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Abstract
Validating online stream classifiers has traditionally assumed the availability of labeled samples,
which can be monitored over time, to detect concept drift. However, labeling in streaming
domains is expensive, time consuming and in certain applications, such as land mine detection,
not a possibility at all. In this paper, the Margin Density Drift Detection (MD3) approach
is proposed, which can signal change using unlabeled samples and requires labeling only for
retraining, in the event of a drift. The MD3 approach when evaluated on 5 synthetic and 5 real
world drifting data streams, produced statistically equivalent classification accuracy to that of
a fully labeled accuracy tracking drift detector, and required only a third of the samples to be
labeled, on average.
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1 Introduction

The Velocity and non-stationarity of Big data has warranted the need for online stream data
mining systems which are capable of working in an autonomous or atleast a semi-autonomous
manner [11]. An essential characteristic of these systems is the ability to detect change, referred
to as Concept Drift [18], in the underlying data distribution and adapt to them effectively.
Traditional change detection schemes proposed in literature [9], keep track of discrepancies in
the predicted and actual labels of the incoming samples, to explicitly signal drift when the
classification performance drops. This implicit assumption of availability of the actual labels is
not justified in the case of streaming data, as labeling is expensive, time consuming and may not
be available in most cases. Thus the ability to work with unlabeled data has gained considerable
interest from the streaming data research community [19, 20]. This paper explore the ability
to detect concept drift using unlabeled data and proposes the Margin Density Drift Detection
(MD3) algorithm, which tracks changes in the classifier boundary by monitoring distribution
of incoming samples relative to it.

This paper makes the following contributions to the state of the art: Analysis of a classifier’s
margin density as a signal for drift detection; Development of the MD3 algorithm capable of
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Figure 1: Illustration of drifts in data distribution, P (x)- as introduction of Concept B,C at t2;
and drift in class boundary, P (y|x)- as changes in Concept A, resulting in a change in P (x, y)

using this signal; Experimental and statistical analysis of the proposed methodology on 5 real
world and 5 synthetic datasets to understand it’s efficacy and limitations.

The rest of the paper is organized as follows: Section 2 presents the background research
work and motivation behind the proposed MD3 approach. Section 3 describes the generic
MD3 methodology and also presents a specific implementation using Support Vector Machines.
Section 4 presents experimental results as proof of idea and as a comparative study over 10
datasets. Conclusion and avenues for extension are presented in Section 5.

2 Background and Motivation

Drift detection has it’s roots in sequential statistical tests such as the CUSUM and the Page-
Hinkley test, which explicitly measure deviation in the mean value of the classification perfor-
mance (commonly accuracy), and signal change based on a threshold [8]. This idea of change
was further reformed in the well known DDM and the EDDM methodologies which, based on
Statistical Learning Theory, look for upward trends in the classification error as a signal for
change [3]. Several other drift detectors have been proposed as a variation of these base ap-
proaches and a detailed analysis of 8 frequently used drift detection schemes is presented in
[9]. All of these approaches use labeled data samples to explicitly capture change in the clas-
sifier boundary. As such, these approaches are powerful in detecting drifts in the classification
boundary, but not suitable for applications where the labeling is scarce and expensive.

To account for the limitations of labeled data, unsupervised techniques, which monitor
changes in the distribution of the attribute values or the classification output, have been pro-
posed. The former consists of incremental clustering and novel class detection schemes which
keep track of distribution of samples in the feature space [15]. Another such method [13], mea-
sures changes to the correlation between the attribute values of two windows of variable sizes.
In case of the methodologies based on the classification output, the posterior estimates of the
current classifier in the system are monitored to detect changes [19]. The earliest of these meth-
ods was proposed in [12], wherein a prototype based classifier was used to represent each class
and an increase in the number of samples that fall outside the confidence range of all classes
is taken as an indication of drift. The more recent Confidence Distribution Batch Detection
(CDBD) approach [14], uses the KL-divergence measure to compute changes in the distribution
of a classifier output confidence distribution against an initial reference distribution.

The unlabeled drift detection approaches are attractive for their inexpensive detection, but
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(a) Initial distribution of samples as
distance from the model boundary

(b) Drift causing increase in
margin density

(c) Sudden drift causing drop in
margin density

Figure 2: Drifting scenarios and their effects on the margin density

they are sensitive to changes that do not affect the classification boundary directly. An illus-
tration of different types of drifts is presented in Fig. 1. Occurrence of Concept C’s cluster
does not have any direct effect on the margin boundary of Concept A, while Concept B is an
indication of a new local concept with its own boundary, occurring over time. In an effort
to detect drifts in the joint probability distribution of samples x and their labels y, given by
p(x, y) = p(x).p(y|x), the unlabeled clustering approaches tend to monitor changes in p(x),
shown as introduction of Concept B and C at time t2 in Fig. 1; while the changes to the class
boundary p(y|x) requires explicit labeled samples, shown as changes to the class boundary
leading to Concept A’. Although changes to p(x) can be indicative of drift, they are suscepti-
ble to false alarms, as they give equal importance to attributes whose change do not directly
affect classification performance [6]. In contrast, the proposed MD3 approach tracks changes
to the number of samples in a classifier’s margin, to act as a pseudo to signal explicit drift in
p(y|x), but without using any labeled data. As such, it aims at providing robustness to false
alarms - as done by the labeled drift detectors, and also leaves it open for integration with the
other clustering techniques- which are good at recognizing local subspace concepts, to have a
comprehensive drift detection on p(x, y), in high dimensional spaces.

3 Proposed MD3 methodology

The proposed Margin Density Drift Detection methodology signals concept drift by tracking
changes in the expected density distribution of the unlabeled samples with respect to a clas-
sification boundary. A classifier’s margin is defined as the region of space close to the model
boundary, where the predictions are highly uncertain. The intuition behind the MD3 approach
is that a change in the p(y|x) will result in an increase or decrease in the number of samples
within the margin as shown in Fig. 2, here the plots represents the probability distribution of
the samples based on their distance from the model boundary. An increase in the number of
samples within the margin is caused by class distributions moving closer to the boundary, as
shown in Fig. 2 b), as a result of a gradual drift, and a decrease (Fig. 2 c) ) is observed in
case of a sudden drift when the entire class distribution moves to a different part of the feature
space. Both signals warrant further investigation and as such lead to drift detection.

The overall architecture of a drift handling classification system is shown in Fig. 3. The
stream is processed as a sliding window of size S samples moving at a rate of Sr samples. This
combines the advantages of incremental classifiers, which have low latency of drift detection,
and chunk based approaches, which have a computational advantage of being able to process
several samples at once. The concept of the margin density (ρ) for sliding window defined
below, is employed as a signal for drift detection. As seen in Fig. 3, the margin density is
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Figure 3: Framework of a basic drift handling system. The Performance tracker and the Margin
density drift detection systems are two alternate strategies for drift detection.

computed from the classifier’s predicted posterior estimates and is used in the drift detection
process. The Performance Tracker drift detector (PerfTr), is the baseline fully labeled drift
detector which explicitly tracks classification performance, based on the final predicted values
and corresponding feedback from an Oracle. These are two alternate strategies for drift detec-
tion and while labels are required by both approaches to perform adaptation of the classifier,
the MD3 approach does not need any labels till a drift is detected.

Def. 1 (Margin density-ρ). The ratio of unlabeled samples in the current sliding window
that fall within the classifier’s region of uncertainty.

3.1 Margin density and SVM

The concept of margin density is applicable for any probabilistic classifier which generates pos-
terior probability estimates of class labels. This concept of margin is intuitive in case of a
Linear SVM with soft margins, which finds an optimal maximum width separating hyperplane,
between samples of two classes [16]. The soft margin allows for non separable cases, by intro-
duction of non negative slack variables ξi, to measure the degree of misclassification of sample
xi. The optimization function of the soft margin SVM is given in Equation 1 and 2, where w is
the normal vector of the separating hyperplane given by w.x + b = 0, yi is the class label and
C is the cost parameter which determines misclassification weight.

min
1

2
wTw + C

m∑

i=1

ξi (1)

s.t. yi (xT
i w + b) ≥ 1− ξi ξi ≥ 0 (2)

Soft constraints allow samples to enter the SVMmargin while trying to minimize Equation 1.
After training an SVM based on these constraints, there is an expected number of samples that
fall within the margins, represented as w.x−b = ±1, which is the margin density to be monitored
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as a signal for drift indication. The margin density for every sliding window is computed based
on the decision function of the SVM and in case of the linear kernel it is given by Equation 3.

ρ =
#samples with abs(w.x+ b) ≤ 1

#samples
(3)

The signal described by Equation 3 is computed for every sliding window and is used in drift
detection as described in Algorithm 1. The procedure receives a chunk of unlabeled samples
at timestep t, an existing classification model (for linear SVM given by w,b) representing the
concept at t-1, history statistics representing range variation in the margin density since the last
drift(ρmin, ρmax) and the threshold to signal drift(θρ). It proceeds by computing the margin
density measure for the current chunk as given by Equation 3. The algorithm keeps track of
the maximum and minimum margin density seen since the last adaptation and triggers an alert
when this range exceeds the density threshold θρ. This range based approach is much more
effective at capturing gradual drift when compared with the sequential approaches of CUSUM
and the Page-Hinkley test [8], which compute averages of signal so far and as a result miss out
on slow moving drifts. After a drift is signaled, the margin density approach reassigns the ρmax

and ρmin to the margin density on chunk t+1, using the adapted model, and continues with its
operations as earlier.

When the drift detecting system detects a drift, the classifier is adapted based on feedback
from an Oracle. This step is common for both MD3 and the labeled PerfTr techniques of Fig. 3
and is the only step in the margin density’s pipeline which needs labeled data. In this paper,
the adaptation is done by labeling and retraining a model based on the recent half of the sliding
window samples. This is done to have a uniform evaluation of the drift detectors only. Active
learning strategies such as uncertainty sampling [20], can be used to reduce the complexity and
expense of retraining.

Input : Classification Model: {w,b}, Current unlabeled data chunk X[start:end],
History Statistics: [ρmin, ρmax], Drift Threshold: θρ

Output: True if drift is detected/False otherwise, Updated [ρmin, ρmax]
isDrift=False ;
// Compute margin density of current chunk : ρcurrent;
while xi in X do

if absolute(w.xi + b ≤ 1) then
ρcurrent=ρcurrent+1 ;

end

end
ρcurrent=ρcurrent/(end-start+1) ;
if ρcurrent < ρmin then

ρmin=ρcurrent ;
end
if ρcurrent > ρmax then

ρmax=ρcurrent ;
end
if ρmax-ρmin > θρ then

isDrift = True ;
end
return isDrift, ρmax ,ρmin;

Algorithm 1: The MD3 drift detection algorithm using a Linear SVM as a base model
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4 Experimental analysis of the MD3 methodology

The proposed MD3 methodology for drift detection is evaluated on 5 synthetic and 5 real
world concept drift datasets and its performance, in terms of accuracy and the labeling used
is presented in Section 4.2. An illustrative proof of idea on a simple 2 dimensional synthetic
dataset is presented in Section 4.1. All implementation and experimentation was performed
using Python 2.7 and the scikit-learn machine learning library [1]. The experiments take the
first 5% of the stream as the initial labeled datasets to build the initial model, and then test
the performance on the rest of the stream. The SVM classifier with linear kernel is used as a
base model for the system and the following are the methodologies used for the comparative
analysis:

• Baseline static model (NoChange): Assumes that there is no drift in the stream after
the initial training phase, thereby needs no adaptation or labeling.

• Performance Tracking Drift Detection (PerfTr): PerfTr model explicitly requires
labels for every sample to compute error and a significant drop in accuracy signals a drift
requiring adaptation.

• Margin Density Drift Detection(MD3): The MD3 model uses the Algorithm1 to
perform the drift detection and needs labeled samples only when adaptation is needed
after drift detection.

The goal of the experimentation is to evaluate the efficacy of the margin density as a
viable signal to detect drift and to see if the MD3 approach can provide statistically similar
performance as the PerfTr approach while requiring significantly lower labeled samples.

4.1 Proof of idea on SimpleStream synthetic dataset

As a proof of idea, the MD3 approach is evaluated on an illustrative 2D synthetic dataset: the
SimpleStream dataset, consisting of 8000 samples and 4 concepts, as shown in Fig. 4a. This
dataset enables us to gain intuition into the working of the algorithm as the drifts are pre known
and the ability of the MD3 approach to detect the drifts swiftly can be easily visualized. For
the purposes of fine grained initial analysis, the sliding window size was taken as 800 samples
and the slide rate was taken to be 800/40 = 20 samples. The change threshold is taken as 6.5%,
for illustration of change, from the suggested range of [5-10%].

The superimposed plots of the margin density signal and the accuracy signal are shown in
Fig. 4b. It is observed that, every drop in accuracy, has a corresponding rise/drop in the margin
density with high temporal proximity, making it suitable as an alias for tracking changes using
unlabeled data. Drift was detected by the PerfTr approach at timesteps: 2560, 4140, 4660, 6200
and by the MD3 at : 2260, 2620, 2680, 6260. The resulting performance in Fig. 4c, computed
as the prequential accuracy [4] over the stream, shows that both approaches produce similar
results which are significantly better than static model, that assumes no change. However in
doing so, the margin density approach uses labeled data only from 4 windows, in which the drift
was detected, for retraining the model, while the PerTr approach needed labeled data from all
windows for validation. The MD3 used only 44.4% labeling to produce similar performance as
the 100% labeled performance tracker.

The distributions with respect to the initial SVM margin during the first drift at t=2000 of
the SimpleStream is shown in Fig. 5. The change was caused by the movement of the class 0
samples(red) towards the hyperplane. This drift causes the accuracy of the model to drop and
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(a) Stream at t=2000,4000,6000,8000

(b) Tracking Accuracy(Blue) & Margin Den-
sity(Red)

(c) Prequential accuracy over time

Figure 4: Experimental results on the SimpleStream dataset

(a) Distribution of samples 1500-2000 (b) Distribution of samples 2000-2500

Figure 5: Changes in the distribution of samples, computed as distance from the SVM hyper-
plane, from timestep [1500,2000] to [2000,2500]

the density of the region to increase, similar to the scenario depicted in Fig. 2 b) and seen in
Fig. 4b as a spike in density close to timestep 100. Either of these signals indicate drift and
the ability of the margin density approach to recognize the latter, using only unlabeled data,
is what makes it attractive as a concept drift detection approach.
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Table 1: Description of datasets for experimental evaluation

Dataset #Instances #Attributes Default accuracy WindowSize

SimpleStream 8000 2 50% 300
Hyperplane1 10000 10 50.52% 300
Hyperplane2 10000 10 50.17% 300
Hyperplane3 10000 10 50.22% 300
SEA 60000 3 62.69% 800
Usenet 5931 659 50.43% 300
Spam 6213 500 66.7% 300
EM 45312 7 57.55% 800
Covtype 218515 54 67.93% 4000
Poker 765952 25 54.25% 4000

4.2 Experimental evaluation on real and synthetic datasets

For the purposes of experimental comparison and evaluation of the NoChange, MD3 and the
PerfTr approach, 5 synthetic and 5 real world datasets were chosen. The characteristics of these
datasets is shown in Table 1. The SimpleStream dataset was described in Section 4.1 and it
represents a sudden drift dataset. The Hyperplane datasets are generated to have gradual drift
with different rates and severity of drift [7]. The number of attributes affected by the drift
and the rate of drift, given by (k,t) respectively [7], were chosen as (2,0.1) for Hyperplane1,
(5,1.0) for Hyperplane2 and (8.1.0) for Hyperplane3. The SEA dataset demonstrates drift by
transitioning between 4 different concepts which are described in terms of 2 out of 3 attributes
of the data [17]. The real world datasets represent more practical scenarios where the drift is
unknown and could potentially be caused by a variety of factors. Usenet and Spam are text
concept drifting datasets with high number of dimensions [10]. The Electricity market(EM)
dataset, Forest cover type(Covtype) and Poker datasets obtained from [2],are also popular for
concept drift experimentation. All datasets were pre-processed by converting nominal attributes
to binary and by normalizing the data to the range of [0,1]. Since the experimentation here are
presented for binary classes only, the two most frequently occurring classes in the Covtype and
Poker datasets were retained and the rest were eliminated.

To account for the diversity in the datasets, the window sizes were chosen, based on initial
experimentation, according to the following rule: WindowSize= 300 if #Instances≤10000, 800
if ≤ 100000 and 4000 otherwise. The window slide rate is taken as WindowSize/10. The SVM
with Linear kernel is chosen as a base model for all approaches and the initial 5% of the stream is
considered totally labeled for building the initial model. Based on several experiments, omitted
here for brevity, the value of the change threshold for both the PerfTr and the MD3 approach
is fixed at 7.5%.

The results shown in Table 2 indicate that all datasets have a significant concept drift which
needs updation, as the NoChange approach has the lowest prequential accuracy in all cases. The
Friedman’s non parametric test followed by a post-hoc Nemenyi test and the Bonferroni-Dunn
test [5] over the results showed that the performance, in terms of the prequential accuracy, of
the PerfTr and the MD3 approaches are not significantly different at a p-value of 0.05, while
both are significantly better than the NoChange approach. In term of the labeling, it is seen
that MD3 uses only 13.8% labeled samples for the synthetic dataset and 48.66% for the real
world datasets, which is significantly lower than the PerfTr which uses 100% labeling. It can be
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Table 2: Prequential accuracy, Labeling used and Drifts detected for the NoChange, PerfTr &
MD3 approaches

Dataset
Prequential Accuracy Labeling % #Drifts detected

NoChange PerfTr MD3 NoChange PerfTr MD3 NoChange PerfTr MD3

SimpleStream 86.33 93.05 93.34 0 100 27.63 0 5 14
Hyperplane1 63.89 86.37 86.68 0 100 17.37 0 5 11
Hyperplane2 64.26 86.85 87.1 0 100 20.53 0 7 13
Hyperplane3 72.03 87.05 87.18 0 100 12.63 0 5 8
SEA 84.49 84.58 84.64 0 100 4.91 0 3 7
Usenet 51.68 59.98 59.66 0 100 42.59 0 19 16
Spam 33.71 90.58 91.14 0 100 68.61 0 25 27
EM 62.97 66.46 65.75 0 100 47.39 0 37 51
Covtype 74.17 79.54 78.99 0 100 28.9 0 30 30
Poker 52.76 62.52 57.94 0 100 55.8 0 230 203

argued that the Perf-tracker approach can be made to work with partially labeled data as used
in limited labeling techniques of [20]. But it should be noted that the margin density approach
reduces labeling cost by requiring labeling only in chunks which have a suspected drift. In case
of an underlying partial labeled approach, the MD3 retraining will also use partial labeling
and as such will still have a lower labeling rate. However, the labeling ratio can dramatically
increase if the number of drifts detected and the subsequent retraining needed is high. If drift
is detected in every chunk, then the approach would degrade to a fully labeled approach. This
is directly related to the ability of the Margin density approaches to deal with false positives.
As seen from Table 1, the average number of drifts detected by the margin density approach is
higher than the PerfTr approach. Nevertheless, this increase in drift detection, does not hinder
it from providing statistically equivalent predictive performance at a much lower labeling rate.

5 Conclusion and future work

Detecting drifts is an important aspect of modern day stream classification algorithms. However,
this detection process uses labeled data for continuous validation of the trained models. Labeled
data is an expensive resource in streaming applications and is often not available. The MD3
approach proposed in this paper, uses the number of samples mapped to the uncertainty region
of a classifier as a signal for drift. In doing so, it can detect drifts using unlabeled data and
needs labeling only for retraining when drift is detected. Experimental evaluation of the MD3
framework on 10 different datasets shows that the approach produces statistically equivalent
accuracy as a fully labeled performance tracking approach, and used only 32.6% labeled samples
on average. An interesting area for future work would be the evaluation of the margin density
signal in detecting drifts from imbalanced and multi-class data streams.
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