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Most new radiation techniques, have been introduced primarily to reduce the dose to normal tissues in
order to prevent radiation-induced side effects. Radiotherapy with protons is such a radiation technique
that due to its superior beam properties compared to photons enables better sparing of normal tissues.
This paper describes a stepwise methodology to select patients for proton therapy when the primary aim
is to reduce side effects. This method has been accepted by the Dutch health authorities to select patients
for proton therapy. In addition, an alternative method is described in case randomised controlled trials
are considered not appropriate.
� 2013 Elsevier Ireland Ltd.Radiotherapy and Oncology 107 (2013) 267–273 Open access under CC BY-NC-ND
Radiotherapy with protons is a promising technology in the
field of modern radiation oncology. From a physical point of view,
radiotherapy with protons has important advantages compared to
the currently used photons due to its unique energy absorption
profile. Proton beams are typically manipulated to generate a
spread-out Bragg peak to yield a flat dose profile across the target
volume followed by a rapid decrease to nearly zero dose distally
from the target, which results in highly conformal dose depositions
in the target.

Based on the physical principles of proton beams, there are two
main applications where the superior properties of protons can be
expected to produce a clinical benefit for cancer patients, i.e.
improvement of local tumour control and prevention or reduction
of radiation-induced side effects.

Certain categories of patients treated with photon therapy re-
ceive a radiation dose that is insufficient to fully eradicate the tu-
mour, in particular when this tumour is located close to critical
structures, hampering further dose escalation. By using protons,
the energy dose deposited in the target can be optimised without
simultaneously increasing the dose to critical organs. This strategy
will be particularly useful when dose escalation can be expected to
improve tumour control. For this purpose, conducting randomised
controlled trials (RCT) in order to investigate if dose escalation
with protons results in better local control without enhancing
the dose to critical structures and thus increasing toxicity, would
be the most suitable and valid approach.

A substantial percentage of cancer patients treated with radio-
therapy may suffer from significant radiation-induced side effects
negatively impacting quality of life [1–5]. In these cases, protons
might be applied in an attempt to prevent or significantly reduce
side effects by decreasing the dose to healthy tissues while main-
taining the dose administered to the target. This approach is based
on the observation that for many critical organs or normal tissues,
the probability of radiation-induced side effects depends on the –
relative and absolute – volumes of Organs at Risk (OARs) receiving
certain doses of radiation [6–12]. Based on the results of numerous
in-silico planning comparative studies, comparing dose distribu-
tions to OARs between photon and proton radiotherapy, it can be
expected that proton radiotherapy will result in a reduction of
radiation-induced side effects [13–21]. When translating these re-
sults from in-silico planning comparisons (ISPC) an optimal study
design is required to clinically validate the benefit of protons when
specifically applied to prevent side effects rather than improve tu-
mour control [22].

Some late radiation-induced complications have very long la-
tency times, e.g. the development of cardiovascular complications
after irradiation for breast cancer generally takes at least 5 years,
and the incidence in particular continues to increase over twenty
years after initial treatment [23–25]. In such cases, an RCT would
take at least 15–20 years to generate useful information regarding
the primary endpoint. For such late endpoints, it would be unreal-
istic to conduct an RCT, given that radiotherapy is a rapidly
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evolving technology where further improvement can be expected
to occur much faster and the results based on outdated technology
investigated in such RCT will never be applicable in future clinical
practice.

Several authors have argued that in the case of proton radio-
therapy, applying the standard RCT methodology in such toxic-
ity-reducing trials would result in randomising patients between
two radiation delivery technologies that yield the same tumour
dose distribution and will thus yield the same tumour control
probability, but where one technique would result in a predictably
left-shifted (unfavourable) dose-toxicity curve. Such a situation is
inconsistent with the general ethical prerequisite for RCT’s, the
principle of ‘equipoise’ (balanced uncertainty) [26], where a certain
outcome may be expected, but must not be predictable based on
reasonably validated prediction models. This is particularly true
in situations, where the predictable difference in toxicity is rela-
tively large with an expected major impact on quality of life (e.g.
severe visual impairment). As a consequence, RCT’s investigating
the added value of protons compared to photons with regard to
reduction of side effects, run the risk of being ethically
compromised.

Considering that RCT’s are not always the most suitable meth-
odology or practically feasible for validating proton radiotherapy,
the following questions arise: (1) how to individually tailor the
indication criteria in order to select patients who are expected to
benefit from radiotherapy with protons in terms of reducing the
risk of radiation-induced side effects, and (2) can we apply a meth-
odologically sound approach other than RCT’s for the clinical vali-
dation of the predicted benefit when patients are actually treated
with protons, when an RCT is considered not feasible.

Addressing these questions, a stepwise approach, referred to as
the model-based approach, has been introduced in the Netherlands
to properly select patients that will benefit from protons in terms
of prevention of side effects and, subsequently, to validate the
clinical benefit of protons compared to photons in case an RCT is
considered inappropriate for reasons mentioned above. This
model-based approach, which has been adopted by the Health
Council of the Netherlands to select patients for proton radiother-
apy will be described and discussed in the present paper.
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Fig. 1. Example of a Normal Tissue Complication Probability (NTCP) model describing
relevant dose distribution parameter (in this case the mean parotid dose).
The model-based approach

The model-based approach consists of two consecutive phases:
phase a, aiming at the selection of patients who may benefit from
protons, and phase b, aiming at the clinical validation of proton
therapy by so-called sequential prospective observational cohort
(SPOC) studies using appropriate historical comparisons as a refer-
ence or by RCT’s in selected situations.
Phase a: model-based indications

Phase a of the model-based approach consists of 3 steps,
including: (1) the development and validation of Normal Tissue
Complication Probability (NTCP) models in patients treated with
state-of-the-art photon radiotherapy; (2) individual in silico plan-
ning comparative studies [21], and (3): estimation of the potential
benefit of the new radiation technique in reducing side effects by
integrating the results of ISPC into NTCP-models. The main purpose
of these 3 steps is to select patients that will most likely benefit from
protons compared to photons in terms of NTCP-value reductions.
Step 1: NTCP models
The basic principle in the development of most new radiation

delivery techniques is to obtain the required dose to the target
with the lowest possible dose to the normal tissues, assuming a
relationship between dose distributions in OARs and the develop-
ment of radiation-induced side effects. These relationships are gen-
erally described by NTCP-models. In general, the estimated risk for
a given side effect, i.e. the NTCP-value, will increase with increas-
ing dose to and increasing volume within an OAR that receives a
certain dose (Fig. 1). The dose-volume parameter or parameters
that are most important may vary widely between different side
effects, e.g. the mean dose to the parotid glands is the most impor-
tant prognostic factor for the development of hyposalivation and
xerostomia [7], while for radiation pneumonitis, different dose-
volume parameters are important, such as the mean dose to the
lungs, the V5 (i.e. the percentage of the volume of the lungs that
receives a dose of 5 Gy or more) and the V20 [11]. Moreover, the
risk of some side effects may depend on more than one dose-volume
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the risk estimation on a given side effect (NTCP-value) as a function of the most
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parameter (e.g. the risk of grade 2–4 swallowing dysfunction de-
pends on the mean dose to the superior pharyngeal constrictor
muscle and the mean dose to the supraglottic area) [27]. The most
reliable dose-volume parameters are generally obtained from pro-
spective cohort studies and should preferably be validated in inde-
pendent cohorts. When the most important dose-volume
parameters are established, radiotherapy treatment planning can
be optimised by reducing these specific parameters as much as
possible, without jeopardising the required dose to the targets
and without enhancing the dose to other critical structures. Often
the performance of the predictors can be further improved by add-
ing patient related (e.g. general status, age) or environment related
(e.g. concomitant chemotherapy) variables producing multivari-
able NTCP-models that can be expressed as nomograms [28,29].
Step 2: in silico planning comparative (ISPC) studies
The knowledge gained from NTCP-models can be used to iden-

tify patients who are expected to benefit from protons, using com-
puter-based studies in which the dose distributions obtained with
protons are simulated and compared with the best currently
achievable photon treatment in each individual patient (individual
tailoring of indications based on ISPC studies) (Fig. 2) [13–21]. ISPC
studies eventually tell us the differences in the relevant dose distri-
bution parameters to the targets and OARs between different radi-
ation delivery techniques (e.g. between 3D-CRT and IMRT; IMRT
and protons) either on a population level or on the level of individ-
ual patients. However, these differences in dose distribution
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Fig. 2. Example of an individual In Silico Planning Comparative study in a patient with
aiming at sparing to the parotid glands, the superior pharyngeal constrictor muscle (su
modulated proton therapy (SWIMPT). Efforts were made to reduce the dose to the parot
PCM and supraglottic areas based on the NTCP-model published by Christianen et al. [27]
this case, a marked reduction of the dose to the supraglottic area and both parotid glands
because this OAR partly overlapped with the PTV. Upper left panel: Transversal CT-slides
protons and moderate sparing of the superior PCM. Upper right panel: sagittal CT-slides c
(yellow area). Lower left panel: dose volume histograms of the superior PCM and sup
histograms of the parotid glands comparing photons with protons.
parameters do not automatically entail a benefit in terms of a
reduction in the risk of a given side effect. This is particularly the
case if the development of a side effect depends on more than
one dose-volume parameter, or if other confounding factors, such
as the administration of concomitant chemotherapy, beside dose
distributions influence the development of radiation-induced side
effects, e.g. as has been found for rectal complications after radio-
therapy for prostate cancer [30] and for radiation esophagitis after
radiotherapy for lung cancer [31].
Step 3: estimation of the clinical benefit
The final step in phase a will be to determine to what extent the

advantage in physical dose distribution will translate into a clini-
cally relevant beneficial effect by integrating the outcome of an
individual ISPC-study into NTCP-models. In other words, will the
reduction in dose translate into a lower NTCP-value? This step is
required as similar absolute or relative reductions in the most rel-
evant dose distribution parameters will not always translate into
the same amount of reduction in NTCP values as illustrated in
Fig. 3. The clinically relevant toxicity-reduction depends on the
shape of the NTCP-curve and on the initial value of the dose distri-
bution parameter (Fig. 3). Moreover, in case the risk of side effects
depends on other factors as well, e.g. the administration of concur-
rent chemoradiation, the same reduction in dose could translate
into markedly different NTCP-value reductions. For some side ef-
fects, the risk estimation may depend on two dose distribution fac-
tors, such as in the case of grade 2–4 swallowing dysfunction
z
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cT3N0M0 oropharyngeal cancer. In this case swallowing-sparing IMRT (SWIMRT),
perior PCM) and supraglottic area, was compared to swallowing-sparing intensity
id glands as much as possible and subsequently to reduce the dose to the superior
. Details on the SWIMRT and SWIMPT techniques have been previously described. In
could be obtained with protons. The superior PCM could be spared to a lesser extent
comparing photons with protons. There is a clear sparing of both parotid glands with
omparing photons with protons particularly illustrating sparing of supraglottic area
raglottic area comparing photons with protons. Lower right panel: dose volume



Fig. 3. Translation of the results of the individual ISPC-study depicted in Fig. 2 with regard to xerostomia. The reduction of the mean parotid dose from 30.1 Gy to 18.4 Gy (red
arrow: example Fig. 2) corresponds with an estimated NTCP-value reduction for severe xerostomia from 50% to 24% according to the NTCP-model published by Semenenko.
However, exactly similar absolute dose reductions (red arrow: other example) result in a minimal estimated NTCP-value reduction when the initial dose is much higher, due
to the shape of the NTCP-curve.
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(Fig. 4) [27]. In this way, the NTCP-value reduction for each indi-
vidual patient can be estimated. Indeed, recent ISPC studies have
shown that the estimated NTCP-reductions of protons compared
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Fig. 4. Translation of the results of the individual ISPC-study depicted in Fig. 2 with regar
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and the risk on grade 2–4 RTOG swallowing dysfunction when the mean supraglottic do
model described by Christianen et al. [27] the dose reductions to these two structures ob
with photons may vary widely among individual patients with
apparently similar tumours (primary site and stage), e.g. in clini-
cally node-negative oropharyngeal cancer patients, the NTCP-value
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tained with SWIMPT results in an estimated NTCP-value reduction from 21% to 7%.
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reductions that could be obtained with Intensity Modulated Proton
Therapy (IMPT) as compared to IMRT varied between 8% and 28%
for hyposalivation and between 4% and 18% among patients for pa-
tient-rated xerostomia [32–34]. The percentage of individuals who
will be ultimately selected for proton radiotherapy will then de-
pend on the threshold chosen for the NTCP-value reductions of
the side effects in question. If, in this example, a threshold of 10%
NTCP-value reduction would be applied for hyposalivation, 70%
of the patients would be selected for proton radiotherapy.

Whenever the integration of the results of an individual ISPC
study indicates that proton therapy is not expected to provide a
clinically relevant NTCP-value reduction, there is consequently
no reason to select this patient for proton therapy. Alternatively,
in that case, the available best photon technique should be offered.
In this respect, it should be emphasised that it does not make sense
to include such patients in an RCT either, as there is no benefit to
be expected from the new technique. In this regard, it would make
sense to introduce this procedure also for selecting patients for
RCT’s. In particular when the results of ISPC studies indicate that
only a relatively small percentage of patients is likely to benefit
from protons, the model-based approach is required to prevent
false negative results.
Fig. 5. Schematic overview of the clinical validation using sequential prospective cohort
not available. For each patient included in such a study, a backup proton plan will be mad
with protons. Only patients with estimated NTCP-value reduction beyond the threshold
the near future. After the clinical introduction of protons, only patients with estimated N
results obtained in these patients will be compared to those obtained in the historical con
to similar standard follow up programes.
Phase b: clinical validation

Prospective observational study
The abovementioned model-based approach results in the

selection of a specific cohort of patients that will be eligible for
treatment with protons, i.e. patients with an expected NTCP-value
reduction beyond the defined threshold (e.g. 10%) (Fig. 5). From
this point of view, it would be methodologically unsound to com-
pare the toxicity results of these patients with the results of those
not selected for protons after the same selection procedure. It is
obvious that patients with no or minor overlap, or those with ma-
jor overlap between target volumes and OARs are less likely to
benefit from a more conformal radiation dose delivery. As a conse-
quence, these patients will by definition bear different risk profiles
for radiation-induced side effects and would negatively or posi-
tively bias the results when compared with patients actually se-
lected for proton radiotherapy. Therefore, it is preferable to
follow exactly the same model-based procedure in patients who
have been or currently are treated with photons irrespective of
the outcome of phase a. In this way, the results obtained in a pop-
ulation treated with the current standard (e.g. photon IMRT) can be
considered a valid historical reference for those who will be
studies. The historical control group will be generated in the phase that protons are
e to estimate the NTCP-value reduction in case this patient would have been treated
will be used as nested case controls for patients that will be treated with protons in
TCP-value reduction beyond the threshold will be selected for proton therapy. The
trol group. Data on toxicity and patient-rated symptoms will be assessed according
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actually treated with protons. Moreover, this reference population
can be used for the statistical power analysis in order to estimate
the required number of patients needed to be treated with protons
to show a significant benefit of the new technique.

An important prerequisite of such an approach is that patients
be subjected to exactly similar follow up procedures in which rel-
evant baseline and treatment characteristics, acute and late radia-
tion-induced morbidity and patient-rated quality of life are
determined in a well structured standardised prospective pro-
gramme. Preferably, similar prospective observational studies
should already be conducted and performed among patients trea-
ted with photons before proton therapy is available to avoid selec-
tion bias based on phase a.

The validity of protons can then be determined in two ways.
First, the difference in the incidences of side effects between the
two techniques can be evaluated by direct comparison. Second,
the NTCP-model obtained in patients treated with photons should
be validated in those treated with protons.
Discussion

The model-based indication methodology as described in the
current paper was developed following lively discussions on how
to clinically introduce proton therapy in the Netherlands. The cur-
rent practice in the Netherlands is that new treatment modalities
will only be approved for reimbursement by health care insurance
companies if there is level I-II scientific evidence. This kind of evi-
dence is not available for proton therapy and it was expected that
it would not be available for the next decade, assuming that RCT’s
for radiation technologies aiming at reduction of side effects will
be difficult to perform for previously discussed reasons and may
be ethically unjustified due to lack of equipoise. Moreover, RCT’s
or other clinical study designs evidently can only be performed
when sufficient capacity for proton therapy is available. Eventually,
the model-based approach was approved by the Health Council
and by the Health Care Insurance Board that advises the Minister
of Health and guides implementation of procedures into the Dutch
statutory health insurance. This approach will enable future Dutch
proton centres to treat patients with proton therapy, who will
likely profit from this new technology, and whose treatment will
therefore be reimbursed, if predefined nationally agreed-upon
indication criteria based on expected NTCP-value reductions are
met. It will be mandatory that patients treated with protons will
be subjected to standard follow up programmes that are similar
to ongoing follow up programmes for patients currently treated
with photons.

Recently, Vergeer et al. applied the same model-based approach
to estimate the benefit of IMRT over 3D-CRT in patients with head
and neck cancer [35]. In that study, the authors showed that the
reduction of the mean dose to the salivary glands as obtained by
IMRT indeed resulted in lower estimates of patient-rated and phy-
sician-rated xerostomia. Later on, similar effects were found in a
number of RCT’s [36].

It should be clearly emphasised that we do not intend to prop-
agate this methodology as an alternative for RCT’s in all circum-
stances, rather than to use this as the optimal approach when an
RCT is considered not feasible or even inappropriate. In this regard,
it is important to notice that there are some methodological prob-
lems that may hamper the interpretation of the results.

First, as the comparison between patients treated with photons
and protons using sequential prospective cohort studies will be
mainly historical, selection of patients for radiotherapy may
change over time. It cannot be excluded that this may influence
NTCP-models and thus the outcome in terms of side effects.
Currently, most NTCP-models only include dose distribution
parameters, while other independent prognostic or confounding
factors are generally not taken into account. However, some
authors showed that the relationship between dose distribution
parameters and side effects may differ across different patient pop-
ulations [30]. Moreover, changes in dose distributions due to dif-
ferent radiation delivery techniques may also affect the
predictive power of NTCP models, as recently shown for patient-
rated xerostomia and sticky saliva in head and neck cancer patients
treated with either 3D conformal radiotherapy or IMRT [32–34].
Therefore, NTCP-models developed in patients treated with pho-
tons should always be validated among those treated with protons,
prior to the direct comparison of toxicity rates.

For some radiation-induced side effects the precise association
between the dose-volume parameters is less clear, and therefore
the translation of observed differences in dose distributions be-
tween protons and photons into clinical benefits remains to be
determined. In such cases, conducting an RCT is still the best meth-
odology to test the clinical benefit of protons over photons. The
same approach applies to relatively mild side effects, where other
issues, such as cost-effectiveness, may become more important.

Second, conclusions from ISPC studies regarding the added va-
lue of protons can only be justified in case of straightforward com-
parisons with photons, meaning that the reference technique
should at least include the most advanced and currently available
photon techniques, such as IMRT or tomotherapy [21].

Another important prerequisite for a proper design of ISPC stud-
ies is the definition of appropriate endpoints, i.e. the most relevant
dose-volume parameters following from NTCP-modelling studies,
and to use these parameters with properly chosen dose constraints
for treatment planning optimisation for all techniques included in
the analysis. Only in this way can the results coming from ISPC
studies be used to translate the dose distribution advantages of
protons compared to photons into a clinical benefit.

Third, the model-based approach to select patients for protons
assumes a similar dose distribution to the target and thus similar
locoregional control rates as have been obtained with the currently
used photons. However, in some patient groups, e.g. in head and
neck cancer, several studies have reported that patient’s anatomy
may significantly change during a course of fractionated radiation
regarding both the tumour volume and target volumes as well as
the surrounding normal healthy tissues [37–38]. Such changes
are important when highly conformal treatment planning tech-
niques like protons are considered and may result in marked dif-
ferences between the planned and the actually delivered dose
distribution [39]. As protons are more sensitive to variations in
density heterogeneities along their beam path and therefore to pa-
tient setup errors, these changes may in some cases severely jeop-
ardise adequate dose coverage to the target and thus hamper
locoregional control. In addition, daily set up errors may also cause
deviations between the actually given dose and the prescribed
dose. These problems, however, account for both RCT’s and
sequential prospective cohort studies. Therefore, clinical validation
studies require extensive measures to ensure adequate target
doses, including smart beam set up configurations, robust planning
techniques (e.g. Distal Edge tracking, Probabilistic Planning [39–
43]), routine image-guided radiotherapy and plan adaptation and
extensive quality assurance programmes.
Conclusion

Radiotherapy with protons is a promising radiation technique,
which can be used to reduce the dose to OARs, resulting in less
radiation-induced side effects with similar dose to the target and
subsequent locoregional tumour control. For the introduction of
proton radiotherapy a two-phase model-based approach has been
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adopted by the Dutch Health Council and the Dutch Health Care
Insurance Board that permits concomitant validation of the tech-
nique. Patients will be eligible for proton treatment in the Nether-
lands, if individually applied validated NTCP models predict
clinically relevant less toxicity. Method and results will be vali-
dated using sequential prospective cohort studies.

References

[1] Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK,
Slotman BJ. Impact of late treatment-related toxicity on quality of life among
patients with head and neck cancer treated with radiotherapy. J Clin Oncol
2008;26:3770–6.

[2] Mrozek E, Shapiro CL. Survivorship and complications of treatment in breast
cancer. Clin Adv Hematol Oncol 2005;3(211–22):238. Review.

[3] Egawa S, Shimura S, Irie A, et al. Toxicity and health-related quality of life
during and after high dose rate brachytherapy followed by external beam
radiotherapy for prostate cancer. Jpn J Clin Oncol 2001;31:541–7.

[4] Murata A, Brown CJ, Raval M, Phang PT. Impact of short-course radiotherapy
and low anterior resection on quality of life and bowel function in primary
rectal cancer. Am J Surg 2008;195:611–5.

[5] Jensen K, Bonde Jensen A, Grau C. The relationship between observer-based
toxicity scoring and patient assessed symptom severity after treatment for
head and neck cancer. A correlative cross sectional study of the DAHANCA
toxicity scoring system and the EORTC quality of life questionnaires. Radiother
Oncol 2006;78:298–305.

[6] Trott KR, Doerr W, Facoetti A, et al. Biological mechanisms of normal tissue
damage: importance for the design of NTCP models. Radiother Oncol
2012;105:79–85.

[7] Deasy JO, Moiseenko V, Marks L, Chao KS, Nam J, Eisbruch A. Radiotherapy
dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys
2010;76(Suppl. 3):S58–63.

[8] Werner-Wasik M, Yorke E, Deasy J, Nam J, Marks LB. Radiation dose-volume
effects in the esophagus. Int J Radiat Oncol Biol Phys 2010;76:S86–93.

[9] Gagliardi G, Constine LS, Moiseenko V, Correa C, Pierce LJ, Allen AM, et al.
Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys
2010;76:S77–85.

[10] Rancati T, Schwarz M, Allen AM, Feng F, Popovtzer A, Mittal B, et al. Radiation
dose-volume effects in the larynx and pharynx. Int J Radiat Oncol Biol Phys
2010;76:S64–9.

[11] Marks LB, Bentzen SM, Deasy JO, et al. Radiation dose-volume effects in the
lung. Int J Radiat Oncol Biol Phys 2010;76:S70–6.

[12] Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO. Radiation dose-volume
effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys
2010;76:S123–9.

[13] Stuschke M, Kaiser A, Pöttgen C, Lübcke W, Farr J. Potentials of robust intensity
modulated scanning proton plans for locally advanced lung cancer in
comparison to intensity modulated photon plans. Radiother Oncol
2012;104:45–51.

[14] Efstathiou JA, Paly JJ, Lu HM, et al. Adjuvant radiation therapy for early stage
seminoma: proton versus photon planning comparison and modeling of
second cancer risk. Radiother Oncol 2012;103:12–7.

[15] Wolff HA, Wagner DM, Conradi LC, et al. Irradiation with protons for the
individualized treatment of patients with locally advanced rectal cancer: a
planning study with clinical implications. Radiother Oncol 2012;102:30–7.

[16] Schwarz M, Pierelli A, Fiorino C, et al. Helical tomotherapy and intensity
modulated proton therapy in the treatment of early stage prostate cancer: a
treatment planning comparison. Radiother Oncol 2011;98:74–80.

[17] Moon SH, Shin KH, Kim TH, et al. Dosimetric comparison of four different
external beam partial breast irradiation techniques: three-dimensional
conformal radiotherapy, intensity-modulated radiotherapy, helical
tomotherapy, and proton beam therapy. Radiother Oncol 2009;90:66–73.

[18] van der Laan HP, van de Water TA, et al. Rococo cooperative group. The
potential of intensity-modulated proton radiotherapy to reduce swallowing
dysfunction in the treatment of head and neck cancer: a planning comparative
study. Acta Oncol 2013;52:561–9.

[19] Van de Water TA, Bijl HP, Schilstra C, Pijls-Johannesma M, Langendijk JA. The
potential benefit of radiotherapy with protons in head and neck cancer with
respect to normal tissue sparing: a systematic review of literature. Oncologist
2011;16:366–77.

[20] Van de Water TA, Lomax AJ, Bijl HP, et al. Potential benefits of scanned
intensity-modulated proton therapy versus advanced photon therapy with
regard to sparing of the salivary glands in oropharyngeal cancer. Int J Radiat
Oncol Biol Phys 2011;79:1216–24.
[21] Roelofs E, Engelsman M, Rasch C, et al. ROCOCO Consortium. Results of a
multicentric in silico clinical trial (ROCOCO): comparing radiotherapy with
photons and protons for non-small cell lung cancer. J Thorac Oncol
2012;7:165–76.

[22] Roelofs E, Persoon L, Qamhiyeh S, et al. Design of and technical challenges
involved in a framework for multicentric radiotherapy treatment planning
studies. Radiother Oncol 2010;97:567–71.

[23] Aleman BM, van den Belt-Dusebout AW, Klokman WJ, Van’t Veer MB, Bartelink
H, van Leeuwen FE. Long-term cause-specific mortality of patients treated for
Hodgkin’s disease. J Clin Oncol 2003;21:3431–9.

[24] Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women
after radiotherapy for breast cancer. N Engl J Med 2013;368:987–98.

[25] Henson KE, McGale P, Taylor C, Darby SC. Radiation-related mortality from
heart disease and lung cancer more than 20 years after radiotherapy for breast
cancer. Br J Cancer 2013;108:179–82.

[26] Bentzen SM. Randomized controlled trials in health technology assessment:
overkill or overdue? Radiother Oncol 2008;86:142–7.

[27] Christianen ME, Schilstra C, Beetz I, et al. Predictive modelling for swallowing
dysfunction after primary (chemo) radiation: results of a prospective
observational study. Radiother Oncol 2012;105:107–14.

[28] Egelmeer AG, Velazquez ER, de Jong JM, et al. Development and validation of a
nomogram for prediction of survival and local control in laryngeal carcinoma
patients treated with radiotherapy alone: a cohort study based on 994
patients. Radiother Oncol 2011;100:108–15.

[29] Dehing-Oberije C, De Ruysscher D, Petit S, et al. Development, external
validation and clinical usefulness of a practical prediction model for radiation-
induced dysphagia in lung cancer patients. Radiother Oncol 2010;97:455–61.

[30] Peeters ST, Hoogeman MS, Heemsbergen WD, Hart AA, Koper PC, Lebesque JV.
Rectal bleeding, fecal incontinence, and high stool frequency after conformal
radiotherapy for prostate cancer: normal tissue complication probability
modeling. Int J Radiat Oncol Biol Phys 2006;66:11–9.

[31] De Ruysscher D, Van Meerbeeck J, Vandecasteele K, et al. Radiation-induced
oesophagitis in lung cancer patients. Is susceptibility for neutropenia a risk
factor? Strahlenther Onkol 2012;188:564–7.

[32] Beetz I, Schilstra C, van der Schaaf A, et al. NTCP models for patient-rated
xerostomia and sticky saliva after treatment with intensity modulated
radiotherapy for head and neck cancer: the role of dosimetric and clinical
factors. Radiother Oncol 2012;105:101–6.

[33] Beetz I, Schilstra C, van Luijk P, et al. External validation of three dimensional
conformal radiotherapy based NTCP models for patient-rated xerostomia and
sticky saliva among patients treated with intensity modulated radiotherapy.
Radiother Oncol 2012;105:94–100.

[34] Beetz I, Schilstra C, Burlage FR, et al. Development of NTCP models for head
and neck cancer patients treated with three-dimensional conformal
radiotherapy for xerostomia and sticky saliva: the role of dosimetric and
clinical factors. Radiother Oncol 2012;105:86–93.

[35] Vergeer MR, Doornaert PA, Rietveld DH, Leemans CR, Slotman BJ, Langendijk
JA. Intensity-modulated radiotherapy reduces radiation-induced morbidity
and improves health-related quality of life: results of a nonrandomized
prospective study using a standardized follow-up program. Int J Radiat Oncol
Biol Phys 2009;74:1–8.

[36] Nutting CM, Morden JP, Harrington KJ, et al. PARSPORT trial management
group. Parotid-sparing intensity modulated versus conventional radiotherapy
in head and neck cancer (PARSPORT): a phase 3 multicentre randomised
controlled trial. Lancet Oncol 2011;12:127–36.

[37] van Elmpt W, Öllers M, Lambin P, De Ruysscher D. Should patient setup in lung
cancer be based on the primary tumor? An analysis of tumor coverage and
normal tissue dose using repeated positron emission tomography/computed
tomography imaging. Int J Radiat Oncol Biol Phys 2012;82:379–85.

[38] Schwartz DL, Garden AS, Shah SJ, et al. Adaptive radiotherapy for head and
neck cancer-dosimetric results from a prospective clinical trial. Radiother
Oncol 2013;106:80–4.

[39] McGowan SE, Burnet NG, Lomax AJ. Treatment planning optimisation in
proton therapy. Br J Radiol 2013;86:255545.

[40] Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment
uncertainties 2: the potential effects of inter-fraction and inter-field motions.
Phys Med Biol 2008;53:1043–56.

[41] Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment
uncertainties 1: the potential effects of calculational uncertainties. Phys Med
Biol 2008;53:1027–42.

[42] Unkelbach J, Bortfeld T, Martin BC, Soukup M. Reducing the sensitivity of IMPT
treatment plans to setup errors and range uncertainties via probabilistic
treatment planning. Med Phys 2009;36:149–63.

[43] Pommier P, Lievens Y, Feschet F, Borras JM, Baron MH, Shtiliyanova A, et al.
Simulating demand for innovative radiotherapies: an illustrative model based
on carbon ion and proton radiotherapy. Radiother Oncol 2010;96:243–9.

http://refhub.elsevier.com/S0167-8140(13)00219-3/h0005
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0005
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0005
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0005
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0010
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0010
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0015
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0015
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0015
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0020
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0020
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0020
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0025
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0025
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0025
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0025
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0025
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0030
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0030
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0030
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0035
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0035
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0035
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0040
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0040
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0045
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0045
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0045
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0050
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0050
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0050
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0055
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0055
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0060
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0060
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0060
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0065
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0065
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0065
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0065
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0070
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0070
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0070
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0075
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0075
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0075
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0080
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0080
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0080
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0085
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0085
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0085
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0085
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0090
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0090
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0090
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0090
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0095
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0095
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0095
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0095
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0100
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0100
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0100
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0100
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0105
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0105
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0105
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0105
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0110
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0110
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0110
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0115
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0115
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0115
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0120
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0120
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0125
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0125
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0125
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0125
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0130
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0130
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0135
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0135
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0135
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0140
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0140
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0140
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0140
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0145
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0145
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0145
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0150
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0150
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0150
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0150
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0155
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0155
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0155
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0160
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0160
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0160
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0160
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0165
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0165
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0165
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0165
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0170
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0170
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0170
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0170
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0175
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0175
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0175
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0175
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0175
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0180
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0180
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0180
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0180
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0185
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0185
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0185
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0185
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0190
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0190
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0190
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0195
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0195
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0200
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0200
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0200
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0205
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0205
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0205
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0210
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0210
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0210
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0215
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0215
http://refhub.elsevier.com/S0167-8140(13)00219-3/h0215

	Selection of patients for radiotherapy with protons aiming at reduction of side effects: The model-based approach
	The model-based approach
	Phase α: model-based indications
	Step 1: NTCP models
	Step 2: in silico planning comparative (ISPC) studies
	Step 3: estimation of the clinical benefit

	Phase β: clinical validation
	Prospective observational study


	Discussion
	Conclusion
	References


