]). 

Let us take a quantum integrable system defined by n commuting linear par- 
tial differential (or difference) operators Hi in y1 variables, whose common ei- 
genfunctions *x(x) = !P~(xi , . . . , x~), 

(1.1) HipA = h(X)@,/(x), 

form a basis in a Hilbert space IFt. The multi-index X = (Xi, . . . . X,) is a set of 
quantum numbers labelling spectrum hi(X) and eigenfunctions P,(x). 

By definition, a Q-operator QZ depends on a parameter z E @ and satisfies 
two commutativity properties 

(14 [Qz,, Qz,] = 0 vz1>z2 E c=, 
(1.3) [Qz,&] = 0 VzEC, Vi=1 ,..., n, 

which imply that QZ can be diagonalised by the same basis functions PA(X): 

(1.4) [Qz%l(~, = BXWX(Y)~ 

The third and the most important (as well as the characterising) property of a 
Q-operator is that its eigenvalues qx(z) satisfy a linear ordinary differential (or 
difference) equation with respect to the parameter z, 

whose coefficients, apart from being functions in z, depend on the eigenvalues 
hi(X) of the commuting operators Hi. Equation (1.5) is called Baxter’s equation 
or, alternatively, the separation equation. 

An operator QZ for a quantum integrable system {Hi} is a quantization of a 
Backlund transformation for the corresponding classical integrable system. In 
the quasi-classical limit, its kernel turns into the generating function of the 
Backlund transformation, viewed as a canonical transform [31,23]. 

A separating operator S,, by definition, factorises the basis functions PA(X) 
into functions of one variable: 

(1.6) s, : 9x(x1, . . ..Xn)HC&.“(Zi), 
i=l 

CA being some normalization constants. The partial functions &‘(zi) are called 
separatedfunctions and usually satisfy a differential or difference equation like 
(1.5). Notice that, in the quasi-classical limit, the operator S, turns into a sep- 
arating canonical transformation for the corresponding Liouville integrable 
system. 

In [23], two of the authors noticed that any Q-operator gives rise to a family 
of separating operators for an integrable system. Indeed, given a Q-operator QZ 
and an arbitrary linear functional p on 3-t, one constructs a product of n such 
operators 
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(1.7) Qz = Qz, . . Qz, 

with the kernel Qz(yix) as the convolution 

(1.8) Qz(ylx) = /dtl... 1 4-l Q~,(~ltl)Q~,(tl/f2)...Q~~(t~--lIx), 

and defines an operator $;“I = pQz with the kernel 

(1.9) gqzlx) = 1 dy P(Y)Q~(YIx), 

where p(y) is the generalised function corresponding to p. It then follows from 
(1.4) and (1.6)-(1.9) that SF) is a family of separating operators (parameterised 
by the functional p) with 

(1.10) dj;)(Zi) = 4x(&) and CA = dY P(YPi,(Y). 
J’ 

A clever choice of the ‘projection function’ p(y) can, in principle, simplify the 
structure of the integral operator S, (P). Our main motivation is to study suitable 
classes of Q-operators and functions p(y) for a variety of quantum integrable 
models in order to construct simplest separating operators S, (1.6), which fac- 
torise special functions 9~ (xi, , x,). 

In the present paper, we apply the above ideas to the Calogero-Sutherland 
integrable model. In our case of study ‘FI is an appropriate Hilbert space closure 
of the space C[xi, . . ..x.lsn of symmetric polynomials in n variables, 
9x(x1, . . . . x,) are Jack polynomials and X = (Xi, . . . . X,) is a partition. 

The problem of separation of variables for the Calogero-Sutherland model 
and for its q-analogue has been addressed by the authors in a series of pub- 
lications since 1994. Many of the results presented below generalise those ob- 
tained from the studies of the few particle cases, n = 2,3,4, in 
[33,20,21,18,22,24,26,27]. 

The paper is organised as follows. Section 2 fixes notation and collects the 
necessary background information on Jack polynomials. In Section 3 we study 
the properties of Dirichlet-Liouville multidimensional beta-integrals, which 
constitute our main analytical tool. All integral operators that we construct are 
expressed in terms of these integrals. In Section 4 we introduce a Q-operator QZ 
for the Calogero-Sutherland model and derive its properties. In particular, we 
prove that Qz is diagonal in the basis of Jack polynomials. Thus, the eigenvalue 
problem Qz@~ = qx(z)CPA can be considered as an integral equation for Jack 
polynomials. In Section 5 we obtain the eigenvalues qx(z) of QZ and give for 
them several explicit expressions, including the one in terms of the generalised 
hypergeometric series. In section 6 we construct the separating operator SF) 
and show that for a special choice of the functional p = po it splits into a prod- 
uct of n operators Ai, i = 1, . . . . n, 

(1.11) sp = ,A1 . A,, 

such that each operator & acts only on k variables. Such a factorisation is an 
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example of the factorid separation chain introduced in [17] for integrable 
models of sZ(2) class. 

In Section 7 we describe another application of the Q-operator QZ. Setting 
z = 0 we show that the operator Qo leads to an integral relation between Jack 
polynomials in y1 and yt - 1 variables {xi}. Iterating this relation we produce an 
integral representation for Jack polynomials, which is equivalent to the integral 
representation due to Okounkov and Olshanski [28] who found it as a limit 
from a formula involving shifted Jack polynomials. 

2. JACK POLYNOMIALS 

This section serves an introductory purpose as it fixes notation and collects the 
necessary background information on Jack polynomials. 

Jack polynomials P$)(xi > “‘> xn) [12,13,14,16,35,25] are orthogonal sym- 
metric polynomials, discovered by Henry Jack in 1970 as a one-parameter ex- 
tension of the Schur functions sx(xi, . . . . xn). In the case QI = 2, they reduce to 
zonal polynomials constructed by James in 1960 ([15]). We shall use the pa- 
rameter g = l/a, instead of Q! as in [25], i.e. use the notation 
Py:“‘(x) z lp(Xl, . . ..x.). 

Let X = (Xi, X2, . . . . A,) E N”, Xi > X2 > . . . > A, 2 0, be a partition of an ar- 
bitrary weight 1x1, 

P-1) 1x1 = 2Xj. 
i=l 

Hereafter, we shall use the weight notation 1. I as in (2.1) for any finite sum of 
indexed variables. The dominance partial ordering 5 for two partitions p and X 
is defined as follows: 

k= l,...,y1- 1 > 

Usually (cf [25]), the length Z(X) of a partition X is the number of non-zero 
parts Ai. We shall consider the partitions X = (Xi, X2, . . . . A,) that are finite se- 
quences of exact length n, including any zero parts. For instance, (6,6,2,0) and 
(6,0,0,0) are both partitions of the length 4, while (6,6,2) and (6) have lengths 
3 and 1, respectively. The reason for this deviation from the standard definition 
is because we shall study Jack polynomials with thejinite number of variables 
and characterise them as eigenfunctions of the complete set of n commuting 
partial differential operators {Hi} in n variables. In this picture, the parts Xi are 
the labels that parameterise the spectrum and the eigenfunctions of the opera- 
tors {Hi}. The number of parts, therefore, will always be equal to the number of 
the operators Hi (or to the number of the variables xi). 

In the main text, for any partition X = (Xi, . . . . A,) of the length n, we shall 
often use the notation Xij = Xi - Ai, in particular Xi,i+i = Xi - Xi+i, i = 1, . . . . n, 
x 0. n+l = 
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In the theory of symmetric polynomials, the number n of the variables xi is 
often irrelevant because many results have been obtained for the case when this 
number is assumed to be large enough, for instance n 2 1x1, for the stabihed 
polynomials [35]. In this paper, the number n of the variables xi is a fixed finite 
number, the partition X is of the length n and has an arbitrary weight ]A/, which 
means that we shall mostly deal with the non-stabilised Jack polynomials. 

Let C(a) b, c, . .) be the field of rational functions in indeterminates a, b, c, . . 
over the field @ of complex numbers, C(a, b, c, . . .) [x, y, z, . .] be the ring of 
polynomials in the variables x, y, z, . with coefficients from C(a, b, c, . .), and 
C[xi , , xnlsn be the subring of symmetric polynomials. 

We need two standard bases in C[x]‘” labelled by partitions A. For each a = 
(al, . . . . a,) E N” let us denote by xa the monomial 

(2.3) Xa=X~‘...X,a,. 

The monomial symmetric functions mx(x) are defined by 

(24 m(x) = Cx”, 

where the sum is taken over all distinct permutations v of A. The mx(x) form a 
basis in @[xl’“. 

For each r = 0, . . . . n the vth elementary symmetric function e,.(x) is the sum of 
all products of r distinct variables xi, so that co(x) = 1 and 

(2.5) e,(x) = C xj,xjz . xj, = rn(lYpr) (x) 
lg~<...<i,gI 

forr= l,..., n. For each partition X = (Xl, . . . . A,) define the polynomials EA (x) 
as 

(2.6) EA(x) = el x1-x2(x)e~-x3(x). .e,x”(x). 

The polynomials EA(x) also form a basis in C[X]‘~ and the transition matrix 
between EA and rnx is triangular with respect to the dominance partial ordering 
(see [25], Ch. 1, Sec. 2): 

(2.7) 

where a+ E N and axx = 1. 
Jack polynomials P,J = P!‘“‘(x) E C(g)[x]‘” are homogeneous of degree ]A]: 

(2.8) P:““)(Xl, . ..) x,) = xjzx~Pj:‘qXI/X,, . . . . X,-l/X,, 1). 

They form a basis in C(g) [xl’“. The transition matrix between the bases PA and 
rnx is triangular with respect to the dominance partial ordering: 

(2.9) PA = C v+(g)m,, VA/&) E qg), VAX = 1. 
P3 

The three bases, rnx, Ex and PA, are thus mutually triangular. 
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The polynomials Pf’g’ (x) diagonalise the Sekiguchi partial differential op- 
erators [30] given by the generating function D(u; g): 

(2.10) D(u;g) = (p~n~~“2 det[$-j(x.&+ (n -&+.)I” , 
.X 1 ij=l 

(2.11) 

where 

D(u;g) p(x) = fi(Aj + (n - i)g + u) Pyqx), 
i=l 1 

(2.12) A,(x) = det [$l]~j=,= n (~j - xi) 
l<i<j<n 

is the Vandermonde determinant. Expansion (2.9) and the fact that PA are the 
eigenfunctions of the Sekiguchi operators characterise Jack polynomials 
uniquely. 

Generating function D(u; g) is an operator polynomial in u whose coefficients 
give 12 commuting partial differential operators Hi, i = 1, . . . , n: 

(2.13) ~(u;g)=$+f:U”-‘Hi, Hl=qg+exi&. 
i=l i=l 

Define the second order partial differential operator Has 

(2.14) H = n(n - W - 4 
6 

g2+Hl[Hl -(n- l)g] -2H2 

then 

(2.15) H=~(xi&)‘+g~~ (xi&-xj&). 
i=l i<j z 

It follows from (2.11) that 

(2.16) HP!‘“)(x) = h(X) Py’g)(x), h(X) = 2 Xi[Xi + g(n + 1 - 2i)]. 
i=l 

Jack polynomials were applied in [6, 36, 291 to describe the excited states in 
the Calogero-Sutherland model. Let us briefly remind some facts about this 
model. It describes a system of II quantum particles on a circle with coordinates 
0 5 qi 5 T, i = 1, ..., n. The quantum Hamiltonian and the operator of the total 
momentum are 

(2.17) Hcs = -f-f$+c .“,‘“- ‘) 
z=l 1 i<j sin (qi - 4j) ’ 

The space of quantum states of the model is the complex Hilbert space 
L2(T”/Sn) of functions P(q) on the torus Tn = [W*/7rZI” 3 q, symmetric with 
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respect to permutations of the coordinates q;. The scalar product in L2( Y/S,) 
is defined as follows: 

(2.18) W>@) =;~dql--.s’drl.‘i/!q)@(q). 
. 0 0 

The differential operators (2.17) are formally Hermitian with respect to the 
scalar product (2.18) when the parameter g is real. Most results of the present 
paper are established, however, for g > 0, which we shall assume hereafter. 

The ground state of the model is given by the function 

with the ground state energy J& = i g2(n3 - n), The gauge transformation of the 
Hamiltonian HCS (2.17) with the function w(q) gives 

(2.20) w-‘(q) 0 Hcs 0 w(q) = ; H + Eo, 

where the operator H is defined by (2.15) and the change of variables from q to 
x = E(q) is given by the map 

(2.21) E : (41, . ..) qn)H(&l, . . . . Py. 

The eigenfunctions of the H,-s can therefore be chosen as the product of the 
ground state function and a Jack polynomial labelled by a partition X: 

(2.22) @‘x(q) = 4q)p~‘“‘(4s)). 

The Hermitian form (2.18) corresponds to the following scalar product for any 
two symmetric polynomialsf(x) andp (x) from C[X]‘~~: 

(2.23) dv bJb912f(e9) P (4V)), 

where the integration domain, by symmetry, is 

(2.24) TV = {V E Rn/nZn 1 V’ E (V’-l, Vj+l), j + ~1 Ej}. 

The intervals (Vj-1, Vj+i) above are understood as arcs on the circle [w/xZ such 
that vi-1 precedes vj+i with respect to the orientation on R. 

For g > 0, Jack polynomials Pi>l’g)( ) x are orthogonal with respect to the 
scalar product (2.23). Note that Pi’g)(x) = PF”)(Yf, . . ..z). 

3. DIRICHLET-LIOUVILLE INTEGRAL AND ITS MODIFICATIONS 

The Dirichlet integrals and their extension due to Liouville (see, e.g., [l]) are the 
most straightforward multidimensional generalisations of the beta-integral. 
They are used in computing volumes and surface areas of multidimensional 
ellipsoids. A special form of these integrals serves as the main building tool for 
our construction of the Q-operator for Jack polynomials. In what follows, the 
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powers [” are functions of a positive argument < > 0 and are understood as 
E” = exp(a In<), with In< E R. 

Theorem 3.1. (Dirichlet-Liouville [l]) Define the domain Vc c R” as 

(3.1) Vt = {< E R” 1 <i > 0, i = 1, . . . . n}. 

Then for Rat > 0, 

where a = (aI, . . . . a,), IQ1 = a1 + . . + a,, d5 = d[l . . . d&, and 6 is the Dirac 
delta-function. 

The proof can be found in [l]. We use two modifications of the integral (3.2) 
given in Theorems 3.2 and 3.3 below. 

Theorem 3.2. Let y = (yl, . . . . yn) be a fixed set of real positive parameters such 
that 

(3.3) 0 < y1 < y2 < . . . < yn < 00. 

Define the domain 0, c R” by the inequalities 

(34 f2, = {x E R” 1 0 < y1 < Xl < y2 < . . . < X,-l < y, < x, < m}. 

Letx-ee,(x) =x1’. x, and j E e,(y) = y1 . . . y,. Then for %ai > 0 and z > 1, 

(3.5) 

where A, is the Vandermonde determinant (2.12) and <t are defined as follows: 

(3.6) I. = rIb1 (Xk - Vi) 
’ IIklfi(Yk - Yi) 

The other modification of the Dirichlet-Liouville integral is a trigonometric 
variant of (3.5). 

Theorem 3.3. Given afixed set of realparameters v = ( ~1, . . , v,) such that 

(3.7) v1<v2<...<v,<rr+v1, 

define the domain fi: c R” by the inequalities 

(3.8) f2,T={uElRn/V1<U1<V2<...<Un-l<v~<uUn<7r+v~}. 

Then for y E (0, K) and 9?ai > 0, 
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where 

(3.10) ET = IL1 sin(uk - vi) 
’ nkfi sin(vk - vi) . 

Both Theorems are proved by performing the respective changes of variables, 
from {C} to {xi} (3.6) and from (5:) to {ui} (3.10) in the integral (3.2). 

Proof of Theorem 3.2. The first step is to rescale the variables &H~& in the 
integral (3.2) and to rewrite it in the form 

The next step is to prove that the relations (3.6) define a bijection of Vt onto 0,. 
From the inequalities in (3.4) it follows immediately that L?, is mapped into V<. 
To prove the invertibility of this mapping consider the rational function 

(3.12) 

It is easy to see that restzy, R(t) = -& and limt+co R(t) = 1, and therefore 

(3.13) 

Given a set of positive & > 0, the function R(t) is restored by the formula (3.13), 
and the variables xi are then determined uniquely as its zeroes, taken in the in- 
creasing order. The standard continuity argument, using & > 0, shows that all n 
zeroes xj of R(t) are real and interspersed with the poles yj of R(t) and +oo or, 
equivalently, belong to the domain Q,. 

The bijectivity of the mapping &+x having been thus established, its Jaco- 
bian is as follows: 

which was evaluated with the help of Cauchy’s determinantal formula [7] 

(3.15) 
1 Iz 

det ~ [ 1 &(a)&(b) 
1 - aibj jjzl = nzj=l(l - LZibj) 

Setting t = 0 in (3.12) and (3.13) we get 1 + Cy=, <i/yi = nbt xk/yk, and hence, 
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(3.16) s IE;-(z-l)) = (HYk) q-pk-z~yq. 

Using (3.14) and (3.16) we can now fulfil the change of variables 5-x in (3.11) 
and obtain (3.5). 0 

The proof of Theorem 3.3 is similar to the above, but the structure of the map- 
ping <T-u (3.10) is, however, more involved compared to the rational case 
(3.6). 

Proposition 3.1. Define the domains V[, @,’ c L%” as 

(3.17) Vl = {< E R” 1 151 < 1, & > 0; i = 1, . . ..n} 

and 

(3.18) @,’ = {II E f2,T 1 /uI > IF-1 +5}. 

Then the change of variables ~t--+<~ maps the sets ~0,’ bijectively onto V,. 

Proof. Consider the function R(t) 

Noting that res,=,L R(t) = --<F, R(t) can be rewritten in the form 

(3.20) l?(t) = c - ~~~cot(t - Vj). 
i=l 

Comparing the limits of the two expressions for R(t) at t + fioo one gets 

(3.21) c = cos(luI - IVI), lcTI = sin(lul - 1~1). 

Suppose that u E L?T, that is either u E aj,- or u E @,‘. Then, from the in- 
equalities (3.8) and the expressions (3.10) for czTi’, it follows that ST > 0. It also 
follows from (3.21) that 1eTI E (0, l), for 0 < 1~1 - Iv1 < X. Thus, both domains 
@,’ are mapped into VF. Conversely, given <T E VT, one obtains from the re- 
lation c2 + l<“i2= 1 (cf (3.21)) two possible values for the constant c in (3.20). 
The inequalities in (3.17) ensure that c2 E (0,l). Having chosen a solution for c, 
one reconstructs R(t) using the formula (3.20). The continuity argument, based 
on the positivity of CT, shows that the zeroes ui of R( t) belong to the domain L?:. 
The positive c E (0,l) correspond to u E @; and the negative c E (-1,O) to 
UE@,+. q 

Proof of Theorem 3.3 starts with resealing the variables &i~ & in the integral 
(3.2) which transforms it into the formula 
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(3.22) 
s 

d< S(l<\ - siny) <ylP’ .. .<Fel = (siny)‘“‘-1 r(m) q&z) 

V, w4) 

By the condition of the Theorem, y E (0, K), so sin y E (0, l), and therefore the 
integration in (3.22) can be restricted to I’;. The Jacobian of the mapping 
5=-b 

Tn 

(3.23) JT = det 3 
i 1 

= det[<T cot(uj - vi)]yj=i, 
1 

ij=l 

can be calculated with the help of a trigonometric limit of the generalized (el- 
liptic) Cauchy determinant (cf [11,18]), 

(3.24) det 4Xi - Yj + C) a 4xi - YjbK) i,i=l= 1 co + 5) I&<[ 4% - 3) 4Yl - Yk) , 45) rIk,l4Xk - Yl) 

where o(x) is the Weierstrass sigma-function and C G Ci(xi -vi). Take the 
limit of the infinite imaginary period, w’ + 03, choose the real period w = 5 and 
put c = 9, then g(x) + exp(i x2) sin x and (3.24) turns into the following trigo- 
nometric determinantal formula: 

(3.25) det [cot(xi - ~ii)]y~=r = cos(C) I&<[ sin(xk - XI) sin(yl -ok) 
rIk,{ sin(xk - or) 

Now we can evaluate the Jacobian JT in (3.23): 

(3.26) JT = cos(lul - Ivl) J-J ;:“nJ; I ;;; . 

Notice that JT is positive for u E @; and negative for u E @i. 
Using (3.21) one transforms the S-function in (3.22) as 

(3.27) &(lcl - siny) = ‘(I*’ ,oFi- ‘) 

Finally, combining (3.26) and (3.27) one fulfils the change of variables <r-u 
in (3.22) and obtains (3.9). When y E (0, n/2), the integration in (3.9) can be 
restricted to @;, and when y E (7r/2,~), the integration is over @T. Formula 
(3.9) is valid for any y E (0,l) by continuity. q 

4. Q-OPERATOR QZ 

In this section we construct a Q-operator Q2 for the Sekiguchi partial differ- 
ential operators {Hi} (2.13). The operator QZ is described as an integral op- 
erator with a kernel expressed in terms of elementary functions and satisfies the 
defining conditions (1.2)-(1.4) proved in this section, and (1.5), proved in the 
next section. Thus, the eigenvalue problem QZPy’g) = ~x(z)P~‘~) can be con- 
sidered as an integral equation for Jack polynomials Pylg). 

For g > 0, z 1 1 and for an ordered set of p1 real positive parameters 
Y = (Yl; . . ..Yn). 
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(4.1) 0 < y1 < yz < . . . < yn < co, 

define the operator Qz, acting on symmetric polynomials p E C[X]‘“, by the in- 
tegral 

(4.2) [Qg](y) = $# (‘- l;l-*g 1 dx S(k - zj) A,(x) 

h(Y 1 J$-’ LL [ 1 fi c$:-’ p (x), 
i=l 

i=l 

using the notation of Theorem 3.2, notably 

(4.3) 
Ci = rIL1 kk - Vi) 

IIk+i(Yk - Vi> . 

By virtue of the modification (3.5) of the Dirichlet-Liouville integral, Qz is 
normalised such that it sends p (x) E 1 to 1: 

(4.4) Qz[ll = 1. 

The function [Qzp](y) defined by the above integral for ‘vp E C[x]” as a real- 
valued function of real arguments z and y is, in fact, a polynomial in z and a 
symmetric polynomial in y. 

Proposition 4.1. The operator QZ defined by (4.2) sends C[x]“’ into C(g) [y, z]‘;. 

Proof. Let k = (kl , . . . , k,) E IV. Extend the domain of QZ from @[x]” to 
AWN assuming that QZ acts trivially on the y-variables. In other words, we 
can allow p in the formula (4.2) to depend on variables y in addition to x. In 
particular, we can setp = p. The integral (3.5) is well suited for calculating the 
action of Qz on the monomials ck = @ . . (2 E C(y) [xl’“. Substituting p = ck 
into (4.2) and using the integral (3.5) for cri = g + ki, we arrive at the following 
formula: 

where 

(4.6) 
r(a + k) 

(Q)k = qQ0 = a(a + 1) . . . (a + k - 1) Vke N, 

is the Pochhammer symbol. 
The monomials ck form a basis in C[x]‘“. To show this, it is sufficient to ex- 

press the elementary symmetric functions ei(x), i = 1, . . ., fi (cf (2.5)) in terms of 
<, for any symmetric polynomial in x is uniquely expanded into the powers 
-G(x) = el +x2 (x)ey3 (x) . . . e?(x) (see section 2). Introducing the generating 
function w,(t) for {et(X)}, 
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(4.7) l+(t) = fi(t - Xj) = t” + ~(-l)lr-‘ei(x), 
j=l i=l 

andusing the formula (3.13) for the rational function R(t) = wX(t)/wY(t), we get 

(4.8) Wx(t) = Wy(t)R(t) = Wy(t) - e[i s 
i=l 1 

Expanding (4.8) in powers oft, we obtain the expressions for {q(x)} in terms of 

ei(X) = e(y) + 2 Ij [eikl(Y)1,,=0~ 
j=l 

We can give the following algorithm for calculating [&I](Y) for an arbitrary 
symmetric polynomialp E C[x]‘“: 

(1) expressp(x) as a polynomial in {ej(x)}, 
(2) substitute the expressions (4.9) for {e,(x)} in terms of {am} and 5, 
(3) expand the resulting polynomial in monomials p, 
(4) replace each monomial ck with the right hand side of (4.5). 

The result [QG] (y) is obviously a polynomial in y and z and a rational func- 
tion in g. Any permutation of the y-variables, ~7 : yi-yo,, by (3.6) also sends <i 
to &. The right hand side of the (4.9) is therefore invariant under simultaneous 
permutations D : YiHYoi and &&. Using (4.5), we conclude that the poly- 
nomial [Qzp] (y) is symmetric in y. q 

Remark 4.1. Let us mention another convenient variant of the above algo- 
rithm. After the substitution <j = qjyj, the expression (4.9) for ei(x) becomes 
homogeneous in y: 

We can use (4.10) instead of (4.9) for the step 2 of the algorithm, and then use 
the substitution 

(4.11) g B : &+ (’ - ‘)lk’ ficg,, 
h),k, i=l ” 

instead of (4.5) for the step 4. 

Remark 4.2. Notice also that the polynomiality of Qzgk in z (4.5) ensures that 
the operator QZ, although initially defined for the real values z > 1, can now be 
analytically continued to the whole of the complex plane, z E @. 

Formula (4.2) is not the only way to realise QZ as an integral operator. An 
alternative description of QZ can be obtained from Theorem 3.3. 

For y E (0,~) and for an ordered set of real variables v = (~1, ...f v,) satisfying 
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Vl <v2<... < v, < 7r+v1, 

we define the operator &, acting on a symmetric polynomialp E C[x]“’ by the 
integral 

[(zj p] (") = T(w) wPg Y r(g)” I-I Sin(vj - Vi) 

(4.12) i<j 

L-1 1 fJg,“-’ P(E(U))S 

using the notation of Theorem 3.3 and the map E from (2.21). 

Proposition 4.2. Let 

(4.13) x = E(U), Y = 4vL z = E(Y). 

Then [G PI (Y) E QdIy, 4” 
from C[xJs” to C[y]s”. 

and, moreover, &, coincides with QZ as operators 

Proof. Substitutingp(&(u)) = (e’)” into (4.12) an d using the integral (3.9), one 
obtains the action 

which is similar to (4.5). Comparing expressions (3.6) for & and (3.10) for &? 
and using substitutions (4.13), we obtain the relation 

(4.15) L$j = [F .2iJJj&, 

whch identifies the action (42) of QZ on the monomials ck and the action (4.14) 
of Q7 onthe monomials (gT) ) and therefore on polynomialsp E C[x]“. Hence, 
(22 and Q, define two integral realisations of the same operator acting from 
c[x]sn to qyp. 0 

The integral formula (4.2) will be our main tool when working with the Q- 
operator. The trigonometric representation (4.12) will, however, be required for 
proving the conjugation properties of Qz (cf Proposition 4.4 below). In what 
follows, we shall identify the source space C[x]“’ and the target space C[y]” of 
(22 and think of Qz as an operator in C[x]‘“. 

Proposition 4.3. Let 2,, be the multiplication operator acting in C[x]“’ as 
&, : p (x)++en(x)p (x). Then thefollowing operator relation holds: 

(4.16) Qz&, = z&Qp 

Proof. For z > 1, the statement follows from the observation that Qz is realised 
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as the integral operator (4.2) whose kernel contains 6(e,(x) - z,(y)). Then the 
result is extended by analyticity to z E @. q 

The following Theorem is the main result of this section, because it states the 
defining properties (1.2)-( 1.4) of the introduced Q-operator. 

Theorem 4.1. Jack polynomials are the eigenfunctions of the operator Q2. 

(4.17) (l/d k&$ U/d I(4 = a(z)& (Xl> 4x (2) E a) kl. 
The idea of the proof is to show that the matrix of QZ in the basis of Jack 

polynomials is both symmetric and triangular, and therefore diagonal. The 
symmetry is established by Proposition 4.4, the triangularity by Proposition 
4.5. 

Proposition 4.4. The operator QZ possesses the conjugation property 

(4.18) Q; zz QZ 

with respect to the Hermitian form (2.23). 

Proof. We shall use the representation of the Q-operator as &, given by (4.12). 
To begin with, let us prove that 

(4.19) (f, e,p, = !zj,-&P:, Vf ,P E a=W”, Y E (O,n). 

For our present purposes it is convenient to think that, similarly to (2.24), the 
variables u, v in (4.12) belong to the torus T, = Rn/7rZ” and all functions of u, v, 
including delta-function, are r-periodic. In particular, we can assume that all 
the sine functions in (4.12) take their arguments in (0,~) or, equivalently, re- 
place the sines by their absolute values. 

Keeping that in mind and using (2.23) and (4.12) we obtain 

(4.20) dudvf (4v)) G.?y(WP (E(U)), 

where 

(4.21) Tu;v = {U,V E Rn/nT I uj E (Vj, Vj+l), Vj E (Uj-l,Uj)} 

(using the convention j + n = j) and 

(4.22) 
Qr(v,u) =(siny)lpng $!$ fi(lul - Iv/ - Y) 

X nlsin(vk - Vj) sin(uk - Uj)l nisin(uk - Vj)lgpl. 

j<k j,k 

Performing the following change of variables: 

(4.23) UjHUi = Vj+l, VjHVi = Uj, 
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and observing that T& = 
into (L7f,p). 

T,I,+ and G?Jv,u) = G&(v’,u’) we transform (4.20) 

Having thus-proved that Qi = Q,-, for y E (0, 7r), we extend this result by 
analyticity to QY = Q,-, for y E @. Due to the relation z = e2”r (cf (4.13)), the 
involution 7-r - 7 corresponds to ZHZ, hence (4.18). 0 

Proposition 4.5. The matrix of the operator QZ between any two of the three bases, 
rnx (2.4), Ex (2.4) or Py”‘, . IS triangular with respect to the dominance partial or- 
dering. For example, 

(4.24) 

Proof. Since the three bases, {mx, Ex, Py’“‘}, are mutually triangular, it is suf- 
ficient to prove only the expansion (4.24). 

According to the algorithm explained in Remark 4.1, in order to calculate 
QZEx we have to substitute into (2.6) the expressions (4.10) for ej in terms of nj 
and yj, expand the brackets and transform the products of nj by the formula 
(4.11). 

It follows from (4.10) that QZ maps EA into a polynomial consisting of the 
same monomials in yj as EA in xi. The only difference is the presence of 
the variables nj in the coefficients producing a nontrivial dependence on g. 
Since the expansion of EA into rnfi is triangular (2.7) so is the expansion of 
QA. 0 

Proof of Theorem 4.1. Let G& E (Q;P:]“), PJL”“‘). It follows from the trian- 
gularity property (Proposition 4.5) that Qxfi # 0 only for X ? ,u. On the other 
hand, from the conjugation formula (4.18) and the orthogonality of the basis 
PF’“’ it follows that (&?,z,~ # O)==+(&&, # 0), therefore p ? X. However, X ? p 
and p k X implies X = p, hence (4.17). The eigenvalue qx(z) is a polynomial in z 
since [QZPt’“‘](~) E C(g)[x,z]sg by Proposition 4.1. 0 

Remark 4.3. In the quasi-classical limit, g -+ co, the operator (22 turns into the 
corresponding Backlund transformation for the Calogero-Sutherland model 
(see [23] for details). 

5. EIGENVALUES OF Qz 

Here we study the eigenvalues of the operator Qz, that is the polynomials 
a(z) E %)I 1 t d z in ro uced in the previous section (cf (4.17)). 

First, we derive a representation for qx(z) as a finite multiple sum by making 
use of the explicit formula for the action of QZ on a polynomial basis. Then, we 
convert the obtained expression into another finite multiple sum, which results 
from a previously known formula (cf [20,22]) for the separated polynomials 
qx(z) in terms of the hypergeometric function .F,_l(z). Finally, we write down 
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the ordinary differential equation of order II for qx(z), which serves as the Bax- 
ter equation (1.5) for our Q-operator QZ. 

By Proposition 4.5, the eigenvalue qx(z) can be determined as the diagonal 
matrix element of QZ in the basis EA: 

(5.1) 

To calculate Q,Ex we shall apply the algorithm described in Remark 4.1. Taking 
the diagonal element corresponds to replacing ej(x) by formula (4.10) and tak- 
ing the coefficient at the monomial yx. Introducing the operator B, : 
C[q]+C(g) acting on the monomials qk by the formula (4.11) we arrive at the 
following expression: 

Theorem 5.1. The polynomial qx(z) E C(g) [z] is given by the multiple sum 

(5.3) 
k,=O k,ml=0 i=l 

Proof. Expanding the product in (5.2) we obtain 

with 

(5.5) 

where the operators Dj : C[qj]-C(g) are defined as follows Dj : $++(gjkj. 

Lemma 5.1. The coejicients ck (5.5) are 

(5.6) ck = fi(ig + kl + f kj-l)k, = (f'lg)lkl z 
(ig) klf...fk, 

j=l j=l (0’ ’ ‘)g)k~+...+k, 

The formula (5.3) is then obtained by substituting (5.6) into (5.4) and evaluating 
the sum over k,. q 

Proof of Lemma 5.1. is given by induction in IZ. When n = 1 formulae (5.5) and 
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(5.6) give the same value (g)k, for ck,. It is sufficient to show that ckl,,..,k, given by 
(5.5) satisfies the recurrence relation 

(5.7) ck ,,..., k,, = ckl, . . . . k-e1 . (ngtkl +. . . +k,-I),. 

Expanding the factor ((vi + . . . + q-1) + Q~)~’ in (5.5) we get 

(5.8) 

n-1 

ck ,,..., k, ==(& ‘8 . . . @aI) I-(171 +. . . + Tjj)h 
j=l 1 = (0 c3 . . @Q-1) (71 + . . . + qn-l)kn-l+m 

n-2 

X n(% + . . + qj)' Dn [T&m] 

j=l I 

Ckl,...,k,-z,k,-l+m (g)k,+ 

((n - lk + kl + . . . + kn-l)m(&-m. 

To obtain (5.7) it remains to use the summation formula 

(5.9) (‘d,(dk-m = cs + dk 

for k = k, and s = (n - l)g + kl + . . + k,-l which is easily proved by com- 
paring the coefficients with powers of t in the identity (1 - t)-“( 1 - L)-~ = 
(1 - q-g. 0 

In [20] (see also [22]) it was conjectured, and then proved for y1 = 2,3,4 (cf 
[20,22,26,27]), that Jack polynomials Pfh)(xi, . . . . xn) can be factorised into a 
product of the separated polynomials fx(z) defined in terms of the hypergeo- 
metric function nFn-i (z) as follows: 

(5.10) fx(z) = ~‘“(1 - z)~-‘~ ,&l 
al,a2, . . ..a. 
61, . . ..Ll 

(5.11) Q=&+l-(n-i+l)g, bi=ai+g. 

Theorem 5.2. The function fx(z) is a polynomial given by the multiple sum 

(5.12) 

fx(z) ,Z~n 2,. . AC f& _ z)k,i+l ($)ki (-‘Li(l)ki 
k, =0 k+1=O i=l 1’ 

’ 

(l - cn - i + lk - Xdk,+...+knm, 

(l - cn - ik - Xdk,+...+k,-, ’ 

Proof. Representation (5.12) for the separated polynomial fx(z) follows from 

468 



the observation made in [22] that an explicit finite multiple sum for the poly- 
nomial given by (5.10) can be obtained by iterating Fox’s formula [lo], 

(5.13) 

which expresses the hypergeometric function pFP-l on the left, for any non- 
negative integer m, as afinite sum of lower series. 

Noticing that ai+t = bi + Xj,;+t for i = 1) . . . . y1 - 1 in (5.11) and using the bi- 
nomial theorem, rF0 (” ; z) = (1 - z)-~, we apply (5.13) to (5.10) consecutively 
forp = n - 1, . . . . 2 and derive (5.12). 0 

Theorem 5.3. Thepolynomials fx(z) and qx(z) areproportional 

(5.14) h(z) = Pm(z), 

where 

n-l 

(5.15) a=na; > 
izl (‘I 

&) = (b - i + l)&* 
((n - mz., . 

Proof. We shall start with the expression (5.12) forfx(z). After the change of the 
variable 2~1 - z we can rewrite (5.12) as 

(5.16) fx(l - z) = (1 - Zplp(z) x 1 

where cpj(:) (z; kj+l, . . , k,-1) are defined recursively 
kt, . . ..&I) E 1 and 

for i = 1, . . . ,n - 1 by $‘(z; 

(5.17) 
py(z;kj+l, . . ..k.-1) = zx,++l 

+Xi,i+& 
ki! 

’ 

c1 - cn - i + ‘k - Xdk,+...+k,m, 

c1 - cn - ik - Xdki+...+k,_l 
cpy-l)(z; ki, . . . . k,-l). 

Lemma 5.2. 

‘pF)(z;kitl, ...,k,-l) = PA (i) r((n - i+ l)g) 

(5.18) %W((n - ik) 

.I 

1 

X dv $-I(1 _ y)(n-i)g-l+Xi+I.n-ki+I -,,,-kB-l (1 _ zv)~~>i+l@(~-l)(zv) 
x > 

0 

where CD!) (z) for i = 0; , n - 2 are defined recursively by diy) (z) E 1 and 

(5.19) @y’(z) = 
s 

’ duuk-l (1 - u)g-l(l - zu)bq(‘-‘)(zu). x 
0 
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Proof is done by induction. For i = 1, formula (5.17) gives 

(1 - ng - bJk2+...+kn~, 
(5.20) 

where 01 = 1 - ng - X1,rz + k2 + . . . + k,-1. Using the well-known identity for 
the terminating Gauss hypergeometric function, 

(5.21) 
(b) 

= 6 (1 - z)” 2Fl ( --p;cl--bb ;A), 

and then the integral representation (see, e.g. [9]), 

(5.22) =r’(b);;-b)/lduub-l(l -a~)~-~-~(1 -ZU)-a, 
0 

we arrive at the formula (5.18) for i = 1. 
Supposing that the statement is true for i - 1, we substitute the expression 

(5.18) for vj;;-l) in terms of @j;-‘) into (5.17) and get the integral 

pf’(z; ki+l, .,., k,pl) = z’Q+~ 
(5.23) 

x 
s 

ldvvi~-‘(l -v) (n-i+l)g-l+Xi,~-ki+l-...-k,_l (1 -  zv)~",'~P("-2)(zv)~. 
x 1, 

0 

where S’i is the sum 

” (-h+ihi (1 - (n - i + l)g - &Jki+,,,+knm, 

(5.24) 
kj! (1 - (n - ik - b)ki+...+k,_, 

0 - cn - z + lk - &Jki+l+...+kn_, -A$+17 ej (Z - 1) 

= C1 - Cn - j)&T - ~i,n)~,+l+...+~n~, 2F1 ej + g ‘Z(1 - V) 

and 6 = 1 - (n - i + 1)g - Ai,, + ki+l + . . . + k,-1. Using again the transfor- 
mation (5.21) and then the integral representation (5.22), after some algebra we 
transform Si to the following form: 

Sj = & T((” - i + lhd 
WW - ik) 

(1 _ v)-~i,i+l 

(5.25) 
x 

J 

’ d7 tg-l (1 _ t)(n-i)g-l+Xi+l,*~ki+l...-k,_l [1 _ v(v + t(l _ v))]Ai:i+l. 

0 

Substituting S’i from (5.25) into (5.23) we obtain an expression for cpy’ as a 
double integral, in the variables v and t. Making the change of variables 
(v, t)~(v, u = v + t - vt) followed by (u, V)H(U, w = v/u) we obtain for py) an 
expression as an integral in u and W. The integration domains are changed 
respectively from v, t E [0, l] to 0 < v < u 5 1, and finally to u, w E [0, 11. The 
result reads 
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(i) Q(n - i + lk) yJij)(&l, . . ..k.-1) = px WWn - ik> 
(5.26) ,/ 

J’ 

l &&-l(l _ U)(n-i)g-l+X,+l,,-ki+l-...~k,~l(l _  &,,,I 

0 

J’ 

1 
X o d,o w(f-lkl(l - q-1 (1 - zuM;)Gp (ZUW). 

The integral over w is evaluated with the help of (5.19) producing @yP1’(zu), and 
we recover formula (5.18) thus completing the induction step. 0 

Iterating integrals (5.19) and using (5.16) we obtain the following re- 
presentation forfx( 1 - z) as a multiple integral: 

(5.27) n-1 
x JJp(l -ui)g-l(l -zui...u,&-l, 

i=l 

Expanding the binomials (1 - zui . . . ~,-1)‘~,~*l we get a sum of products of one- 
dimensional beta-integrals in each ui and, after evaluating them, we recover the 
expression (5.3) for 4x(z), arriving thus at (5.14). 0 

Remark 5.1. The eigenvalue 4x(z) of the Q-operator QZ is thus proportional to 
the functionfx(z) expressed by (5.10) as a hypergeometric polynomial, hence its 
Baxter (or separation) equation has the form (cf, e.g., [9]) 

(5.28) (z; gz;fhi- 1) -zfi(z;+%)) [z-“n(l-z)“E-ifh(z)] =o, 

whereai=X,,i+l-(n-i+l)gandbi=ai+g. 

6. FACTORISATION OF JACK POLYNOMIALS 

In this section, the integral operator QZ is used to construct a factorisation of 
Jack polynomials Py’g) (xi, . . , x,) in n variables into a product of n polynomials 
in one variable. The general construction of the separating (factorising) op- 
erator SF), 

(6.1) SF) =pQz, . ..Qz.,, 

briefly described in the Introduction involves an arbitrary linear functional 
p : C[x]“‘++C. Our present task is to make the integral operator Sf) as simple as 
possible by choosing p = po in a special way. More specifically, we wish to fac- 
torise the integral operator S,, (P0) into a string of operators Ak, 

(6.2) Sj@ = poQZ, . . . Qzn = A1 . . .AE, 

possessing the property of dimension reduction in the sense that each operator 
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/tk acts only on k variables. Any such factorisation will be called factorised 
separation chain or A-chain. 

Let us choose po to be the evaluation homomorphism that returns the value 
of a polynomial at the point x = (1, . . . . l), 

(6.3) PO :f+vlf =f(l, “‘, l), 

or, equivalently, the integral operator whose kernel is the product of delta- 
functions, 

(6.4) PO(X) = f&j - 11, pof = dxpa(x)f(x) =f(l, . . . . 1). 
j=l s 

Having fixed the functional p = po, hereafter we shall omit p (or ~0) from the 
operator notation, writing S, to denote the corresponding separating operator. 
Two theorems below constitute the main result of this section and show how 
distinguished is the chosen po (6.3). 

Theorem 6.1. The operator S,, = poQZ, . QZ, sends Jack polynomials into the 
product of separatedpolynomials qx(z) defined in Section 5, 

(6.5) 

the normalisation constant CA being given by 

(6.6) c,j = Pj:‘“y:‘(l, .“) 1) = n (go’ - i I- 1))~~~ 
l<i<jiin (go’ - iNx, 

Proof. Apply the chain (6.5) of operators Q, to a Jack polynomial Py’g’(x) 
and use the fact (4.17) that Py’g) (x) is an eigenfunction of Qzk. Each factor Qz, 
produces a desired factor qx(zk). Finally, the evaluation homomorphism pa (6.3) 
transforms Pylxj (x) into the normalisation constant CA (6.6). For the evaluation 
of a Jack polynomial at x = (1, . . . . 1) see [35], [25, $6, (6.11’)] or [28]. 0 

Theorem 6.2. The operator S, : C[x]s”~C[z]s”, corresponding to the evaluation 
homomorphism (6.3), can be decomposed into the product of n operators Ak, 

(6.7) S,, = Al...An, 

(6.8) Jtk : @[Xl, . . ..&I sk++~[xl, ...,xk-l]sk-’ @ c[zk], k = 1, . . ..n. 

In particular, A1 : C[X~]+-&[Z~]. The operators Ak in (4.7) are assumed to act 
trivially (as unit operators) on the variables z. 

Furthermore, the operators Ak act on the restricted polynomials Py’g)(xl, . . . . 
xk, 1, . . . . 1) asfollOWs: 

(6.9) Ak : Py’-“)(Xl, . . . . xk, 1, . . . . l)HPf’g)(X1, . . . . x&l, 1, . . . . 1) qX(zk). 

The factorisation (6.7)-(6.9) possesses the property of dimension reduction 
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k++k - 1. Such factorisations have been introduced in [17] when studying the 
inverse problem for integrable models of the sZ(2) class and have been given the 
general name factorised separation chains. 

Note that the formula (6.9) is consistent with Theorem 6.1. Indeed, applying 
the chain (6.7) of operators & to the polynomial Py’g)(xi, . , xn) and using 
(6.9) we reproduce formula (6.5). The existence of a factorization of the form 
(6.7) is by no means trivial. One cannot simply define & by (6.9) because the 
restricted Jack polynomials Py’g)(xi , ...j xk, 1, . . . . l), as polynomials of k vari- 
ables labelled by n-dimensional vector X, are not linearly independent. 

To prove Theorem 6.2 we shall describe a recursive procedure for construct- 
ing the operators & based on the defining formula S, = poQZ, . . Q,. The idea 
is to pull the homomorphism po through the sequence of QZk’s transforming at 
each step QZ, into & and producing a new homomorphism Pk. Let idk,k] forj < 
k denote the identity operator in @[xj, . , xk]sk++‘. 

Proposition 6.1. There exist a unique sequence of operators Ak, 

and a unique sequence of homomorphisms pk, 

,& : @[xk+l, ...,X,]Sn-k-~, k = 0, . . ..n 

such that: 
(a) po : C[x]“‘++C coincides with the evaluation (6.3), 
(b) the operators Ak are normalised by the condition Ak : 1~ 1, 
(c) the following relation holds for k = 0, , n - 1. 

(6.10) cid[l,k] @W&&+, = A/=+1 (id[l,k+l] @L’k+l). 

The homomorphisms pk defined in this way act on polynomials f E c[Xk+l, . . . . 

4 “-’ by restricting their n - k arguments to 1. 

(6.11) /“k :f (xk+l, . . ..&&f (1, . . . . I), k=O,...,n- 1. 

Fork = n we have simply p,, = 1. 

Proof of Theorem 6.2 follows then immediately. Applying recursively formula 
(6.10) to & = poQz, QZ, QZ, we get S, = A1 (id[i,i] @pl)Qz, . . . QL-, and so on, 
until we arrive at (6.7). Applying the identity (6.10) to a Jack polynomial 
P?“‘(x) and using (6.11) we get (6.9). 0 

Proof of Proposition 6.1 is given by induction. For po the formula (6.11) holds 
by assumption. Assuming that for some k E [0, n - l] the operators AI i . . . . Ak 
and homomorphisms po, . . . , pk have been already constructed, let us consider 
the product (id[l,k] @‘Pk) !&+, and show that it factorises uniquely as 
&+I (idnk+i] @&+i). Note that the operation (id[i,q @pk) produces from a 
polynomial f ( ) f x o n variables the polynomial f (xi, . . . . Xk, 1; . . . . 1) of k vari- 
ables. As in Section 4, we will distinguish the variables y of the target space for 
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the operator Qzk+l from the variables x of the source space. Given a polynomial 
f E C[x]‘“, we have thus to take Qz,+$ E C[yls” and to set yk+t = . . . = yn = 1. 
We can analyse the resulting expression in two ways based on two descriptions 
of Qz,+l g iven in Section 4: the one in terms of an integral operator and a pure 
algebraic one. 

Let us apply first the combinatorial prescription for evaluating Qzk+, on the 
elementary symmetric polynomials ej(x) given in Remark 4.1, formulae (4.10) 
and (4.11). Recalling formula (4.7), we introduce the generating functions 
wX(t) = & (t - xj) for “j(x) and, respectively, +(t) = ny=t (t - yj) for ej(y). 
Consider now the relation (4.Q 

(6.12) 

and set ~k+t = . . . = yn = 1. The right hand side of (6.12) is then divisible by 
(t - l)“-k-l, so is the left hand side, therefore n - k - 1 of the variables xj are 
forced to take value 1. Due to the symmetry, the remaining free variables can be 
chosen as xl, . . . . xk+t. Note that from the above the statement of the Proposi- 
tion follows immediately: we have effectively transformed the operator expres- 
sion (idp,kl @wJQzk+l to the desired form Ak+t(id~~,k+t] @pk+t) with some op- 
erator &+I acting on the variables xl, . . . , xk+t . 

We can go even further and find how &+I acts on polynomials in xl, . . , Xk+l. 
Let 

k+l 

w*(t) = (t - l)“~k-‘Wx(t), i&(t) - n(t - Xj) 
j=l 

and, respectively, 

wy(t) = (t - l)“-k%&(t), ‘YCt) E fi(t - Yj), yo = 1. 
j=O 

The relation (6.12) transforms then into 

(6.13) VO = qk+l + . . . + qn. 

Expanding both sides of (6.13) in t we get the following prescription for calcu- 
lating &+Lf: 

(1) express f E c[Xl, . . . . xk+fk+’ as a polynomial in {ej(xl,...,xk+l)}, 

j = 1, . . ..k+ 1; 
(2) substitute for ej(xt , . . , xk+t ) the expressions 

(6.14) ej(Xl, . . . . Xk+r)=(1+r]0+...+~j7j_t)YO~.~yj-r+permutations 

(the distinct permutations are taken simultaneously in yj and q); 
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(3) expand the resulting polynomial in monomials r$‘@$’ . VP, 
m = (wzo,YY~I,...,~z~) E N k+l. , 

(4) replace each monomial in vj according to the rule 

The last formula is obtained by expanding (qk+t f . . . + ~I~)mo in the left hand 
side of (6.15), evaluating the result by formula (4.11) and using the following 
combinatorial identity for s E n - k, m s mo: 

(6.16) 
c lCL- fikIJja = (‘S),l 

j,+..,+j,=mjl! . .jf! cu=l 

which is easily proved by expanding the identity [( 1 - t)-g]” = (1 - t)-“g in 
powers of t .  

An alternative proof of Proposition 6.1 is based on the formula (4.2) pre- 
senting Qzk+, as an integral operator. Let us take the expression (4.2) for 
[Qz,,,f](y) and restrict IZ - k of the arguments yj to the value 1. Since [Q,+,f](y) 
is a symmetric polynomial, it does not matter which of yj we choose to fix. Be- 
cause of the inequalities in the definition of the domain fi, (3.4) 

0 < y1 < Xl < y2 < < yn < x,, 

the natural choice is to take the limit yt, ~2, . . . . yn-k + j& z 1. The variables 
Xl, “‘, x&-l are sandwiched between y’s and, therefore, forced to tend to 1 as 
well. As y1 i . . . , yn-k tend to yo F 1, the right hand side of (4.2) exhibits an un- 
certainty O/O. To resolve the uncertainty, let us set yj = 1 + Erj, j = 1, . . . . n - k, 
andx~=1+&~j,j=1,...;~-k-l,forsome&>Oanduj,vjsatisfying 

0 < v1 < u1 < . . . < &-k-l < v,-k; 

and take the limit E ---f 0. Let us also renumber the remaining arguments as 
Yn-k+j =yj,j= l,...j k,andX,-k+j-t =xj,j= l,..., k+ 1. 

The components of the integrand of (4.2) are then transformed as follows: 

Ei + li&, i= l,...,n-k, 

en-k+i A 5, i= l,...k, 

where 

i= l,...;n-k, 

i = 0, . . . . k; 

- E-n+k+lp-k-l h-k-l(u) ~k+l@ 42(x) 

MY) 
0 

&k(v) nk+l (y) 
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and%= (Xi,... ,~k+l),Y=(Yo,...,Yk). 

Since dxl . . . dx,-k-1 N Enpk-ldul . . . dun-k-l, the factors E cancel completely. 
Integration in the variables Uj produces a constant factor which is evaluated 
with the help of Proposition 7.2: 

(6.17) 

The expression (id[i,k] @pk) Qzk+, is presented in the desired form dk+i (idli,k+i] 
@‘pk+i) with the operator dk+l defined by the integral 

h+ d](f) = r(w) (zk+l - l)‘-ng k -,-g 
r((n - w%dk I 1 rI 

(6.18) 
nk+l 6) ‘=I 

Yj 
X 

s 
-(n-k)g- 1 sz, d~~k+,(~)~(%~..~k+l -zk+ljb’?k)& 

where the integration domain & is described by the inequalities 

0 < 1 = j& < 21 < y1 < . . < j& < :k+l < 00. 

Using the Dirichlet-Liouville integral (3.2), one can analyse the integral op- 
erator (6.18) in the same manner as the operator Qz has been analysed in section 
4. In particular, one can prove an analogue of Proposition 4.1: dk+i sends 
symmetric polynomials into symmetric polynomials (with the dimension re- 
duced by one) and its action on the elementary symmetric polynomials ej is 
described by formulae (6.14) and (6.15). 0 

Notice that, for k = 0, the formula (6.18) produces di :f(xi)+-+f(zi), 
whereas setting k = 1 in (6.9) we get 

Ai : Py’-“)(xr 1 . . . l)t+Pf’“)(l ,> > , ...> 1) 4xh) = wxh). 

Combining these two observations together, we arrive at the following re- 
markable expression for the separated polynomial 4x(z) in terms of a restricted 
Jack polynomial: 

(6.19) qx(z) = CT’ I$:“)(,, 1, .“) 1). 

7. INTEGRAL REPRESENTATION 

In this section we shall apply our Q-operator to construct an integral rep- 
resentation for Jack polynomials. In principle, such representation could be 
obtained by inverting the separating operator S,,, described in Theorem 6.2. 
However, the construction of S;’ is a difficult and yet unsolved problem. For- 
tunately, there is another, more direct approach using the operator Qz at z = 0. 

Applying Proposition 4.3 to the case z = 0 we conclude that Qo nullifies the 
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ideal e,(x)C[x]s” and therefore can be canonically defined on the factor space 
-?’ = ~C[x]~“/e,(x)C[x]~“. For the rest of this section we denote x = (xi, . . . . xn), 
Y = (Yl, “‘> yn) and x’ = (xi, . . . . ~~-1). Let P be the projection operator P : 
c[x]snHc[xy-~ :p (xi, ...j x,)-p (xi, . . . . x,-t, 0). Note that P : ei(X)Hef(X’) for 
i= l,..., n - 1 and P : e,(x)++O. Since the products efl . en- knml form a basis in 
.?=‘, the projector P provides a natural isomorphism F = C[x’] 8 ‘-I. We have thus 
come to the following conclusion. 

Proposition 7.1. There exists a unique operator Qb : O=[X’]~‘~-‘HC[~]~” such that 

(7.1) Qo = QbP. 

Formula (7.1) provides a direct way to constructing a Jack polynomial in n 
variables from a Jack polynomial in n - 1 variables. For any partition X = 
(Xl, . . . . X,) of length n define two partitions: Xb = (XI,~, &, . . . . Xn-i;n, 0) of 
length n and Xb = (XI,~, &, . . . . XnPl,n) of length n - 1. Recall two important 
properties of Jack polynomials (see [25]): homogeneity, 

and restriction to x, = 0, 

(7.3) pU/s) 
x1,, ..,., x,m,,,,oh> ...,xn-l>O) = ~~~~i..,AJXl> ...,Xn-l). 

Note that the equations (7.2) and (7.3) can be abbreviated as P(hl’g)(x) = 
[e, (x)]‘“P$‘“’ (x) and, respectively, P : P$‘g) (x)H$‘~) (x’). 

By Theorem 4.1, the eigenvalue of QO on Pyly) (x) is given by qx(O). It follows 
from Theorem 5.2 that, for small z, fx(z) = zxn + O(zxn”) and then from 
Theorem 5.3 that 

(7.4) qx(z) = P+“(l + O(z)), z 4 0, 

where PA is defined by (5.15). In particular, qAb (0) = /?;I. 

Applying the operator equality (7.1) to the polynomial P$l”‘(x) and using 
(7.3) and qAb(0) = /3x’ we obtain /3;1P($ig)(x) = [Q$‘$‘“)](x). Finally, we use 
(7.2) and arrive at the formula 

(7.5) l+‘“)(x) = ~A[en(x)]Ai’[Q;P$‘g’](~)r 

expressing a Jack polynomial in n variables in terms of a Jack polynomial in 
n - 1 variables. 

To give the formula (7.5) more flesh, we need to realise Qa as an integral op- 
erator. However, formula (4.2), which we used to define Qz, is valid only for 
z > 1, so that the case z = 0 requires a special consideration. 

Proposition 7.2. Given a set of real parameters y = (~1, . . . . yn) satisfying in- 
equalities (3.3), define the domain L?: c R?’ by the inequalities 

(7.6) 0: = {x’ E w-l 1 0 < y1 < Xl < y2 < . . . < X,-l < yfl < co}. 
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Then for R2ai > 0 

where ii > 0 are defined as 

The proof follows closely that of Theorem 3.2. Introducing functions GX(t) = 
flyzi(t - xi) and wY(t) = ~~=,(t --vi) we construct the generating function 
R(t) = GX(t)/wY(t) = CT=, &/(t - J+) for the change of variables (xi, . . . . 
x*-1)&l , . . ..in-1). Th e ar g ument, based on studying&t), shows that the do- 
main 0; is mapped bijectively onto V,, 

(7.9) V~={~EWIIi,zO,i=l ,..., n-l, [t+...+&-i<l}. 

The corresponding Jacobian is given by det [d&/axk] ri=,= A,-1 (x’)/A,(y). 

Making the change of variables x’+$ in the integral (7.7) we come exactly to 
the Dirichlet-Liouville integral (3.2) with the only difference that the integra- 
tion variable & is eliminated by resolving explicitly the constraint 2 = 1. I I 

0 

Theorem 7.1. The integral operator UB defined by 

(7.10) [am] = $$sn, dx’ A;;;l;‘) [ 1 fit:-’ P (x’) i=l 
sends C [x ’ &-I into C[Y]~” and coincides with the operator Qb dejined by (7.1). ] 

Proof. Repeating almost word by word the proof of Proposition 4.1 and using 
formula (7.7), we find the analogue of the formula (4.5) V k = (kl , . . , k,) E N”, 

The action of Q on the polynomials ej(x’) is obtained then from the analogue of 
the formula (4.9), 

(7.12) ej(x’) = 2 i&-l (y)lyj4, 
j=l 

which is obtained, in turn, by expanding the equality tiX( t) = EYE1 &w,( t)/( t - 
JJi) in powers oft. 

It now remains to identify the action of Q and Qb on C[X’]‘~-~. Setting x, = 0 
in the expressions (3.6) for & and comparing the result with the expressions 
(7.8), we obtain 
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(7.13) PJ-i = -yiLfi. 

Setting z = 0 in the right hand side of (4.5) and using (7.13) we obtain exactly 
the right hand side of (7.11) which proves that Qo = Q P. 0 

We can regard the formula (7.5) as an integral relation, which reduces a Jack 
polynomial in n variables to a Jack polynomial in n - 1 variables’. Starting with 
p (x1 , x,) and having iterated the formula (7.5) n - 1 times, we go down 
to the Pi” ;~i) = x:1 and, as a result, get an explicit integral representation for 
a Jack polynomial in n variables. To describe it explicitly, we introduce a tri- 
angular matrix xij, 1 I i 2 j < n of variables. At the first step, the variables xi,+ 
i = 1, . . . . n, are the external ones and xi,+l, i = 1, . . . . n - 1, are the integration 
variables. Then the equation (7.5) takes the following form: 

(7.14) 

x IIi<j(xj,n-l - Xi,n-l) 
n J&n - WV-1: 
f=l k=l 

rIi<jc%? - $2) j--&%,n - Xk,n) 
k#i 

g-1 

Iterating this formula, we obtain the integral representation for Jack poly- 
nomials 

It is implied in (7.15) that the integrals s dx,, are ordered corresponding to the 
order of indices in the products. 

’ or, vice versa, builds up the number of variables, starting from the unit function 
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As mentioned before, formula (7.14) first appeared in [28], where its proof 
was based on the fact that Jack polynomials can be obtained as a limit from the 
shifted Jack polynomials. One can regard the integral equation (4.17) in section 
4 as the one-parameter generalisation of (7.14). 

8. CONCLUDING REMARKS 

Our construction of the Q-operator relies on the properties of Jack poly- 
nomials. Nevertheless, several of the obtained results are of importance for the 
general theory of quantum integrable models. It concerns, first of all, thefac- 
torised separation chain, constructed in Section 6. Similar factorisations of 
separating operators were already observed for other integrable models [17] 
and, apparently, they are manifestations of some general pattern, which is yet 
to be fully understood. 

Notice also the intriguing role of the restricted Jackpolynomials revealed in 
formulae like (6.9) or (6.19). It would be interesting to find analogous formulae 
for other integrable models. The properties of restricted Jack polynomials 
themselves deserve a further study. 

Finally, we should mention another integral representation known for Jack 
polynomials [2]. 
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