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Error estimates in Sobolev spaces for interpolating thin
plate splines under tension
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Abstract

This paper discusses Lp-error estimates for interpolation by thin plate spline under tension of a function in the classical Sobolev
space on an open bounded set with a Lipschitz-continuous boundary. A property of convergence is also given when the set of
interpolating points becomes more and more dense.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of curves spline under tension was introduced at first by Schweiket [13]. An empiric generalization
of the concept of spline under tension for two variables have been given by Franke [7]. Theoretical properties of thin
plate spline under tension in hilbertian space have been studied by Bouhamidi and Le Méhauté [2,3,1]. The idea behind
the concept of tension is that the resulting interpolating splines are close to the interpolating pseudo-linear splines if
the parameter of tension is large, and are closed to the interpolating pseudo-cubic splines if the parameter of tension
is small [2,7]. Splines under tension are useful when the modelled phenomenon has regions with rapid change of
gradients. In this case, interpolation by thin plate splines may present some overshoots due to the plate’s stiffness. The
stiffness can be suppressed by the first derivatives appearing in the semi-norm that leads to thin plate splines under
tension [7,11]. Splines under tension were used successively in some experiences such as mathematical geology [14]
and Geographical Information System [8].

The aim of this paper is to study the Lp-error estimates in the Sobolev space for interpolating thin plate splines under
tension. Some results of error estimates and convergence of thin plate splines as (m, �, s)-splines was given in a recent
paper by López de Silanes [9]. Let us recall some results, properties and notations. Let m and d be two nonnegative
integers and consider the space Xm(Rd) given by

Xm(Rd) = {u ∈ D′(Rd), D�u ∈ L2(Rd) for |�| = m, m + 1},
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where D′(Rd) is the space of Schwartz distributions and D�u = (�|�|/(�x
�1
1 · · · �x

�d

d ))u. Let � > 0 be a positive param-
eter. In the space Xm(Rd) we consider the following semi-scalar product

(u|v)
m,�,Rd =

∑
|�|=m+1

(m + 1)!
�!

∫
Rd

D�u(x)D�v(x) dx + �2
∑

|�|=m

m!
�!
∫

Rd
D�u(x)D�v(x) dx. (1.1)

The semi-norm associated to (1.1) is denoted by |u|
m,�,Rd =

√
(u|u)

m,�,Rd . We assume that m > (d/2) then the space

Xm(Rd) with the semi-scalar product (1.1) is a semi-Hilbert space continuously embedded in the space C(Rd) of
continuous functions on Rd [2,3]. The null subspace of the semi-norm | · |

m,�,Rd is the space �m−1 of polynomials of
d-variables of degree at most m − 1 whose dimension is denoted by d(m).

Let f be a continuous function on a nonempty subset � of Rd and let A = {x1, . . . , xN } be a finite set of N distinct
points of � := closure(�). We assume that A is �m−1-unisolvent set which means that any polynomial in �m−1
which vanishes on A is identically zero.

Let �m be the m-times iterated Laplacian operator and let � be the Dirac measure at the origin.A fundamental solution
of the differential operator (−1)m+1(�m+1 − �2�m) is a function �m,d which generates a tempered distribution on Rd

also denoted by �m,d such that

(−1)m+1(�m+1�m,d − �2�m�m,d) = �.

Let |x| denote the Euclidean norm in Rd and let K0 be the classical Bessel function of the second kind. For d = 1, 2, 3,
the function �m,d has the following expression [2,3,1,4],

�m,d(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)m

2�2m+1

(
e−�|x| −

2m−1∑
k=0

(−�|x|)k
k!

)
for d = 1

(−1)m

2��2m

(
m−1∑
k=0

�2k

4k(k!)2 |x|2k ln(|x|) + K0(�|x|)
)

for d = 2

(−1)m

4��2m|x|

(
e−�|x| −

2m−2∑
k=0

(−�|x|)k
k!

)
for d = 3.

(1.2)

Let IA(f ) denote the set IA(f ) := {u ∈ Xm(Rd) : u(a) = f (a), ∀a ∈ A}. It has been proved in [2,3,1] that the
variational problem

Minimize
u∈Xm(Rd )
u∈IA(f )

|u|
m,�,Rd , (1.3)

has a unique solution fA given by the following expression

fA(x) =
N∑

i=1

	i�m,d(x − xi) +
d(m)∑
j=1

�j qj (x), (1.4)

where (q1, . . . , qd(m)) denotes a basis of the space �m−1. Let z, � and 	 be the vectors given by z=(f (x1), . . . , f (xN))T,
� = (�1, . . . , �d(m))

T and 	 = (	1, . . . , 	N)T, respectively. Let K, M and O be the N × N matrix K = (�m,d(xi −
xj ))1� i,j �N , the d(m)×N matrix M = (qi(xj )) 1 � i � d(m)

1 � j �N
and the d(m)×d(m) zero-matrix, respectively. The notation

( )T denotes transposition. The coefficients 	i and �j are computed by solving the following nonsingular linear system

(
K MT

M O

) (
	
�

)
=
(

z

0

)
. (1.5)



210 A. Bouhamidi / Journal of Computational and Applied Mathematics 200 (2007) 208–216

The system (1.5) is obtained from the interpolating conditions

fA(xi) = f (xi), i = 1, . . . , N ,

together with the orthogonality conditions

N∑
i=1

	iqj (xi) = 0, j = 1, . . . , d(m).

In the remainder of this paper, we assume that d �2 and we assume that � is an open bounded subset of Rd . The
fill-distance from A to � is defined by

h := h(A, �) := sup
x∈�

inf
a∈A

|x − a|.

We will use the classical notation Wk,p(�) to denote the usual Sobolev space of all distributions f for which all of
whose derivatives up to and including order k are in the classical Lebesgue space Lp(�). The classical norm in the
Sobolev space is given by

‖f ‖Wk,p(�) :=
⎡
⎣∑

|�|�k

‖D�f ‖2
Lp(�)

⎤
⎦

1/2

< ∞,

for 1�p < + ∞. Of course, the usual obvious modifications are to be made if p = ∞.
Let | · |m,�, | · |m+1,� and | · |m,�,� denote the semi-norms defined on Wm+1,2(�) and associated to the following

semi-scalar products

(f |g)m,� =
∑

|�|=m

m!
�!
∫
�

D�f (x)D�g(x) dx,

(f |g)m+1,� =
∑

|�|=m+1

(m + 1)!
�!

∫
�

D�f (x)D�g(x) dx,

(f |g)m,�,� = (f |g)m+1,� + �2(f |g)m,�, (1.6)

respectively. According to the Sobolev imbedding theorem, if � is an open bounded subset of Rd having a Lipschitz-
continuous boundary, then the following continuous injection

Wm,2(�) ↪→ Wk,p(�),

holds for a positive integer k with 0�k�m − (d/2) + (d/p) and p ∈ [2, ∞].
The interior cone property is defined as follows:

Definition 1.1. An open � of Rd is said to satisfy the interior cone property with a radius r > 0 and an angle 
 ∈ (0, �/2)

if for every t ∈ � there exists a unit vector �(t) ∈ Rd such that the cone

C(t, �(t), 
, r) = {t + 	�; � ∈ Rd , |�| = 1, �T · �(t)� cos 
, 0�	�r}
is entirely contained in �.

The following proposition has been proved by Duchon [6].

Proposition 1.1 (Duchon [6]). Let � be an open set of Rd satisfying the cone property with a radius r and an angle

, then there exists constants M �1 and M1 (depending on d and 
) and 
0 (depending on 
 and r) such that for any 

such that 0 < 
�
0 there exists T
 ⊂ � satisfying

(i) B(t, 
) ⊂ � for all t ∈ T
,
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(ii) � ⊂
⋃
t∈T


B(t, M
),

(iii)
∑
t∈T


1B(t,M
) �M1.

Here 1B(t,M
) is the function which has value one on the ball B(t, M
) of center t and radius M
 and zero elsewhere.

Let us remark that Condition (iii) means that any point in � belongs to at most M1 balls B(t, M
) with a center
t ∈ T
. We recall that an open bounded connected subset � of Rd with a Lipschitz-continuous boundary satisfies the
cone property with a radius r and an angle 
.

2. Local error estimates

In this section we provide some results which deal with the local estimates for a finite covering of small balls. We
assume that � is an open bounded connected subset of Rd having a Lipschitz boundary (in the sense of Necǎs [12]).
The space of restrictions to � of functions belonging to Xm(Rd) (respectively to Wm+1,2(Rd)) is denoted by Xm

�(Rd)

(respectively by W
m+1,2
� (Rd)). Let R� denote the operator of restriction from Rd to �, we have Xm

�(Rd)=R�[Xm(Rd)]
and W

m+1,2
� (Rd) = R�[Wm+1,2(Rd)]. Let Ẇm+1,2(�) := Wm+1,2(�)/�m−1 be the quotient space of Wm+1,2(�) by

�m−1. In the space Ẇm+1,2(�) we consider the norm defined by

‖ḟ ‖1 = |f |m,�,�, ∀ḟ ∈ Ẇm+1,2(�).

Since � is assumed to be an open bounded connected subset of Rd having a Lipschitz boundary then the norm ‖ · ‖1
defined in the quotient space Ẇm+1,2(�) is equivalent to the usual quotient norm defined on Ẇm+1,2(�) by

‖ḟ ‖q = inf
u∈ḟ

‖u‖Wm+1,2(�), ∀ḟ ∈ Ẇm+1,2(�).

See [12, p. 19] for the definition of the quotient norm in Ẇm+1,2(�). We recall that u ∈ ḟ means that u − f is a
polynomial of d-variables of degree at most m − 1. The following proposition is given in [9].

Proposition 2.1. Let � be any open bounded nonempty subset of Rd , then Xm
�(Rd)=W

m+1,2
� (Rd). Furthermore, if �

is with a Lipschitz-continuous boundary then the operator R� of restriction to � is linear and continuous from Xm(Rd)

onto Wm+1,2(�).

Proof. For the first part, we consider D−kL2(Rd)={u ∈ D′(Rd), u ∈ L2(Rd) for |�|=k} and let D−kL2
�(Rd) denote

the space of restriction to � of the functions belonging to D−kL2(Rd). According to [5], D−kL2
�(Rd) = W

k,2
� (Rd).

Since Xm
�(Rd) = D−(m+1)L2

�(Rd) ∩ D−mL2
�(Rd), then the required result follows. For the second part, the proof is

similar to that of [10, Theorem 1.2] (see also [5]). �

In order to prove the following lemma, it is helpful to introduce the following notations. Let c(m) := #{� ∈
Nd , |�| = m, m + 1} be the number of multi-indices � such that |�| = m, m + 1 and consider the space product
Ym(Rd) = (L2(Rd))c(m). A generic element f of Ym(Rd) is written as f = (f�)|�|=m,m+1 where each component of
f� ∈ L2(Rd) is indexed by one and only one of all the multi-indices � such that |�| = m, m + 1. The space Ym(Rd) is
endowed with the scalar product

(f |g)Ym =
∑

|�|=m+1

(m + 1)!
�!

∫
Rd

f�(x)g�(x) dx + �2
∑

|�|=m

m!
�!
∫

Rd
f�(x)g�(x) dx, (2.1)

where f = (f�)|�|=m,m+1 and g = (g�)|�|=m,m+1. The norm associated to the scalar product (2.1) is denoted by ‖f ‖Ym .
We consider the linear operator T : (Xm(Rd), | · |

m,�,Rd ) −→ (Ym(Rd), ‖ · ‖Ym) defined by

T u = (D�u)|�|=m,m+1, ∀u ∈ Xm(Rd).
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Since � is with a Lipschitz boundary, it follows that � satisfies the m-extension property (see [12]). Thus, there exists
a continuous linear application Em from Wm+1,2(�) into Xm(Rd) such that R�(Emu) = u for all u ∈ Wm+1,2(�).
The mapping Em is called an extension from Wm+1,2(�) into Xm(Rd). Since ‖T u‖Ym = |u|

m,�,Rd , it follows that

the operator T : (Xm(Rd), | · |
m,�,Rd ) −→ (Ym(Rd), ‖ · ‖Ym) is continuous. From Proposition 2.1, the operator

R� : (Xm(Rd), | · |
m,�,Rd ) −→ (Wm+1,2(�), | · |m,�,�) is continuous. Moreover, the operators T and R� satisfy the

following properties,

(1) R�(Xm(Rd)) = Wm+1,2(�).
(2) ker(R�) ∩ ker(T ) = ker(R�) ∩ �m−1 = {0},
(3) ker(R�)+ker(T ) is a closed subspace of Xm(Rd), because of the finite dimension of the subspace ker(T )=�m−1.

For a function u ∈ Xm(Rd) we use the classical notation u|� to denote the restriction of u to �, namely u|� =R�(u).
The following lemma is similar to Lemma 3.1 in [6].

Lemma 2.1. Let � an open bounded connected subset of Rd , having the Lipschitz boundary and containing a �m−1-
unisolvent subset. For any f ∈ Wm+1,2(�), the variational problem

Minimize
u∈Xm(Rd )

u|� =f

|u|
m,�,Rd , (2.2)

has a unique solution f �, and we have

|f �|2
m,�,Rd = |fA|2

m,�,Rd + |f � − fA|2
m,�,Rd ,

where fA is the solution the variational Problem (1.3). Moreover, there exists a constant K (depending on m and �)
such that

|f �|
m,�,Rd �K|f |m,�,�, ∀f ∈ Wm+1,2(�).

Proof. The existence and uniqueness, of the solution of Problem (2.2), result from the properties of the operators T
and R� and from the general splines theory. Furthermore, the solution fA of Problem (1.3) satisfies (fA|u)

m,�,Rd =0

for all u ∈ Xm(Rd) vanishing on A. Since the function u = f � − fA vanishes on A, we get

|f �|2
m,�,Rd = (f � − fA + fA|f � − fA + fA)

m,�,Rd

= (f � − fA|f � − fA)
m,�,Rd + (fA|fA)

m,�,Rd

= |f � − fA|2
m,�,Rd + |fA|2

m,�,Rd .

In the quotient space Ẇm+1,2(�) := Wm+1,2(�)/�m−1 we consider the norm defined by ‖ḟ ‖2 = |f �|
m,�,Rd for

ḟ ∈ Ẇm+1,2(�). The space Ẇm+1,2(�) together with the norms ‖ · ‖1 or ‖ · ‖2 is a Hilbert space. Moreover, for all
f ∈ Wm+1,2(�), we have f �|� = f . Since

‖ḟ ‖1 = |f |m,�,� � |f �|
m,�,Rd = ‖ḟ ‖2, ∀f ∈ Wm+1,2(�),

it follows that the injection j : (Ẇm+1,2(�), ‖ · ‖2) −→ (Ẇm+1,2(�), ‖ · ‖1) is continuous. Using the open mapping
theorem, we obtain that j−1 is also continuous. Then, there exists K > 0 depending on m and � such that

‖ḟ ‖2 = ‖j−1(ḟ )‖2 = |f �|
m,�,Rd �K‖ḟ ‖1 = K|f |m,�,�,

holds for all f ∈ Wm+1,2(�). �
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Let � be a multi-index and p ∈ [2, ∞] such that |�|�m− (d/2)+ (d/p). Since � is an open bounded and connected
subset of Rd having a Lipschitz-continuous boundary, it follows that the inclusions Wm+1,2(�) ⊂ Wm,2(�) ⊂
W |�|,p(�) are with continuous injection. Now the following lemma about the Lagrange polynomial interpolation is
from [6] with some slight modifications.

Lemma 2.2. Let � an open bounded and connected subset of Rd having a Lipschitz-continuous boundary. Let B ⊂
(Rd)d(m) be a compact subset of d(m)-tuples b = (b1, . . . , bd(m)) which are �m−1-unisolvent, let Lb denote the
Lagrange �m−1-interpolation operator defined for u ∈ Wm+1,2(�) (⊂ C(�)) by{

Lbu ∈ �m−1

Lbu(bi) = u(bi) for i = 1, . . . , d(m).

Let � be a multi-index and p ∈ [2, ∞] such that |�|�m−(d/2)+(d/p). Then, there exists a constant C > 0 (depending
on �, B, � and p) such that

‖D�(u − Lbu)‖Lp(�) �C|u|m,�,

holds, for all b ∈ B and all u ∈ Wm+1,2(�).

The following theorem gives a local error estimates.

Theorem 2.1. For any M �1, for any p ∈ [2, ∞] and for any multi-index � such that |�|�m − (d/2) + (d/p), there
exists R > 0 (depending on d and m) and there exists C > 0 (depending on M, R, d, m �, p and �) such that for all h > 0
and for all t ∈ Rd the ball B(t, Rh) of center t and radius Rh contains d(m) balls B1, . . . , Bd(m) of radius h such that,
the following inequality

‖D�u||Lp(B(t,MRh)) �Chm−|�|−(d/2)+(d/p) |u|m,�,B(t,MRh),

holds, for all u ∈ Wm+1,2(B(t, MRh)) which vanishes at least on one point of each balls B1, . . . , Bd(m).

Proof. Let {b0
1, . . . , b

0
d(m)} be an arbitrary �m−1-unisolvent set in Rd . Given that the set of all the d(m)-tuples of

�m−1-unisolvent points in Rd is an open subset of (Rd)d(m) (its complement is the set of the solutions of a system
of algebraic equations), it follows that there exists � > 0 such that if |bi − b0

i |�� for i = 1, . . . , d(m) then the set
{b1, . . . , bd(m)} is also �m−1-unisolvent. Dilatation by the factor 1/� generates a new set of points ai = (1/�)b0

i for
i = 1, . . . , d(m) such that the cartesian product B = B(a1, 1) × · · · × B(ad(m), 1) is a compact subset of (Rd)d(m) of

d(m)-tuples of �m−1-unisolvent points. The set
⋃d(m)

i=1 B(ai, 1) is a bounded subset of Rd , then there exists a radius

R > 0 (depending on d and m) and there exists a point a ∈ Rd such that
⋃d(m)

i=1 B(ai, 1) ⊂ B(a, R). Let M �1, using
Lemma 2.2 for the open ball B(a, MR), there exists a constant C > 0 (depending on M, R, �, m, d and p) such that

‖D�(v − Lbv)‖Lp(B(a,MR)) �C|v|m,B(a,MR), (2.3)

for all v ∈ Wm+1,2(B(a, MR)) and for all b = (b1, . . . , bd(m)) ∈ B. Now, let h > 0 and t ∈ Rd and consider the
transformation �t : x 	→ t +h(x−a) which transforms the ball B(a, MR) into the ball B(t, MRh). The transformation
�t is affine and bijective with the Jacobian matrix is hId and det(hId)=hd , where Id denotes the square d-unit matrix.
For all u ∈ Wm+1,2(B(t, MRh)), we have

D�u(y) = h−|�|[D�(u ◦ �t )](�−1
t (y)), (2.4)

and v = u ◦ �t ∈ Wm+1,2(B(a, MR)).
For 2�p < ∞, by using the change of variables y = �t (x), we obtain

‖D�u‖p

Lp(B(t,MRh)) =
∫

B(t,MRh)

|D�u(y)|p dy =
∫
�t (B(a,MR))

|D�u(y)|p dy

= hd

∫
B(a,MR)

h−|�|p|D�(u ◦ �t )(x)|p dx
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which gives,

‖D�u‖Lp(B(t,MRh)) = h(d/p)−|�|‖D�(u ◦ �t )‖Lp(B(a,MR)). (2.5)

For p = ∞, we have obviously from (2.4),

‖D�u‖L∞(B(t,MRh)) = h−|�|‖D�(u ◦ �t )‖L∞(B(a,MR)),

which is the inequality (2.5) by setting (d/p) = 0 for p = ∞.
In particular for p = 2 and |�| = m, we obtain

‖D�u‖L2(B(t,MRh)) = h(d/2)−m‖D�(u ◦ �t )‖L2(B(a,MR)),

which gives

|u ◦ �t |2m,B(a,MR) = h2m−d |u|2m,B(t,MRh). (2.6)

The transformation �t transforms the ball B(a, R) into the ball B(t, Rh) and the ball B(ai, 1) into the ball Bi :=
�t (B(ai, 1))=B(t +h(ai − a), h), for i = 1, . . . , d(m). Since B(ai, 1) ⊂ B(a, R) it follows that Bi ⊂ �t (B(a, R))=
B(t, Rh), for i = 1, . . . , d(m).

Let u be any element of Wm+1,2(B(t, MRh)) which vanishes at least on one point ci of each balls Bi

for i = 1, . . . , d(m). Let v =u ◦ �t and bi =�−1
t (ci) ∈ B(ai, 1) ⊂ B(a, MR), for i = 1, . . . , d(m). Since u ∈ Wm+1,2

(B(t, MRh)), then v belongs to Wm+1,2(B(a, MR)) and v(bi) = (u ◦ �t )(�
−1
t (ci)) = u(ci) = 0, for i = 1, . . . , d(m).

Since, the d(m)-tuple b = (b1, . . . , bd(m)) belongs to B, then by using (2.3), we obtain

‖D�v‖Lp(B(a,MR)) �C|v|m,B(a,MR). (2.7)

Finally, from (2.5) to (2.7), we get as required the existence of a constant C > 0 (depending on M, R, �, m, d, p and �)
such that

‖D�u‖Lp(B(t,MRh)) �Chm−|�|−(d/2)+(d/p) |u|m,�,B(t,MRh). �

3. Global error estimates and convergence

In this section we give some results about the global error estimates and convergence.

Theorem 3.1. Let � be an open bounded connected subset of Rd having a Lipschitz-continuous boundary. Let m be
an integer such that m > d/2, then there exists h0 > 0 (depending on �, m and d) such that for any multi index �
and for any p ∈ [2, ∞] with |�|�m − (d/2) + (d/p), there exists a constant C (depending on �, d, m, �, p and �)
such that for every function f belonging to Wm+1,2(�) and for every finite �m−1-unisolvent subset A of � satisfying
h = sup

t∈� infa∈A |t − a|�h0, the following inequality holds

‖D�(f − fA)‖Lp(�) �Chm−|�|−(d/2)+(d/p) |f � − fA|
m,�,Rd .

Proof. Let � be an open bounded connected subset of Rd having a Lipschitz-continuous boundary. Then � satisfies
the cone property with a radius r and an angle 
. According to Proposition 1.1, there exists constants M �1 and M1
(depending on d and 
) and 
0 (depending on 
 and r) such that for all 
 ∈]0, 
0] there exists a set T
 ⊂ � satisfying

(i) B(t, 
) ⊂ � for all t ∈ T
,
(ii) � ⊂

⋃
t∈T


B(t, M
),

(iii)
∑
t∈Th

1B(t,M
) �M1.



A. Bouhamidi / Journal of Computational and Applied Mathematics 200 (2007) 208–216 215

Let m, p and � given as in the hypothesis of the theorem. By using Theorem 2.1 combining with Proposition 1.1, we
get the existence of R > 0 (depending on d and m) and the existence of C > 0 (depending on M, d, m, �, p and �) such
that for every finite �m−1-unisolvent subset A of � satisfying h = sup

t∈� infa∈A |t − a| with h < h0 = 
0
R

there exists
a set Th := T
 ⊂ � satisfying (i), (ii) and (iii) where we set 
 = Rh.

Let f ∈ Wm+1,2(�). The intersection B(t, h) ∩ A is not empty for all t ∈ � and the function f � − fA vanishes
on A. Then the inequality

‖D�(f � − fA)‖Lp(B(t,MRh)) �Chm−|�|−(d/2)+(d/p) |f � − fA|m,�,B(t,MRh),

holds for all t ∈ Th. It follows that

‖D�(f � − fA)‖Lp(�) �

⎛
⎝∑

t∈Th

∫
B(t,MRh)

|D�(f � − fA)|p dx

⎞
⎠

1/p

=
⎛
⎝∑

t∈Th

‖D�(f � − fA)‖p

Lp(B(t,MRh))

⎞
⎠

1/p

�Chm−|�|−(d/2)+(d/p)

⎛
⎝∑

t∈Th

|f � − fA|pm,�,B(t,MRh)

⎞
⎠

1/p

.

For p ∈ [2, ∞[, by using the fact that (
∑

i |xi |p)1/p �(
∑

i |xi |2)1/2, we get

‖D�(f � − fA)‖Lp(�) �Chm−|�|−(d/2)+(d/p)

⎛
⎝∑

t∈Th

|f � − fA|2m,�,B(t,MRh)

⎞
⎠

1/2

.

For p = ∞, we have

‖D�(f � − fA)‖L∞(�) �

⎛
⎝∑

t∈Th

‖D�(f � − fA)‖2
L∞(B(t,MRh))

⎞
⎠

1/2

�Chm−|�|−(d/2)

⎛
⎝∑

t∈Th

|f � − fA|2m,�,B(t,MRh)

⎞
⎠

1/2

.

But

|f � − fA|2m,�,B(t,MRh) =
∑

|�|=m+1

(m + 1)!
�!

∫
Rd

1m,�,B(t,MRh)|D�(f � − fA)(x)|2 dx

+ �2
∑

|�|=m

m!
�!
∫

Rd
1m,�,B(t,MRh)|D�(f � − fA)(x)|2 dx,

we get
∑

t∈Th
|f � − fA|2m,�,B(t,MRh) �M1|f � − fA|2

m,�,Rd . Finally, we have the following result

‖D�(f � − fA)‖Lp(�) �C
√

M1 hm−|�|−(d/2)+(d/p) |f � − fA|
m,�,Rd .

The required results follows from the fact that f �|� = f . �
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Corollary 3.1. Let � be an open bounded connected subset of Rd having a Lipschitz-continuous boundary. Let m
be an integer such that m > d/2, then there exists h0 > 0 (depending on �, m and d) and there exists K (depending
on � and m) such that for any multi-index � and for any p ∈ [2, ∞] with |�|�m − (d/2) + (d/p), there exists a
constant C (depending on �, d, m, �, p and �) such that for every function f belonging to Wm+1,2(�) and for every
finite �m−1-unisolvent subset A of � satisfying h = sup

t∈� infa∈A |t − a|�h0, the following inequality holds

‖D�(f − fA)‖Lp(�) �KChm−|�|−(d/2)+(d/p) |f |m,�,�.

Proof. By combining the results of Theorem 3.1 together with the results of Lemma 2.1 and taking the fact that f �|� =f

into account, we obtain the required result. �

We have the following convergence result

Corollary 3.2. Let � be an open bounded connected subset of Rd having a Lipschitz-continuous boundary. Let m be
an integer such that m > d/2, let � be a multi-index and p ∈ [2, ∞] such that |�|�m − (d/2) + (d/p). For all 
 > 0
and for all f ∈ Wm+1,2(�), there exists h0 > 0 such that for every finite �m−1-unisolvent subset A of � satisfying
h = sup

t∈� infa∈Ah
|t − a|�h0, the following inequality holds

‖D�(f − fA)‖Lp(�) �
hm−|�|−(d/2)+(d/p).

Proof. The result is an immediate consequence of Theorems 3.1 and 4.2 in [9]. Let f ∈ Wm+1,2(�). According to
Theorem 4.2 in [9], we have limh→0 |f � −fA|m,� =0. Let 
 > 0, there exists h0 such that for h= sup

t∈� infa∈Ah
|t −

a|�h0, we have C|f � − fA|
m,�,Rd < 
, where C is the constant appearing in Theorem 3.1. It follows that

‖D�(f − fA)‖Lp(�) �
hm−|�|−(d/2)+(d/p). �
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