
Theoretical Computer Science 125 (1994) 131-147

Elsevier

131

Virus tests to maximize availability
of software systems*

Erol Gelenbe
Department of Electrical Engineering, Duke University, Durham, NC, USA

Marisela Hernhdez
LAMIFA, Universite de Picardie, Amiens, France

Abstract

Gelenbe, E. and M. Hernindez, Virus tests to maximize availability of software systems, Theoretical

Computer Science 125 (1994) 131-147.

Software systems in which many user’s or programmers intervene may easily contain software items
_ such as viruses which will endanger the integrity of the system. This paper proposes that in

addition to the conventional recovery techniques, such as dumps and roll-back recovery, system

availability be enhanced by the introduction of virus tests or other types of “failure tests”. We present
a model to analyze the effect of the failure rate, the frequency of virus and failure testing, and the

frequency of periodic dumps, on global system availability. We assume that the “failure” rate of the
system increases as time elapses beyond any individual instant at which a virus test or failure test has

been carried out. Thus, we are dealing with a system in which failures will be naturally time-

dependent. We compute the optimum value of the interval between dumps, and also the best time

interval between virus or failure tests for this system. In order to illustrate the methodology of this
work, numerical examples are presented for various time-dependent failure statistics.

1. Introduction

All software systems either large or small need to be protected from catastrophic

failures, in case portions of the system architecture which support them fail. This is

particularly true for large database systems in which several layers of recovery

procedures are usually built into the software [lo]. In such systems, variants of the

Correspondence to: M. HernBndez, LAMIFA, UniversitC de Picardie, 33 rue Saint-Leu, 80025 Amiens,
France. Email addresses of the authors: erol@;egr.duke.edu and mariselaamath-info.univ-paris5.fr.

*This work was done at EHEI. Universitk de Paris V. Research supported in part by Programme

C3-CNRS, PBle Algorithmique DistribuCe.

0304-3975/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(93)E0119-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82205551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

132 E. Gelenbe. M. Hermindez

checkpoint and roll-back recovery mechanism are used in order to enhance overall

system reliability [15,2].

The problem also arises in other systems which have a transaction-like behavior.

For instance, in a large software development project in which modifications are

carried out progressively and then validated periodically (very much as in a transac-

tion oriented system in which updates are made and then validated) it may be

necessary to introduce failure recovery mechanisms which protect the development

activity from losses of information which may occur when there are system or

subsystem failures.

Any such failure recovery mechanism is bound to induce additional costs

and overhead, both during normal operation and during failure recovery. This is

why much attention has been devoted to the performance of failure recovery

mechanisms.

The earliest work in this area is that of [17], who has attempted to optimize the

time between checkpoints in a database so as to obtain a satisfactory compromise

between the time it takes to create a checkpoint, and the time it takes to recover from

a failure. Indeed, the cost of checkpointing is high if checkpoints are frequent, but the

advantage is then that in case of failure the recovery time will be shorter [3]. Other

authors have analyzed the transaction queue length, or maximized system availability

[7,6], or considered response time as a primary measure of system performance [11,

or examined the creation of checkpoints as a function of the number of transactions

which occur between successive checkpoints [13]. These results have been extended to

distributed systems [2,8,11], and to time-dependent failure rates [9]. The relationship

between these models to queueing systems with service time interruptions has also

been considered [12].

The purpose of this paper is to analyze a technique which we call “virus tests, or

failure tests” for enhancing system availability. This is a very natural idea, since it is

done in a routine manner in many systems. However, here, we assume that these

“failure tests” will be carried out automatically at predetermined instants, much like

checkpoints are carried out automatically under predetermined conditions in

a database management system. It is assumed that the system operates with a dump-

ing and roll-back recovery strategy for secondary memory failures. However, in

addition, we imagine that certain database “failures” are in fact due to the introduc-

tion into the system of inconsistent or erroneous data, or more probably of some

malicious code usually called a “virus”, which at a later time may lead to the detection

of a “failure” or to some other undesirable event.

Thus, we propose that in addition to the conventional recovery technique, the

system availability be enhanced by the introduction of “failure tests” (or if you wish

“virus tests”), which would be implemented as a set of procedures which examine the

code, the data and/or the log of transactions which have been executed, in order to

detect potential sources of failures or of inconsistencies.

After each failure test, one or more errors (or viruses, or failures, etc.) may or may

not be detected in the system or data. If at least one failure or virus is detected, we

Virus tests to maximize availability of software systems 133

assume that the system has to go through a recovery procedure just as if there had

been a system failure, using the most recent checkpoint. Otherwise transaction

processing proceeds normally.

As a result of virus or failure testing, we expect the global system failure rate to

behave in saw-tooth fashion as a function of time. Just after a failure test, possibly

followed by a recovery procedure, the system failure rate drops to a low value because

most of the potential sources of failures will have been detected in the failure test. The

failure rate then increases as transaction processing proceeds and as we move away

from the instant at which a virus or failure test was carried out. Thus, these tests can be

viewed as a form of preventive maintenance carried out on the system’s data, code,

and past transactions.

The purpose of this procedure is clearly to improve system availability. Therefore,

in the next section we shall present a model of the system in order to analyze the effect

of the failure rate, the failure (or virus) tests, and the periodic dumps, on global system

availability. We then compute the optimum value of the interval between dumps, and

also the best time interval between failure tests for this system. The primary perfor-

mance measure considered is the availability of the system for useful transaction

processing. In the sequel we will indistinctly talk about failure tests or virus tests but it

is clear that we are thinking primarily of all forms of testing, and specially about virus

testing, which is aimed at removing malicious or nonmalicious sources of future

failures or data inconsistencies.

Clearly, as the frequency of dumps (i.e. checkpoints) and of failure tests increases, so

does the overhead related to these actions. However, the likelihood of failures and the

subsequent costs related to failure recovery decrease. Therefore, it is important to

determine the appropriate compromise which has to be made between these contra-

dictory factors, so as to maximize system availability.

Thus, the computation of the optimum dump interval is presented in Section 3,

while Section 4 is devoted to the computation of the optimum number of failure tests

between dumps.

In Section 5 an algorithm is proposed to obtain the optimal dump interval and the

number of failure tests between dumps, computational problems associated with the

model, and numerical examples, are discussed as well.

The work presented in this paper can be viewed as a logical consequence of [6],

where a roll-back recovery mechanism was analyzed and the problem of choosing an

optimum checkpoint interval was formulated and solved, as well as of [9] where the

mathematical tools for handling time-dependent failure rates in such models have

been developed.

The results of the present paper are obtained as a function of certain parameters,

such as the cost of creating dumps, the cost of making a failure test, the failure rate

with the saw-tooth behavior described above or with constant or other time-depend-

ent behavior. As far as the general methodology for availability optimization which

we describe in this paper, these parameters can be chosen arbitrarily and introduced

into the model.

134 E. Gelenbe, M. Herncindez

2. The model

Let X, be the state of the system at time t. X, is given by

0 if the system is able to process transactions,

1
x,=

i

if it is recovering from a failure (possibly after a failure test),

2 if it is creating a dump,

3 if it is making a failure or virus test.

We assume that at time 0 the system begins its functioning being able to process

transactions, i.e. X,=0 for t 30 is constructed as follows:

(1) When the process enters state 2 it remains there for a random period indepen-

dent of its past history, i.e. the time necessary for creating a dump, of general

distribution function and with finite expected value ED. At the end of this time it

returns to state 0.

(2) It can be assumed, with out loss of generality, that failures do not occur during

dumping (state 2) during the failure or virus test (state 3) or during recovery (state 1).

(3) We denote by Zi the total time spent in take 0 (normal operation time) between

the (i- l)th and ith failure tests, the 0th virus test is considered to be the most recent

dump.

(4) It is assumed that the workload after a period of unavailability remains the

same as before the interruption (dump, failure or virus test).

(5) Let Y, (age) be the total time spent by the system in state 0 since the most recent

dump preceding t:

I
f

Y, =
;

l(X,=O)du, where t”=sup{o: u-et and X,=2}.

A transition from state 0 to state 1 occurs at some instant t due to the occurrence of

a failure. Then the recovery time, i.e. the time spent in state 1 before the return to

state 0, is given by a function r(Y,) which depends linearly on the age Y,, where

r(Y,)=crY,+P

and CI, /? > 0 are constants. This formula can be justified as follows. After a failure, all

the work done during time Y, must be done again; this takes a time ct Y,. The fixed time

necessary to restart and reload the system being p.

(6) The instants of failure constitute a time-dependent Poisson process of para-

meter y(Y,). The virus or failure tests have an effect on the time-dependent failure rate

as shown in Fig. 1. A failure at time t will force the process X, to go from state 0 to

state 1.

(7) The system enters state 3 if a virus test is being made, and the time for making

a virus test is a random variable of general distribution function and with finite

expected value E V. At the end of the check with probability p an error is detected and

the system enters state 1 for recovery, otherwise, it returns to state 0. The recovery

Virus tests to maximize availability of software systems 135

I I I b

Dump Tl T2 ... Time

Ti = i-th failure test

Fig. 1. The behavior of the failure rate y(t).

function r^(Y,) in this case will differ from r(Y,) in the fixed cost fi.

f(YJ=aY,+j7.

(8) The availability of the system is simply the proportion of time spent by the

system in state 0. In steady state, it is the probability that the system is in state 0.

3. Interval between two successive dumps

We begin the analysis of the system presented in the previous section by considering

an interval between two successive dumps, during which failure tests are made and

failures may occur. In Fig. 2 we represent one such typical interval.

The average length of such an interval will be the sum of the total expected times

spent in normal operation, in failure recovery, in carrying out the failure tests and

creating the dumps. We shall examine each component of this duration, and compute

its average value.

Let us first consider the total expected time spent in failure recovery between

successive dumps. Clearly, it will be the expected time for recovery from failure test

errors plus the expected recovery time for the time-dependent Poisson failures. We

first compute the latter.

Assuming that there are n failures between the (i- 1)th and ith failure tests, i.e.

during zi time units in normal operation, let x1 < ... <x, be the failure instants. As

a consequence of the age-dependent Poisson assumption about failure instants, it is

known (e.g. [S] p. 153) that for small enough interval of time 6j, the conditional

probability that failure j will occur in the small interval [mj, mj+6j] is given by

P(mj < Xj< mj + 6j, 1 <j < n 1 n failures during zi time units in normal operation)

136 E. Gelenbe, M. Herncindez

F = Failure
TI = I-th failure test

Fig. 2. The interval between dumps.

where

The recovery time from the n failures occurred in the ith failure test interval, will

then be

because the cost function for recovery r(.) implies that all transactions which were

processed by the system since the most recent dump have to be processed again.

Taking the expected value with respect to the number of failures, we obtain the

following expression for the average recovery cost from random failures during zi

units of normal operation:

eercZi)r(zi)” 1

fn n! ~
s

Z,- 1 +zi

r(zi) =,-I

y(u)r(zl+...+zi-i+u)du
n=O

=i

=,Fl+Z*
y(u)r(zl + ... +zi-r+U)dU.

=i- L

If we assume that there are k failure tests in the dump interval, we have the following

expression for the total expected time for recovery in between two successive dumps,

where the first term corresponds to recovery due to errors detected during failure tests

and the second one to failures arriving to the system.

Q&r..., zk)=p~ =l+“‘+=i;(u)du+k~ J i=l 0 J
2<-,+2i

y(u)r(zl + ... +z,-1 +u)du
i=l Z.-I

and the total expected length of the interval between dumps, which we denote by

El(k) is:

k+l

J
ZI 1 + =I +c y(u)r(zl + ... +zi-r+u)dU

i=l zl-l

Virus tests to maximize availability of software systems 137

or
k+l

EZ(k)=ED+kEV+ C Zj+Qk(Zl,Zk).
j=l

This expectation allows us to compute the stationary probabilities (nj) of the

process {X,, t >,O}, applying the regenerative property [4] to the interval between

dumps El(k):

Z7j’ lim P[X,=j], j=O, 1,2,3
1-m

and to compute them as follows:

u, =Qkh ... rzk),

El(k)

ED

n2 = El(k)’

kEV

n3=El(k)’

Obviously, we also have the normalizing constraint:

Indeed, it can be seen that {X,, t >O} is a Markov renewal process, where the

instants before or after each dump are the regeneration points of the process, and

these formulae are a simple consequence of this fact.

3.1. Computation of the virus test intervals

In the previous section we computed the total average time between successive

dumps, assuming that the length of each of the intervals between virus tests was given.

In this section we turn our attention to the appropriate choice of the Zi, i.e. the time in

normal operation between the (i- 1)th and the ith virus test.

We shall make the following assumption which is based on a physical motivation:

the total expected cost of each failure test in the same interval between dumps is kept

constant. The “common sense” motivation behind this assumption is that during

system operation, we would like that the availability of the system to normal

transaction processing remain constant. Indeed, it would be rather annoying to a user

that the quality of service received is very different depending on when the system is

being accessed.

As a consequence of this assumption, we shall see that as we move away in time

from the most recent dump, the successive virus tests must be carried out more

frequently. Indeed, the expected cost of a virus test (which includes the cost of carrying

out failure recovery) obviously increases as we move away from the most recent dump.

This effect will be more or less important depending on the value of the probability of

discovering an error during a virus test.

138 E. Gelenbe, M. Herncindez

This assumption translates into the following general expression which relates the

expected cost of the first failure test, to that of the ith one:

zi- , +zi s z*+ .” +zi

=cC(Zl+ ‘.’ +Zi_l) Wdu+ F(u) du
Z,- 1 0

s z,-,+z,
+ y(u)r(u)du t’li=2, . . . ,k.

zi- 1
(1)

In order to simplify the notation we write

s z, - 1 + zi

TR(Zi)= r(4r(u) du,
=i- I =i

T(Zi)= Y (4 du>
0

R^(zi)= j;i(u)du= j;(nu+j)du

and (1) becomes

rR(zl)+pR^(zl)=cc(zl + “’ +Zi-l)T(Zi)+pi(Zl+ ‘.. +Zi)+TR(Zi)

Vi=2,...,k, (2)

which allows us to compute the different Zi as a function of z1 with the constraint that

each zi must be positive.

Thus, we have now reduced the problem of computing the Zi to that of computing

zl. This will be carried out algorithmically in Section 5.

3.1.1. An example of a time-dependentfailure rate

An often used time-dependent failure rate is the Weibull density [14] given by

where u 2 0 represents the time and y, y. 2 0 and 0 > 0 are constants. Notice that this

is a slight generalization of the usual Weibull failure rate [161 often used in reliability

theory. When 8 = 1, we merely have a time-independent failure rate y + y. correspond-

ing to a Poisson failure process. When f3 = 2 we have a linearly increasing failure rate;

in general, the failure rate increases when 8 > 1. This failure process is thus a conveni-

ent representation of increasing, decreasing, or constant failure rates.

Virus tests to maximize auailability of software systems 139

Substituting in (2) we obtain the following equation for Zi, the length of the ith

interval between failure or virus tests, which can be obtained numerically from

aS’;-‘(y(Zt-~+Zt)“+~~Zi-~ZP-~)+~(S2~)+plj(Sl)f~(Zt-~+Zt)Bt’

_-,~+l_pa yffe
e+i 2

z:-$Zi =o: (3)

where
i-l

i-l m-l

P-l= 1 1 z,z,.
m=l n=l

3.1.2. An example with the saw-tooth failure rate

In this case, y(u) has the behavior described in the following equations, which can be

seen in Fig. 1.

Y(r)=Yo+P, o<t<z1,

Y(t)=Yo+Y(t-Zl), zl<t<zl+Z2,

Y(t)=Yo+Y(t-CjIl: Zj), C::=: Zj~t<Cf=, Zj.

Clearly,

T(Zi)=y ~ +yOZi,

Substituting in (2) we obtain the following equation for the interval zi as a function of

the i- 1 preceding intervals:

(4)

140 E. Gelenbe, M. Hermindez

4. Number of virus tests in the dump interval

In the previous sections we have

l obtained the system availability assuming that the Zi are known and that the

number of failure tests k is fixed,

l derived a relationship between the successive zi, assuming that z1 is given.

Thus, we now have to develop a method to compute both k and z1 in order to have

a complete analysis of the system. These will be computed with the objective of

maximizing system availability.

Let us turn to the problem of choosing k. We formulate it as follows.

After the (i- 1)th failure test, a dump is carried out if the total expected cost

associated with a new failure test is greater than the cost of making a dump.

More formally let k be the number of failure tests made in the interval between two

successive dumps; we then choose

k=inf(i: Qi(z 19 ...,zi)2ED}* (5)

k will be determined numerically from the above expression, and will lead to the

system availability IZ, as a function of zl:

II,=
cJ:l Zj

ED+kEV+CjLiZj+Q,(Z,,...,Z,)’
(6)

Finally, z1 will be chosen so as to maximize n,, as shown in the next section.

5. Numerical implementation

We now turn to the numerical implementation of the above results.

The first problem we have to face is the computation of the first interval between the

last dump and the first virus test (zl), which then leads to the computation of the

remaining Zi.

The second problem to be solved is the computation of the number (k) of failure

tests in the interval between dumps satisfying (5).

Both of these computational problems will be solved using the algorithm given

below.

We first choose an arbitrary z1 and read the parameters of the model CC, p, 8, y, p, 8,

ED, E V, where tl is the proportion of transactions to be reprocessed if a failure has

been detected, p the fixed reloading cost of recovery, B the fixed cost of recovery, y the

parameter of the failure rate, p the probability of finding an error during a virus test,

8 the parameter of the Weibull failure rate, ED the expected time for making a dump,

and E V is the expected time for making a failure test.

We have a formula to compute zi as a function of z 1, . . . , Zi _ 1 (see equations (3) or (4)

depending on the shape of the failure rate). In other words, we can compute z2 if we

know zl. We can compute z3 using the values of z1 and the computed z2 and so on.

Virus tests to maximize availability of software systems 141

0.4988

0.4980

P
I 21

125 145

Fig. 3. Behavior of II,, as a function of z1

7 = 0.001

P = 0.001

e = 1.1

ED= 200

; 1 :o
6 = 1

7 = 0.001

P = 0.001

e = 1.1

ED= 200

Fig. 4. Behavior of QI(zI) as a function of z1

This sequence of computations should be stopped as soon as the expected cost for

reprocessing transactions is larger than or equal to the expected time ED for making

a dump as indicated in (5).

Since the availability depends on a given value of z1 , let us call it flo(zl). We then

determine numerically the value of z1 maximizing ZI,,, and call this optimal value zf .
In Fig. 3, we present a numerical example of the dependence of Lro(z,) on zr.

Clearly, Qi(zi) is an increasing function with values in [0, ED]. Then z: will be

bound by the condition

See Fig. 4 for an example of Q1 (zl).

142 E. Gelenbe. M. Hernindez

zr is found by carrying out a binary search in the interval [L,,Ls], where

L,=O and Ls=min (x: Qi(x)=ED},

where the lower bound of z;” is clearly 0, while its upper bound is determined so that

the expected total cost Qi(zi) of the first failure test interval does not exceed ED.

5.1. Algorithm

In the following we detail the recursive procedure binary(l,,&,MAX) for the

binary search of the maximum of function n, in the interval [L,, Ls] and the function

II,@,), which computes II0 for a given zl. Note that in the case of a general Weibull

rate we compute zi using equation (3) and in the case of a saw-tooth failure rate we use

equation (4).

Function Ii’,

Read parameters cr, p, by, p, 0, ED, EV

i=l

Repeat

i=i+l

Compute Zi using equation (3)

Until Qi(zl , . . . , Zi) > ED (equation (5))

k=i-1

Compute I7, (equation (6))

Send I7,

Procedure binary (L,, Ls, MAX)

&=
L1+Ls
~ . Left ZI, = UO(L,); Right ZIO = n0 (L,) 2 ,

IfL,<>Ls+E

then begin

If Left II, = Right II0

then begin

LMI =
L+LM LM+Ls -; LMS=-

2 2

Left JI, = Z7,(L,,); Right II, =I7,(L,,)

end

If Left ZZO <Right ZI,

then binary (LM, Ls, MAX)

else binary (L,, LM, MAX)

end

else Send MAX = L,

Algorithm Search-z:

scsmall; L,cO

Find Ls=minx: Q1(x)=ED

binary (L,, Ls, z;“)

Virus tests to maximize availability of software systems

21

1400

,I(:

7 = 0.001

P = 0.0001

0 = 1.01

; 1 :o

/3 = 1

400

ED
0 1200

Fig. 5. z1 as a function of ED (Weibull).

=1

300

0

P = 0.0001

fl = 1.01

ED= 100

; 1 :o

p = 1

Y

143

0 0.001

Fig. 6. z1 as a function of y (Weibull).

5.2. Numerical results for Weibull failure rate

The results are presented for the Weibull failure rate which has been widely used in

reliability models. We first present some numerical examples concerning zr , the total

time in normal operation between the last dump and the first failure test. Then we turn

to various numerical examples showing how system parameters affect system avail-

ability when zr and k are chosen so as to maximize it.

With regard to zr we notice the following effects:

If the cost ED for making a dump increases then the interval z: also increases (see

Fig. 5)

If the parameter y of the failure rate increases (for the three cases constant, linear

and Weibull) clearly the failure rate also increases and the first failure test has to be

144 E. Gelenbe, M. Herncindez

0.6

0.3

:\

Fig. 7. z1 as a function of p (Weibull).

-7 = 0.001

8 = 1.01

ED= 100

-

; 5 :o
/3 = 1

P

0 0.015

Fig. 8. II, as a function of p (Weibull).

made earlier. Indeed, if the risk of failure is larger, it would be better to make a failure

test earlier than if this risk is smaller (see Fig. 6)

l Similarly, if the probability p of discovering an error during a failure test is greater,

then the interval zt should be smaller (see Fig. 7)

Let us now turn to some results concerning system availability:

l If the probability p of finding a failure test error decreases then the availability will

increase (see Fig. 8)

l If the cost ED of a dump increases, then the availability will obviously decrease (see

Fig. 9)

The results were also verified for a saw-tooth failure rate.

Virus tests to maximize availability of software systems 145

n0

0.7

0.4

yy:

ED

0 1200

Fig. 9. IZ, as a function of ED (Weibull).

7 = 0.001

P = 0.0001

0 = 1.01

i E :o

1

P = 0.0001

ED= 5000

EV= 2

0 0.0006

Fig. 10. II, as a function of y0 (saw-tooth).

5.3. Numerical results for a saw-tooth failure rate

In Fig. 10 we consider the behavior of the availability no for a sawtooth-type

time-dependent failure rate discussed in Section 3.1.2. This corresponds to the case

where during a failure test, errors are detected with a certain probability p and

a recovery procedure is carried out. Then the system failure rate drops to a low value

as soon as the system begins its operation, but increases as time goes by and the

system is used until a new failure test is carried out.

ZI, is plotted against y. for the saw-tooth failure rate. We observe that as y0 (the rate

of increase of the failure rate) increases, the availability n, decreases, as one may

expect. Keeping the same model parameters (a = 1, j3 = 10, I= 1, p =O.OOOl, ED = 5000,

EV=2) as in Fig. 10, we show the variation of n, versus y for the case of a linear

146 E. Gelenbe, M. Hermindez

0.08

i\ .

P = O.cnOl
R = 2

ED= 5000

EV= 2

; 1 :o

p = 1

7

0 0.0008

Fig. 11. II, as a function of ‘J (Weibull).

Weibull failure rate (i.e. without the saw-tooth behavior) in Fig. 11. We see that the

availability is appreciably greater in the saw-tooth case, showing that the failure tests

are having the desired effect of improving system availability.

6. Conclusions

In this paper we propose the use of “failure tests” or “virus tests” in order to

enhance the reliability and availability of a transaction oriented software system.

The basic idea is to carry out software tests and verifications at regular intervals

concerning the data the system contains, and/or the transactions it has executed, in

order to detect possible errors or inconsistencies. The purpose is to reduce the

consequence such errors may have on system crashes, or to eliminate errors which

would be detected later during normal system operation.

We discuss the appropriate choice of the number of failure tests and of the time

between successive checks, assuming that the system is prone to failures. We expect

that the system will also be equipped with a “roll-back recovery”-type mechanism in

order to handle failures; this mechanism will be used for failure recovery both after

a failure test and for random failures which occur during system operation. The basic

time structure of system operation is established by the sequence of dumps, and virus

or failure tests are carried between successive dumps.

A model is constructed in order to compute the best possible choice of intervals

between dumps and failure test intervals so as to maximize system availability. This

model is based on techniques initially developed in [6] for computing optimal

checkpoint intervals, and in [9] which is devoted to time-dependent failure mechan-

isms and their analysis.

Numerical procedures for handling our model are developed and described, and

examples are presented to illustrate the results we obtain.

Virus tests to maximize availability of software systems 147

It is hoped that this paper will contribute to the theory and practice of software

systems having enhanced reliability properties.

References

[l] F. Baccelli, Analysis of a service facility with periodic checkpointing, Acta Inform. 15 (1981) 67-81.

[Z] P. Bouchet, Proctdures de reprise dans les syst+mes de gestion de bases de don&es r&parties, Acta

Inform. 11 (1979) 305-340.
[3] K. Chandy, J. Browne, C. Dissly and W. Uhring, Analytic models for rollback and recovery strategies

in database systems, IEEE. Trans. Software Engng. SE-l (1975) lOC-110.

[4] E. Cinlar, Introduction to Stochastic Processes (Prentice-Hall, Englewood Cliffs, NJ, 1975).

[S] D. Cox, J. Miller, The Theory of Stochastic Processes (Methuen and Co Ltd., London and Colchester,

1965).
[6] E. Gelenbe, On the optimum checkpoint interval, J. ACM 26 (1979) 259-270.
[7] E. Gelenbe and D. Derochette, Performance of rollback recovery systems under intermittent failures,

Comm. ACM 21 (1978) 493-499.
[S] E. Gelenbe, D. Finkel and S. Tripathi, Availability of a distributed computer system with failures,

Acta Inform. 23 (1986) 643-655.

197 E. Gelenbe and M. HernBndez, Optimum checkpoints with age dependent failures, Acta Inform. 27

(1990) 519-531.
[lo] T. Haerder and A. Reuter, Principles of transaction-oriented database recovery, Comput. Surveys

1(1983) 287-317.
[11] R. Koo and S. Toueg, Checkpointing and rollback-recovery for distributed systems, IEEE. Trans.

Software Engng. SE-13 (1987).
1121 V. Nicola, A single server queue with mixed types of interruptions, Acta Inform. 23 (1986) 6465-486.

1133 V. Nicola and+. Kilstra, A model of checkpointing and recovery with a specified number of

transactions between checkpoints, in: A.K. Agrawala and S. Tripathi, ed., Performance ‘83 (North-
Holland, Amsterdam, 1983) 83-99.

[14] S. Ross, Stochastic Processes (Wiley, New York, 1983).

1151 K. Salem and H. Garcia-Molina, Crash recovery mechanisms for main storage database systems,

Research Report No. CS-TR-034-86, Dept. Computer Science, Princeton University, USA, 1986.
[16] K. Trivedi, Probability and Statistics with Reliability. Queuing and Computer Science Applications

(Prentice-Hall, Englewood Cliffs, NJ, 1982).

[17] J. Young, A first order approximation to the checkpoint interval, Comm. ACM 17 (1974) 530-531.

