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A commutative ring with identity is called a chain ring if all its ideals form a chain
under inclusion. A "nite chain ring, roughly speaking, is an extension over a Galois
ring of characteristic pn using an Eisenstein polynomial of degree k. When p K k, such
rings were classi"ed up to isomorphism by Clark and Liang. However, relatively little
is known about "nite chain rings when p Dk. In this paper, we allowed p Dk. When n"2
or when pEk but (p!1) K k, we classi"ed all pure "nite chain rings up to isomorphism.
Under the assumption that (p!1) K k, we also determined the structures of groups of
units of all "nite chain rings. ( 2001 Academic Press

Key Words: "nite chain ring; Galois ring; group of units.
1. INTRODUCTION

All rings considered in this paper are commutative with identity unless
speci"ed otherwise. A ring is called a chain ring if all its ideals form a chain
under inclusion. Finite chain rings are precisely "nite local rings whose
maximal ideals are principal. As pointed out by Clark and Liang [3], "nite
chain rings arise in algebraic number theory as quotient rings of rings of
integers in number "elds [10] and in geometry as coordinatizing rings of
Hjelmslev planes [9]. More references on the role of "nite chain rings in
Hjelmslev planes and Klingenberg planes can be found in [2, 15]. Recently,
"nite chain rings have been used in various constructions of partial di!erence
sets, relative di!erence sets, and bent functions [6, 7, 11, 12]. One of the
properties of "nite chain rings that make them useful in those combinatorial
constructions is that every "nite chain ring has a &&non-degenerate'' character
[7]. Chain rings (without the "niteness condition), also known as valuation
rings, play a central role in module theory [4, 5]. Noncommutative chain
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rings (de"ned in the same way) are useful in the structure of certain types of
noncommutative rings. (See, for example, [1].)

The main concerns of this paper are two basic questions about "nite chain
rings: their classi"cation and their groups of units.

All "nite chain rings can be obtained through the following construction.
We refer the reader to [13, pp. 307}308, 339}349] for the proofs of the claims
in the construction. Let p be a prime, n, r'0, and f3Z

pn
[x] a monic

polynomial of degree r whose image in Z
p
[x] is irreducible. Then

GR(pn, r)"Z
pn

[x]/( f ) is a ring whose structure depends only on p, n, and r.
GR(pn, r) is called a Galois ring of characteristic pn and rank r [8, 14].
GR(pn, r) is a local ring whose maximal ideal is pGR(pn, r). Every "nite chain
ring is of the form

GR(pn, r) [x]/(g, pn~1 xt), (1.1)

where g3GR(pn, r) [x] is an Eisenstein polynomial of degree k, i.e.,
g"xk!p (a

k~1
xk~1#2#a

0
) (a

i
3GR(pn, r) and a

0
is a unit of GR(pn, r)),

t"k when n"1, and 14t4k when n52. The integers p, n, r, k, t are called
the invariants of the chain ring in (1.1) [3]. A basic problem, which seems to
be very di$cult, is to classify "nite chain rings with "xed invariants up to
isomorphism. We call the "nite chain ring in (1.1) a pure "nite chain ring if
g"xk!pa

0
. When p K k, Clark and Liang [3] classi"ed all pure "nite chain

rings with "xed invariants p, n, r, k, t up to isomorphism. Moreover, they
showed that when p Kk, every "nite chain ring is pure [3]. Thus all "nite chain
rings with invariants p, n, r, k, t are classi"ed up to isomorphism when p K k.
However, when p Dk, little is known about the isomorphims classes of "nite
chain rings, even if the "nite chain rings are pure. In this paper, we will allow
p Dk. The "rst main result of this paper is a classi"cation of pure "nite chain
rings with invariants p, n, r, k, t up to isomorphism when n"2 or when pEk
but (p!1) K k. (p E k means p Dk but p2 K k.) In particular, the numbers of
isomorphism classes of pure "nite chain rings in these cases are given.

The group of units of a "nite commutative local ring is an essential piece of
information about the structure of the ring. In general, the structure of such
a group of units is di$cult to determine. For Galois rings, the structures of
their groups of units are known [13, pp. 322}323]. But for "nite chain rings,
such structures are not known. As the second main result of this paper, we
will determine the structure of the group of units of a "nite chain ring with
invariants p, n, r, k, t under the assumption (p!1) K k.

The paper is organized as follows. In Section 2, we review some basic facts
about Galois rings and "nite chain rings to be used in the sequel. In Section 3,
we classify all pure "nite chain rings under the assumptions described earlier.
Section 4 deals with multiplicative orders of elements in 1#m, where m is the
maximal ideal of a "nite chain ring. In Section 5, we determine the structure
of the group of units of an arbitrary "nite chain ring with (p!1) K k.
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2. GALOIS RINGS AND FINITE CHAIN RINGS

We refer the reader to [13, pp. 322}323, 339}349] for the proofs of the facts
about Galois rings and "nite chain rings quoted in this section.

The Galois ring GR(pn, r) is a local ring with maximal ideal pGR(pn, r) and
GR(pn, r)/pGR(pn, r)"GF (pr). Its multiplicative group (group of units)
GR(pn, r)* contains a unique cyclic subgroup ¹* of order pr!1.
¹"¹*XM0N is called the TeichmuK ller set of GR(pn, r) and it forms a system
of coset of representatives of GR (pn, r)/pGR(pn, r). Every element
a3GR(pn, r) has a unique p-adic expansion

a"m
0
#pm

1
#2#pn~1 m

n~1
(m

i
3¹). (2.1)

The map

p: GR(pn, r) P GR(pn, r)

m
0
#pm

1
#2#pn~1 m

n~1
> mp

0
#pmp

1
#2#pn~1mp

n~1
(2.2)

is called the Frobenius map of GR(pn, r). p is an automorphism of GR(pn, r) of
order r and Aut(GR(pn, r))"SpT. We have

GR(pn, r)*"¹* ) (1#pGR (pn, r)) : ¹*](1#pGR(pn, r)), (2.3)

where

1#pGR(pn, r):G
Zr
pn~1,

Z
2
]Z

2n~2]Zr~1
2n~1 ,

if p is odd, or if p"2 and n42,

if p"2 and n53.

(2.4)

It follows easily from (2.4) that if p is odd or if p"2 and n42,

(1#pGR(pn, r))pi"1#pi`1GR(pn, r), i50. (2.5)

Let R be the "nite chain ring in (1.1) with invariants p, n, r, k, t. The
maximal ideal of R is xR and the nilpotency of x is (n!1)k#t. R has the
same residue "eld as GR(pn, r): R/xR"GR(pn, r)/pGR(pn, r)"GF(pr). Every
element y3R can be written as

y"a
0
#a

1
x#2#a

k~1
xk~1, a

i
3GR(pn, r), (2.6)

where a
0
,2 , a

t~1
are unique and a

t
,2, a

k~1
are unique modulo

pn~1GR(pn, r). The group of units R* of R also has a similar decomposition:

R*"¹* ) (1#xR):¹*](1#xR). (2.7)

However, the structure of the multiplicative group 1#xR is more interesting
than that of 1#pGR(pn, r), as we will see in Section 5. Note that when n"1,
R"GF (pr)[x]/(xk). Such rings need no classi"cation.
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3. CLASSIFICATION OF PURE FINITE CHAIN RINGS

LEMMA 3.1. ¸et

R"GR(pn, r) [x]/(xk!pu,pn~1xt) (3.1)

S"GR(pn, r) [x]/(xk!pv,pn~1xt) (3.2)

be two pure ,nite chain rings, where n52, 14t4k, u, v3GR(pn, r)*, and let
uN , vN be the images of u, v in GR(pn, r)/ann(p)"GR(pn~1, r). ¹hen R:S if and
only if there exists a o3Aut(GR(pn~1, r)) such that in the ring
R/ann(p)"GR(pn~1, r) [x]/(xk!puN , pn~2xt), the equality

uN ~1 o (vN )"zk (3.3)

holds for some z3GR(pn~1, r) [x]/(xk!puN , pn~2xt).

Proof. By Lemma 4 of [3], R:S if and only if there is
a t3Aut(GR(pn, r)) such that xk!pt(v) has a root in R.

Necessity. Since R:S, there exits an automorphism t of Aut(GR (pn, r))
and an element w3R with wk"pt(v). Write w"xz for z3R. Then

pt(v)"xkzk"puzk. (3.4)

There is a natural isomorphism ( ): Aut(GR(pn, r)) P Aut(GR(pn~1, r)) such
that for any f3Aut(GR(pn, r)), the diagram

GR(pn, r) f
&" GR(pn, r)

B B
GR(pn~1, r) fM

&" GR(pn~1, r) (3.5)

commutes, where the vertical maps are the natural homomorphisms. Let
o"t1 . Then (3.4) implies that in R/ann(p), uN ~1o (vN )"zk.

Su$ciency. Trace back the proof of necessity. j

LEMMA 3.2. ¸et

R"GR(pn, r)[x]/(xk!pu, pn~1 xt), (3.6)

where n52, 14t4k, u3GR(pn, r)*.

(i) if p K k, then

(R*)kWGR (pn, r)*"(GR(pn, r)*)k. (3.7)

(ii) If pEk, (p!1) K k and n53 or n"2 but t'k/p, then

(R*)kWGR (pn, r)*"(GR(pn, r)*)k. (3.8)
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(iii) If pEk, (p!1) K k, n"2, and t4k/p, then

(R*)kWGR (p2, r)*"(¹*)k ) (1#pGR(p2, r)), (3.9)

where ¹* is a the unique cyclic subgroup of order pr!1 of GR(p2, r)*

Proof. (i) By (2.3) and (2.7), it su$ces to show that (1#xR)kW
(1#pGR(pn, r))"(1#pGR(pn, r))k. But since 1#xR and 1#pGR(pn, r) are
p-groups and p K k, we have

(1#xR)kW(1#pGR(pn, r))"(1#xR)W(1#pGR(pn, r))

"1#pGR(pn, r)"(1#pGR(pn, r))k. (3.10)

(ii) Again, by (2.3) and (2.7), it su$ces to show that

(1#xR)pW (1#pGR(pn, r))"(1#pGR(pn, r))p. (3.11)

Assume that (1#xbe)p31#pGR(pn, r), where b'0, e3R*. We want to
show that (1#xbe)p3 (1#pGR(pn, r))p. If b5k, we have (1#xbe)p3
(1#pR)pL 1#p2R. Thus (1#xbe)p3 (1#p2R)W(1#pGR(pn, r))
"1#p2GR(pn, r)" (1#pGR(pn, r))p. Therefore, we may assume that
0(b(k. Under this assumption, we will show that (1#xbe)p"1. Writing

(1#xbe)p"1#pxbe#
p (p!1)

2
x2be2#2#xpbep

"1#pxbAe#
(p!1)

2
xbe2#2B#xpb ep

"1#pxbe@#xbpep (e@3R*)

"1#xb`k g#xbpep (g3R*) (3.12)

it su$ces to show that xb`kg#xbpep"0. Note that xb`kg# xbpep3
pGR(pn, r), since (1#xbe)p31#pGR(pn, r). Also note that b#kObp since
(p!1) K k.

Case 1. b#k(bp. Then

pGR(pn, r) U xb`kg#xbpep"pxbg@ for some g@3R*. (3.13)

We must have pxb"0 since 0(b(k.

Case 2. b#k'bp.

Case 2.1. bpOk. Then bp"ak#c, where a50, 0(c(k, and

pGR(pn, r) U xb`kg#xbpep"xbpg@"paxcgA (g@, gA3R*). (3.14)
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Thus paxc"0 since 0(c(k.

Case 2.2. bp"k. Then we have

pGR(pn, r) U xb`kg#xbpep"pu(xbg#ep). (3.15)

Write e"z#xid, z3GR(pn, r)*, d3R*, i'0. Then

pGR(pn, r) U pu(xbg#ep)

"pu(xbg#zp#pxid@#xipdp) (d@3R*) (3.16)

"puzp#pu (xbg@#xipdp) (g@3R*).

Note that bOip. (Otherwise, k"bp"ip2, which is a contradiction.) Thus

pGR(pn, r) U pu (xbg@#xipdp)"px.*/ (b, ip) gA, gA3R* . (3.17)

Since 0(min(b, ip)(k, (3.17) happens only when n"2 and min(b, ip)5t.
In particular, k/p"b5t, which is contradictory to the assumption.

(iii) Also by (2.3) and (2.7), it su$ces to show that

(1#xR)pM1#pGR(p2, r). (3.18)

Every element of 1#pGR(p2, r) is of the form 1#puep for some e3¹, where
¹ is the TeichmuK ller set of GR(p2, r). We have

(1#xR)p U (1#xk@p e)p

"1#pxk@p e@#xkep (e@3R) (3.19)

"1#puep,

where pxk@p"0 since k/p5t. j

THEOREM 3.3. ¸et

R(u)"GR(pn, r) [x]/(xk!pu, pn~1 xt ), (3.20)

where n52, 14t4k, u3GR(pn, r)*. Assume that one of the following condi-
tions holds.

(i) n"2;
(ii) pKk, n53;
(iii) pEk, (p!1) K k, and n54 or n"3 but t'k/p;
(iv) pEk, (p!1) K k, n"3, and t4k/p.

De,ne a subgroup GLGR(pn~1, r)* as

G"G
(GR(pn~1, r)*)k,

(¹*)k ) (1#pGR(p2, r)),

if (i) or (ii) or (iii) holds,

if (iv) holds,
(3.21)

where ¹* is the unique cyclic subgroup of pr!1 of GR(pn~1, r). ¸et
Aut(GR(pn~1, r)) act on GR(pn~1, r)*/G in the obvious way. ¹hen the natural
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homomorphism

( ) : GR(pn, r)* P GR(pn~1, r)*/G (3.22)

induces a bijection

[R(u)] > [uN ], u3GR(pn, r)* (3.23)

between the isomorphism classes of pure ,nite chain rings with invariants p, n, r,
k, t, and the Aut (GR(pn~1, r))-orbits in GR(pn~1, r)*/G.

Proof. Under conditions (ii), (iii), or (iv), the conclusion follows from
Lemmas 3.1 and 3.2. To be more speci"c, assume, for example, condition (iii).
By Lemma 3.1, R (u):R (v) (u, v3GR(pn, r)*) if and only if there is
a o3Aut(GR (pn~1, r)) such that in GR(pn~1, r),

uN ~1o(vN )3[GR(pn~1, r) [x]/(xk!puN , pn~2xt)]kWGR(pn~1, r)*, (3.24)

where u6 and v6 are the images of u an v in GR(pn~1, r). According to Lemma
3.2, the right hand side of (3.24) is (GR(pn~1, r)*)k. Thus R(u):R(v)
if and only if uN and v6 are in the same Aut(GR(pn~1, r))-orbit of
GR(pn~1, r)*/(GR(pn~1, r)*)k.

Under condition (i), the conclusion follows from Lemma 3.1 and the fact
that

[(GR(p, r) [x]/(xt))*]kWGR(p, r)*"(GR(p, r)*)k. j (3.25)

COROLLARY 3.4. ¸et p, n, r, k, t be as in ¹heorem 3.3 and let d"(k, pr!1).
¹hen the number of isomorphism classes of pure ,nite chain rings with invari-
ants p, n, r, k, t is

1

r

r~1
+
i/0

(pi!1, d), under conditions (i), (ii), or (iv),

1

r

r~1
+
i/0

(pi!1, d)p(i, r), under condition (iii).

(3.26)

Here conditions (i)}(iv) are the ones in ¹heorem 3.3.

Proof. Let ¹ and p be the TeichmuK ller set and Frobenius map of
GR(pn~1, r) respectively. First assume condition (iii). In the notation of
Theorem 3.3, we have

GR(pn~1, r)*/G"(¹*/(¹*)k)][(1#pGR(pn~1, r))/(1#pGR(pn~1, r))k]

"(¹*/(¹*)k)][(1#pGR(pn~1, r))/(1#p2GR(pn~1, r))] .

(3.27)

(Note that since p E k, (1#pGR(pn~1, r))k"(1#pGR (pn~1, r))p"
1#p2GR(pn~1, r) .) Identify ¹*/(¹*)k as Z

d
and identify
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(1#pGR(pn~1, r))/(1#p2GR(pn~1, r)), as a set, as ¹. Then the action of p on
GR(pn~1, r)*/G"Z

d
]¹ is given by

p (a, m)"(pa, mp), (a, m)3Z
d
]¹. (3.28)

For each 04i(r!1, the number of elements in Z
d
]¹ "xed by pi is

(pi!1, d) ) [(pi!1, pr!1)#1]"(pi!1, d) p(i,r). (3.29)

Thus by the Burnside Lemma, the number of SpT-orbits in Z
d
]¹ is

1

r

r~1
+
i/0

(pi!1, d) p(i,r). (3.30)

The proof of (3.26) under conditions (i), (ii), and (iv) is similar. One only has to
note that in these cases,

GR (pn~1, r)*/G"¹*/ (¹*)k. j (3.31)

Remark. Let d D(pr!1). By a result of [3],

1

r

r~1
+
i/0

(pi!1, d)"+
cDd

/ (c)

q(c)
, (3.32)

where / (c) is the Euler function and q(c) is the smallest number m'0 such
that pm!1,0 (mode c). Both sides of (3.32) are the number of orbits when
Z
r
acts on Z

d
through

Z
r
]Z

d
P Z

d
(i, a) > pia.

(3.33)

The left hand side of (3.32) is independent of r as long as d D (pr!1). This fact
can also be seen directly without using (3.32). Actually, for any integers s'0,
(1/sr) +sr~1

i/0
(pi!1, d )"(1/r) +r~1

i/0
(pi!1, d).

4. THE ORDER OF AN ELEMENT IN 1#xR

Let

R"GR(pn, r) [x]/(g, pn~1 xt) (4.1)

be a "nite chain ring with invariants p, n, r, k, t, where t"k when n"1,
14t4k when n52, and

g"xk!p (a
k~1

xk~1#2#a
0
), a

i
3GR(pn, r), a

0
3GR(pn, r)*. (4.2)

The invariants p, n, r, k, t will be "xed throughout this section. For c51
and l50, let

h
c,l
"min Mcpi#(l!i)k : 04i4lN. (4.3)
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Clearly, h
c,l

is increasing with respect to both c and l.

¸emma 4.1. ¸et c51.
(i) If k is not of the form c(p!1)ps (s50) and e3R*, then for all l50,

(1#xce)pl"1#xh
c,l e

l
, e

l
3R*. (4.4)

(ii) If k is not of the form c (p!1)ps (s50), or if r'1, or if a
0
I!1

(modpGR(pn, r)), where a
0

is as in (4.2), then the exponent of the multiplicative
group 1#xcR is pL where ¸ is the smallest l such that h

c,l
5(n!1)k#t.

Proof. (i) We use induction on l. Condition (4.4) trivially holds for l"0.
Assuming (4.4), we have

(1#xce)pl`1
"(1#xhc, l e

l
)p

"1#pxhc,l e
l
#

p (p!1)

2
x2hc,l e2

l
#2#xphc,l ep

l

"1#pxhc,l Ael#
p!1

2
xhc,l e2

l
#2B#xphc,l ep

l
(4.5)

"1#pxhc,l e@#xphc,l eA (e@, eA3R*)

"1#xk`hc,l e@@@#xphc,l eA (e@@@3R*).

Note that k#h
c,l
Oph

c,l
. (Otherwise, k"(p!1)h

c,l
, which force h

c,l
"cpl

according to (4.3). Then k"c (p!1)pl, which contradicts the assumption on
k.) Therefore,

(1#xce)pl`Ç"1#xmin Mk#h
c,l,

ph
c,l

N e
l`1

, e
l`1

3R*. (4.6)

Since

minMk#h
c,l

, ph
c,l

N

"min Mcp0#(l#1)k, cp1#lk,2, cpl#k,

p(cp0#lk),2, p(cpl~1#k), cpl`1N

"min Mcp0#(l#1)k, cp1#lk ,2 , cpl#k, cpl`1N

"h
c,l`1

, (4.7)

we have proved (4.4) for l#1.
(ii) From the proof of (i), it is easy to see that

(1#xcR)plL1#xhc,lR for all l50. (4.8)

Thus (1#xcR)pL
L1#xhc,L R"M1N, since h

c,L
5(n!1)k#t and

(n!1)k#t is the nilpotency of x. It remains to prove that there is a u3R
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such that

(1#xcu)pL~1
O1. (4.9)

If k is not of the form c (p!1)ps, (4.9) follows from (4.4) with u"1. Now
assume that k"c(p!1)ps for some s50. Because of the assumption on
r and a

0
, the inequality a~1

0
y#ypO0 in GR(pn, r)/pGR(pn, r)"GF (pr) has

a solution y3GF(pr)*. Lift y to yN 3¹*"¹CM0N, where ¹ is the TeichmuK ller
set of GR(pn, r). Then a~1

0
yN #yN p3GR(pn, r)*. Let p be the Frobenius map of

GR(pn, r) and choose u"p~s (yN ). We will show that for all l50,

(1#xcu)pl
"1#xhc,l e

l
, e

l
3R*. (4.10)

(Note that (4.9) follows from (4.10) immediately.) It is easy to see that for
04l4s#1, h

c,l
"cpl and that

(1#xcu)pl
"1#xcpl e

l
, e

l
,upl (mod xR), 04l4s. (4.11)

(The proof of (4.11) is the same as that of (i).) We then have

(1#xcu)ps`1
"(1#xcps e

s
)p

"1#pxcpsg#xcps`1 ep
s

(g,e
s
(mod xR))

"1#xcps#ka~1
0

g@#xcps`1 ep
s

(g@,e
s
(mod xR))

"1#xcps`1 (a~1
0

g@#ep
s
). (4.12)

In R/xR,

a~1
0

g@#ep
s
"a~1

0
e
s
#ep

s

"a~1
0

ups#up s`1

"a~1
0

yN #yN p

O0. (4.13)

Thus

(1#xcu)p s`1
"1#xcp s`1 e

s`1
"1#xhc, s`1 e

s`1
, e

s`1
3R*. (4.14)

For l's#1, starting with (4.14) and again by the same proof as that of (i),
one can show that

(1#xc u)pl"1#xhc,l e
l
, e

l
3R*. (4.15)

The proof of (ii) is now complete. j

For c51, let

a(c)"the smallest l such that h
c,l
5(n!1) k#t. (4.16)
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Then we have the following corollary.

COROLLARY 4.2. ¸et c51,
(i) If k is not of the form c (p!1)ps (s50) and e3R*, then the multiplica-

tive order of 1#xce is pa (c).
(ii) If k is not of the form c(p!1)ps (s50), or if r'1, or if a

0
I!1

(mod xR), then the exponent of the multiplicative group 1#xcR is pa(c).
In the next two lemmas, we calculate h

c,l
and a(c) explicitly.

¸emma 4.3. For c51, let

ı (c)"maxG0, log
p A

k

(p!1)cB H. (4.17)

¹hen

h
c,l
"G

cpl,

cpı(c)
#(l!ı (c))k,

if 04l4ı (c),

if l'ı (c).
(4.18)

Proof. The proof relies on the fact that the function f (x)"cpx#(l!x)k
is decreasing for x to the left of a certain point and is increasing for x to the
right of the point. (The critical number, which is of no use in this proof, is
actually log

p
k!log

p
(c ln p).) Note that (4.18) is obvious for l"0. Thus we

assume l51.

Case 1. ı (c)"0. Then k4(p!1)c. For l51, we have

cp0#lk4cp1#(l!1)k. (4.19)

Thus

h
c,l
"min Mcpi#(l!i)k : 04i4lN"cp0#lk. (4.20)

Case 2. ı (c)'0. Then

(p!1)cpı(c)!1
(k4(p!1)cpı (c). (4.21)

For 14l4ı(c), cpl4cpl~1#k. Then

h
c,l
"min Mcpi#(l!i) k : 04i4lN"cpl. (4.22)

For l'ı (c),

cpı (c)
#(l!ı (c))k(cpı (c)!1

#(l!ı(c)#1)k, (4.23)

and

cpı(c)
#(l!ı (c))k4cpı(c)#1

#(l!ı (c)!1)k. (4.24)

Thus

h
c,l
"min Mcpi#(l!i)k : 04i4lN"cpı(c)

#(l!ı (c))k. (4.25)
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¸emma 4.4.

a (c)"G
ı (c)#n!1#

t!cpı(c)

k
,

0

if 14c((n!1)k#t,

if c5(n!1)k#t.
(4.26)

Proof. The conclusion is obvious for c5(n!1)k#t. Thus assume
14c((n!1)k#t. First, we claim that

cpı (c)!1
((n!1)k#t. (4.27)

If ı (c)"0, (4.27) is obvious. If ı (c)'0, by (4.17),

(p!1) cpı(c)!1
(k, (4.28)

which implies (4.27). By (4.27) and (4.18), we see that h
c,l
5(n!1)k#t

implies l5 ı (c). Thus by (4.18),

h
c,l
5(n!1)k#t

8l5ı (c) and cpı (c)
#(l!ı (c))k5(n!1)k#t

8l5ı (c) and l5ı (c)#n!1#
t!cpı (c)

k
. (4.29)

The proof will be complete after proving

n!1#
t!cpı (c)

k
'!1. (4.30)

Assume the contrary of (4.30). Then

cpı(c)
5nk#t. (4.31)

In particular, ı (c)'0 since c((n!1)k#t. Then by (4.28), cpı (c)
(kp/

(p!1)42k, which is a contradiction to (4.31) j

5. THE GROUP OF UNITS

Let

R"GR(pn, r) [x]/(g, pn~1xt) (5.1)

be a "nite chain ring with invariants p, n, r, k, t, where t"k when n"1 and
14t4k when n52, and g3GR(pn, r) [x] is an Eisenstein polynomial of
degree k. Since R* :¹*](1#xR) ((2.7)), to determine the structure of the
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group of units of R* of R, it su$ces to determine that of the multiplicative
group 1#xR.

Let a (c) (c51) be de"ned by (4.16). Since h
c,l

(de"ned in (4.3)) is increasing
with respect to c, a (c) is decreasing with respect to c. From the de"nitions
of a(c) and h

c,l
, it is also clear that a((n!1)k#t)"0 and a((n!1)k#

t!1)'0. Thus

a (1)5a(2)525a ((n!1)k#t!1)'a ((n!1)k#t)"0. (5.2)

For each 04j4a(1), let

e
j
"D Mc : 14c4(n!1)k#t, a (c)"jN D. (5.3)

Note that e
0
"1 and e

0
#2#ea(1)"(n!1)k#t.

THEOREM 5.1. Assume that (p!1) K k, ¹hen

1#xR:Zr (e
1
!e

2
)

p
]Zr(e

2
!e

3
)

p2 ]2]Zr (ea(1)~1
!ea(1))

pa(1)~1
]Zrea(1)

pa(1)
. (5.4)

(Note that (5.4) implies that e
1
5e

2
525ea(1).)

Proof. For each c51 and e3R*, by Corollary 4.2, o (1#xce)"pa(c).
Thus for each 04j4a(1),

My31#xR : ypj
"1N"M1#xce : a(c)4j, e3R*N

"1#x1#ea(1)#2#e
j`1 R, (5.5)

since the smallest integer c such that a(c)4j is 1#ea(1)#2#e
j`1

. In
particular,

DMy31#xR : ypj
"1N D"pr[(n!1)k#t!(1#ea(1)#2#e

j`1
)]

"pr[e
1
#2#e

j
], for 04j4a (1). (5.6)

Isomorphism (5.4) follows from (5.6) through straightforward counting argu-
ments. j

Theorem 5.1 shows that the group of units of a "nite chain ring is more
interesting than that of a Galois ring (cf. (2.4)). Next, we look at some concrete
examples of Theorem 5.1.

EXAMPLE 5.2. Let (p, n, r, k, t)"(5, 3, r, 5, 1). (n!1)k#t"11. Using
(4.26), one can quickly determine that

(a(1),2 , a(11))"(3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0). (5.7)

Thus e
1
"5, e

2
"4, e

3
"1, and

R*:Z
5r~1

]Zr
5
]Z3r

5È
]Zr

5Ê
. (5.8)
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EXAMPLE 5.3. Let (p, n, r, k, t)"(3, 2, r, 19, 3). (n!1)k#t"22. By (4.26),

(a (1),2, a(22))"(3, 3, 2, 2, 2, 2, 2, 1,2 , 1, 0). (5.9)

Thus e
1
"14, e

2
"5, e

3
"2, and

R*:Z
3r~1

]Z9r
3

]Z3r
3È

]Z2r
3Ê

. (5.10)

Theorem 5.1 also shows that when (p!1) K k, the structure of the group of
units of a "nite chain ring is completely determined by its invariants p, n, r, k,
t. However, this is not the case when (p!1) Dk.

EXAMPLE 5.4. Let

R"Z
3È

[x]/(x2!3), (5.11)

S"Z
3È

[x]/(x2!6). (5.12)

Both R and S are "nite chain rings with invariants (p, n, r, k, t)"(3, 2, 1, 2, 2).
(n!1)k#t"4. For each a3R,

(1#xa)3"1#3xa#x3a3"1#3x (a#a3), (5.13)

(1#xa)3È"1. (5.14)

Thus

D My31#xR : y3"1N D"D M1#xa : a#a3,0 (mod xR)N D

"D M1#xa : a,0 (mod xR)N D

"D 1#x2R D

"32. (5.15)

(Note that 1#a2O0 in R/xR"GF(3).) Therefore

1#xR:Z
3
]Z

3È
. (5.16)

Similarly, for each b3S,

(1#xb)3"1#3xb#x3b3"1#3x(b!b3)"1, (5.17)

since b!b3"0 in S/xS"GF(3). Thus

1#xS:Z3
3
. (5.18)
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