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Let g( f ) denote the maximum of the differences (gaps) between
two consecutive exponents occurring in a polynomial f . Let Φn

denote the n-th cyclotomic polynomial and let Ψn denote the n-th
inverse cyclotomic polynomial. In this note, we study g(Φn) and
g(Ψn) where n is a product of odd primes, say p1 < p2 < p3,
etc. It is trivial to determine g(Φp1 ), g(Ψp1 ) and g(Ψp1 p2 ). Hence
the simplest non-trivial cases are g(Φp1 p2 ) and g(Ψp1 p2 p3 ). We
provide an exact expression for g(Φp1 p2 ). We also provide an exact
expression for g(Ψp1 p2 p3 ) under a mild condition. The condition is
almost always satisfied (only finite exceptions for each p1). We also
provide a lower bound and an upper bound for g(Ψp1 p2 p3 ).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The n-th cyclotomic polynomial Φn and the n-th inverse cyclotomic polynomial Ψn are defined by

Φn(x) =
∏

1� j�n
( j,n)=1

(
x − ζ

j
n
)
, Ψn(x) =

∏
1� j�n
( j,n)>1

(
x − ζ

j
n
)
,

where ζn is a primitive n-th root of unity. For example, we have

Φ3(x) = 1 + x + x2,
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Φ3·5(x) = 1 − x + x3 − x4 + x5 − x7 + x8,

Ψ3(x) = −1 + x,

Ψ3·5(x) = −1 − x − x2 + x5 + x6 + x7,

Ψ3·5·7(x) = −1 + x − x3 + x4 − x5 − x10 + x11 − x12 − x17 + x18 − x19 + x21 − x22 + x35

− x36 + x38 − x39 + x40 + x45 − x46 + x47 + x52 − x53 + x54 − x56 + x57.

There have been extensive studies on the coefficients of cyclotomic polynomials [1,2,4,6,8,11,14].
Recently there have been also studies on the coefficients of inverse cyclotomic polynomials [3,13]. In
this note, we study the exponents of (inverse) cyclotomic polynomials. In particular, we are interested
in the maximum gap, g( f ), which is the maximum of the differences (gaps) between two consecutive
exponents occurring in f where f = Φn or f = Ψn . More precisely the maximum gap is defined as
follows:

Definition 1 (Maximum gap). Let f = c1xe1 + · · · + ct xet where c1, . . . , ct �= 0 and e1 < · · · < et . Then
the maximum gap of f , written as g( f ), is defined by

g( f ) = max
1�i<t

(ei+1 − ei), g( f ) = 0 when t = 1.

For example, g(Φ3·5) = 2 because 2 is the maximum among 1 − 0, 3 − 1, 4 − 3, 5 − 4, 7 − 5, 8 − 7.
It can be visualized by the following diagrams where a long bar represents a polynomial. The black

color indicates that the corresponding exponent (term) occurs in the polynomial and the white color
indicates that it does not.

Φ3 : 0 2

Φ3·5 : 0 8

Ψ3 : 0 1

Ψ3·5 : 0 7

Ψ3·5·7 : 0 57

One immediately notices that the maximum gap is essentially the length of a longest white block
plus 1. For example, a longest white block in Φ3·5 has length 1. Hence g(Φ3·5) = 1 + 1 = 2.

Our initial motivation came from its need for analyzing the complexity [7] of a certain paring
computation over elliptic curves [5,10,15,16]. It turns out that the computing time of the Atei pair-
ing [10,15,16] over elliptic curves essentially depends on the maximum gaps of the inverse cyclotomic
polynomials whose degree are decided from the parameters of the elliptic curves. However, it seems
to be a curious problem on its own and it could be also viewed as a first step toward the detailed
understanding of the sparsity structure of Φn and Ψn .

In this note, we tackle the simplest non-trivial cases, namely, g(Φp1 p2) and g(Ψp1 p2 p3 ) where
p1 < p2 < p3 are odd primes. As far as we are aware, there were no published results on this prob-
lem. We will provide an exact expression for g(Φp1 p2 ) in Theorem 1. We will also provide an exact
expression for g(Ψp1 p2 p3) under a mild condition in Theorem 2. In Remark 1 we will show that the
condition is very mild. Finally we will provide a lower bound and an upper bound for g(Ψp1 p2 p3 ) in
Theorem 3.

In order to obtain the results, we had to overcome a few difficulties. It can be easily shown that
Φp1 p2 and Ψp1 p2 p3 are sums and products of simple polynomials with trivial gap structures. However
adding and multiplying them could introduce new gaps, eliminate existing gaps or change the sizes of
existing gaps etc., in intricate manners, via accumulation or cancellation of terms, making the analysis
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very challenging. We overcame the obstacles in two ways: (1) find mild conditions on p1, p2, p3 that
ensure that accumulation or cancellation do not occur; (2) find mild conditions that allow us to bound
the sizes of gaps arising from accumulation or cancellation and show that such gaps cannot be the
maximum gap.

This note is structured as follows. In the following section (Section 2), we will quickly take care of
trivial cases, in order to identify the simplest non-trivial cases to tackle. A reader can safely skip over
this section. In the subsequent section (Section 3), we will provide the main results on the simplest
non-trivial cases. In the final section, we will prove the main results (Section 4).

2. Trivial cases

In this section, we will quickly take care of trivial cases, in order to identify the simplest non-trivial
cases that will be tackled in the next section. A reader can safely skip this section. In the following
we will use basic properties of (inverse) cyclotomic polynomials without explicit references. The basic
properties of cyclotomic polynomials can be found in any standard textbooks. The basic properties of
inverse cyclotomic polynomials can be found in Lemma 2 of [13].

• Since

Φn(x) = Φn̂

(
x

n
n̂
)
, Ψn(x) = Ψn̂

(
x

n
n̂
)
,

we immediately have

g(Φn) = n

n̂
g(Φn̂), g(Ψn) = n

n̂
g(Ψn̂),

where n̂ is the radical of n. Thus we will, without losing generality, restrict n to be squarefree.
• Since

Φ2n(x) = ±Φn(−x), Ψ2n(x) = ±(
1 − xn)Ψn(−x)

for odd n, we immediately have

g(Φ2n) = g(Φn), g(Ψ2n) = max
{

g(Ψn),deg(Φn)
}
.

Thus we will, without losing generality, further restrict n to be squarefree and odd, that is, a
product of zero or more distinct odd primes.

• Consider the case when n is a product of zero odd primes, that is n = 1. Since

Φ1(x) = −1 + x, Ψ1(x) = 1,

we have

g(Φ1) = 1, g(Ψ1) = 0.

• Consider the case when n is a product of one odd primes, that is n = p1. Since

Φp1(x) = 1 + x + · · · + xp1−1, Ψp1(x) = −1 + x,

we have

g(Φp1) = 1, g(Ψp1) = 1.
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• Consider the case when n is a product of two odd primes, that is n = p1 p2 where p1 < p2. Since

Ψp1 p2(x) = −(
1 + x + · · · + xp1−1) + (

xp2 + xp2+1 + · · · + xp2+p1−1),
we have

g(Ψp1 p2) = p2 − (p1 − 1).

Hence the simplest non-trivial cases are g(Φp1 p2 ) and g(Ψp1 p2 p3). We will tackle these cases in the
following section.

3. Main results

In this section, we tackle the simplest non-trivial cases identified in the previous section. In partic-
ular, we provide an exact expression for g(Φp1 p2 ) in Theorem 1. We also provide an exact expression
for g(Ψp1 p2 p3 ) under a mild condition in Theorem 2. In Remark 1 we show that the condition is very
mild. Finally we provide a lower bound and an upper bound for g(Ψp1 p2 p3 ) in Theorem 3.

Theorem 1. Let n = p1 p2 where p1 < p2 are odd primes. Then we have

g(Φn) = p1 − 1.

Theorem 2. Let n = p1 p2 p3 where p1 < p2 < p3 are odd primes satisfying the condition:

p2 � 4(p1 − 1) or p3 � p2
1. (1)

Then we have

g(Ψn) = 2n
1

p1
− deg(Ψn).

Theorem 3. Let n = p1 p2 p3 where p1 < p2 < p3 are odd primes. Then we have

max

{
p1 − 1,2n

1

p1
− deg(Ψn)

}
� g(Ψn) < 2n

(
1

p1
+ 1

p2
+ 1

p3

)
− deg(Ψn).

Remark 1. We make several remarks.

• Note that the condition (1) in Theorem 2 is “almost always” satisfied. Thus we “almost always”
have

g(Ψn) = 2n
1

p1
− deg(Ψn).

More precisely, for each p1, only finitely many out of infinitely many (p2, p3) violate the condi-
tion (1).

• Let V p1 be the finite set of (p2, p3) violating the condition (1). For several small p1 values and
for every (p2, p3) ∈ V p1 , we carried out direct calculation of g(Ψn), obtaining the following fre-
quency table



H. Hong et al. / Journal of Number Theory 132 (2012) 2297–2315 2301
p1 #V p1 #V (1)
p1 #V (2)

p1 #V (3)
p1

3 1 1 0 0
5 12 12 0 0
7 40 39 0 1

11 147 137 9 1
13 252 244 6 2
17 528 504 23 1
19 690 671 18 1
23 1155 1126 27 2

where

V (1)
p1 =

{
(p2, p3) ∈ V p1 : g(Ψn) = 2n

1

p1
− deg(Ψn)

}
,

V (2)
p1 = {

(p2, p3) ∈ V p1 : g(Ψn) = p1 − 1
}
,

V (3)
p1 = V p1 − (

V (1)
p1 ∪ V (2)

p1

)
.

• The table suggests that even among the finite set V p1 , we have almost always

g(Ψn) = 2n
1

p1
− deg(Ψn)

and sometimes

g(Ψn) = p1 − 1

and very rarely

g(Ψn) > max

{
p1 − 1,2n

1

p1
− deg(Ψn)

}
.

• In fact, when p1 = 3 or 5, the table shows that

g(Ψn) = 2n
1

p1
− deg(Ψn).

• It is important to recall that for each p1, for instance p1 = 23, there are infinitely many possible
values for (p2, p3). The table shows that for those infinitely many possible values of (p2, p3), the
maximum gap is exactly the lower bound in Theorem 3, namely,

g(Ψn) = max

{
p1 − 1,2n

1

p1
− deg(Ψn)

}

except for only two values of (p2, p3). In other words, it seems that the lower bound in Theorem 3
is almost always exactly the maximum gap. The more detailed computational results (not given
in the table) also suggest that the maximum gap is very close to the lower bound when it is not
the same as the lower bound. Hence there is a hope for improving the upper bound. We leave
it as an open problem. Any progress will require full understanding on the intricate cancellations
occurring while adding and multiplying polynomials.
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4. Proof

In this section, we prove the three theorems given in the previous section. We begin by listing
several short-hand notations that will be used throughout the proofs without explicit references.

Notation 1 (Notations used in the proof).

ϕ(n) = deg(Φn),

tdeg( f ) = the trailing degree of a univariate polynomial f .

4.1. Proof of Theorem 1

Theorem 1 follows immediately from Lemma 3 and Lemma 4.

Lemma 1. Let A and B be polynomials. If there is no cancellation of terms while adding the two polynomials,
then

g(A + B)� max
{

g(A), g(B), tdeg(B) − deg(A), tdeg(A) − deg(B)
}
.

Proof. We consider several cases.

Case 1. tdeg(B) > deg(A). The gaps of A + B occurs in A, B and between A and B . Thus

g(A + B) = max
{

g(A), g(B), tdeg(B) − deg(A)
}
.

Since tdeg(A) − deg(B) < 0, we have

g(A + B) = max
{

g(A), g(B), tdeg(B) − deg(A), tdeg(A) − deg(B)
}
.

Case 2. tdeg(A) > deg(B). By switching the role of A and B in Case 1, we have

g(A + B) = max
{

g(A), g(B), tdeg(B) − deg(A), tdeg(A) − deg(B)
}
.

Case 3. deg(A) � tdeg(B) and deg(B) � tdeg(A). Since there is no cancellation of terms, we have

g(A + B)� max
{

g(A), g(B)
}
.

Since tdeg(B) − deg(A)� 0 and tdeg(A) − deg(B) � 0, we have

g(A + B)� max
{

g(A), g(B), tdeg(B) − deg(A), tdeg(A) − deg(B)
}
. �

Lemma 2. Let A and B be polynomials. If all the non-zero coefficients of A have the same sign and all the
non-zero coefficients of B have the same sign, then we have

g(AB) � min{u, v},

where
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u = max
{

g(B), g(A) + tdeg(B) − deg(B)
}
,

v = max
{

g(A), g(B) + tdeg(A) − deg(A)
}
.

Proof. Let A = ∑t
i=1 ai xei where ai > 0 and e1 < e2 < · · · < et . Let

C j =
j∑

i=1

aix
ei B.

Note AB = Ct .
We claim that g(C j) � max{g(B), g(A) + tdeg(B) − deg(B)} for j = 1, . . . , t . We will prove the

claim by induction on j. First, the claim is true for j = 1 since

g(C1) = g
(
a1xe1 B

) = g(B)� max
{

g(B), g(A) + tdeg(B) − deg(B)
}
.

Next assume that the claim is true for j. We will show that the claim is true for j + 1. For this, note
that

g(C j+1) = g
(
C j + a j+1xe j+1 B

)
.

Since all the non-zero coefficients of A have the same sign and all the non-zero coefficients of B have
the same sign, there is no cancellation of terms in the above summation of C j and a j+1xe j+1 B . Thus,
from Lemma 1, we have

g(C j+1) � max
{

g(C j), g
(
a j+1xe j+1 B

)
, tdeg

(
a j+1xe j+1 B

) − deg(C j), tdeg(C j) − deg
(
a j+1xe j+1 B

)}
.

Note

g(C j) � max
{

g(B), g(A) + tdeg(B) − deg(B)
}
,

g
(
a j+1xe j+1 B

) = g(B),

deg(C j) = e j + deg(B),

tdeg(C j) = tdeg(A) + tdeg(B),

deg
(
a j+1xe j+1 B

) = e j+1 + deg(B),

tdeg
(
a j+1xe j+1 B

) = e j+1 + tdeg(B).

Note

tdeg
(
a j+1xe j+1 B

) − deg(C j) = (
e j+1 + tdeg(B)

) − (
e j + deg(B)

)
� g(A) + tdeg(B) − deg(B),

tdeg(C j) − deg
(
a j+1xe j+1 B

) = (
tdeg(A) + tdeg(B)

) − (
e j+1 + deg(B)

)
� 0.

Thus
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g(C j+1) � max
{

max
{

g(B), g(A) + tdeg(B) − deg(B)
}
, g(B), g(A) + tdeg(B) − deg(B)

}
= max

{
g(B), g(A) + tdeg(B) − deg(B)

}
.

Hence, we have proved the claim for C1, . . . , Ct . Since AB = Ct , we have

g(AB)� u = max
{

g(B), g(A) + tdeg(B) − deg(B)
}
.

By switching the role of A and B, we can also prove, in the identical way, that

g(AB)� v = max
{

g(A), g(B) + tdeg(A) − deg(A)
}
.

Hence we have g(AB)� min{u, v}. �
Lemma 3. Let p1 < p2 be odd primes. Then we have

g(Φp1 p2) � p1 − 1.

Proof. From [9,13,12,14], Φp1 p2 has the form

Φp1 p2(x) =
ρ∑

i=0

xip1 ·
σ∑

j=0

x jp2 − x ·
p2−2−ρ∑

i=0

xip1 ·
p1−2−σ∑

j=0

x jp2 ,

where ρ and σ are the unique integers such that p1 p2 +1 = (ρ+1)p1 +(σ +1)p2 with 0 � ρ � p2 −2
and 0 � σ � p1 −2. It is also known that accumulation/cancellation of terms does not occur when we
expand the above expression for Φp1 p2 (x). It will be more convenient to rewrite the above expression
into the following equivalent form

Φp1 p2(x) = A · B + C · D,

where

A =
ρ∑

i=0

xip1 , B =
σ∑

j=0

x jp2 ,

C =
p2−2−ρ∑

i=0

xip1 , D = −x
p1−2−σ∑

j=0

x jp2 .

Note that

tdeg(A) = 0, deg(A) = ρp1, g(A) = p1,

tdeg(B) = 0, deg(B) = σ p2, g(B) = p2,

tdeg(C) = 0, deg(C) = (p2 − 2 − ρ)p1, g(C) = p1,

tdeg(D) = 1, deg(D) = (p1 − 2 − σ)p2 + 1, g(D) = p2.

Thus
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g(B) + tdeg(A) − deg(A) = p2 − ρp1

= p2 − p1 p2 − 1 + p1 + (σ + 1)p2

� p2 − p1 p2 − 1 + p1 + (p1 − 1)p2

= p1 − 1,

g(A) + tdeg(B) − deg(B) = p1 − σ p2

� p1,

g(D) + tdeg(C) − deg(C) = p2 − (p2 − 2 − ρ)p1

= p2 − p2 p1 + 2p1 + ρp1

= p2 − p2 p1 + 2p1 + p1 p2 + 1 − p1 − (σ + 1)p2

= p1 + 1 − σ p2

� p1 + 1,

g(C) + tdeg(D) − deg(D) = p1 + 1 − ((p1 − 2 − σ)p2 + 1)

= p1 − (p1 − 2 − σ)p2

� p1.

By Lemma 2, we have

g(AB)� min
{

max{p2, p1},max{p1, p1 − 1}} = min{p2, p1} = p1, (2)

g(C D)� min
{

max{p2, p1},max{p1, p1 + 1}} = min{p2, p1 + 1} = p1 + 1. (3)

Here we could apply Lemma 1 to bound g(AB + C D). However, it would not be helpful since we
would get a bound which is at least p1 + 1. We want a tighter bound, namely p1 − 1. For this, we
exploit the particular way AB and C D are overlapping. We begin by noting

tdeg(AB) = 0, deg(AB) = ρp1 + σ p2 = ϕ(p1 p2),

tdeg(C D) = 1, deg(C D) = (p2 − 2 − ρ)p1 + (p1 − 2 − σ)p2 + 1.

Hence

tdeg(C D) − tdeg(AB) = 1,

deg(AB) − deg(C D) = 2(ρp1 + σ p2 − p1 p2 + p1 + p2) − 1

= 2(1 − p1 − p2 + p1 + p2) − 1 = 1.

So we have the following overlapping between AB and C D and the resulting AB + C D:

AB

C D

AB + C D

0 d
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where each exponent is colored in black, white and gray to indicate that the exponent occurs, does
not occur, and may or may not occur, respectively. The letter d is the shorthand for the degree of the
polynomial AB . Note that the exponents 1 and d − 1 in AB are colored in white because AB and
C D do not share any exponents. As the result, the exponents 0,1,d − 1,d occur in AB + C D , and are
colored in black.

Due to the way the polynomials AB and C D are overlapped, while adding C D to AB , none of the
terms of C D can ever increase the gaps already in AB . Hence

g(AB + C D) � g(AB).

Thus using inequality (2) we deduce that

g(Φp1 p2) = g(AB + C D) � p1.

Hence in order to prove the first claim: g(Φp1 p2 ) � p1 − 1, it only remains to show that
g(Φp1 p2 ) �= p1. We will do so by contradiction. Suppose that g(Φp1 p2 ) = p1. Then there must occur
two exponents, say α and β , in the polynomial AB + C D such that β − α = p1 and all the expo-
nents in between them do not occur in AB + C D . Note that α �1 and β � d − 1. Then we are in the
situation described by the colorings in the following diagram:

AB

C D

AB + C D

0 dα β

In the above diagram, the exponents α and β in the polynomial AB +C D are colored in black because
they occur in AB + C D and all the exponents in between them are colored in white because they do
not occur in AB + C D . Since there is no cancellation of terms while summing AB and C D , all the
exponents in between α and β in AB and C D cannot occur either, hence colored in white also. Now
from Formula (2), we have g(AB) � p1. Since β − α = p1, the exponents α and β must occur in AB ,
hence colored in black. Since AB and C D do not share any exponents, the exponents α and β must
not occur in C D , hence colored in white. Thus we have justified all the colorings in the above diagram.

Now we are ready to derive a contradiction. From the diagram, we see that

g(C D)� (β + 1) − (α − 1) = β − α + 2 = p1 + 2,

but by inequality (3), we have

g(C D)� p1 + 1.

This is a contradiction. Hence g(Φp1 p2 ) �= p1. Thus we finally have

g(Φp1 p2) � p1 − 1. �
Lemma 4. Let p1 < p2 be odd primes. Then we have

g(Φp1 p2) � p1 − 1.
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Proof. We will show this by finding a gap of size p1 − 1. We begin by recalling

AB =
ρ∑

i=0

xip1 ·
σ∑

j=0

x jp2 ,

C D = −x ·
p2−2−ρ∑

i=0

xip1 ·
p1−2−σ∑

j=0

x jp2 ,

where ρ and σ are the unique integers such that

p1 p2 + 1 = (ρ + 1)p1 + (σ + 1)p2

with 0 � ρ � p2 − 2 and 0 � σ � p1 − 2.
We claim that ρ � 1. Suppose otherwise. Then ρ = 0 and thus we have

p1 p2 + 1 = p1 + (σ + 1)p2.

Taking both sides modulo p2, we see 1 ≡ p1 (mod p2). Since 1 < p1 < p2, this is a contradiction.
Hence ρ � 1.

Thus the polynomial AB must have the following form:

AB = 1 + xp1 + terms of degree higher than p1 if there is any.

On the other hand, the polynomial C D must have the following form:

C D = −x − terms of degree higher than p1 if there is any.

Thus the polynomial AB + C D must have the following form:

Φp1 p2(x) = AB + C D = 1 − x + xp1 + terms of degree higher than p1. (4)

Thus there is a gap of size p1 − 1 between x and xp1 . Hence we finally have

g(Φp1 p2)� p1 − 1. �
4.2. Proof of Theorem 2

Theorem 2 follows immediately from Lemma 5, Lemma 6 and Lemma 7.

Lemma 5. Let n = p1 p2 p3 where p1 < p2 < p3 are odd primes satisfying

D1: 2n
1

p1
>

4

3
deg(Ψn).

Then we have

g(Ψn) = 2n
1

p1
− deg(Ψn).
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Proof. By Lemma 2 in [13] we have

Ψp1 p2 p3(x) = Φp1 p2(x) · Ψp1 p2

(
xp3

)
= Φp1 p2(x) · Φp1

(
xp3

) · Ψp1

(
xp2 p3

)
= Φp1 p2(x) · Φp1

(
xp3

) · (−1 + xp2 p3
)
.

We expand the above expression and name the parts as follows

− Φp1 p2(x) · Φp1

(
xp3

)
A0

+ xp2 p3Φp1 p2(x) · Φp1

(
xp3

)
.

A1

Ψp1 p2 p3 (x)

Let λ be the gap, if exists, between A0 and A1, that is, λ = tdeg(A1) − deg(A0). Note

deg(A0) = deg(Ψn) − p2 p3 = deg(Ψn) − n
1

p1
,

tdeg(A1) = p2 p3 = n
1

p1
.

Thus

λ = n
1

p1
−

(
deg(Ψn) − n

1

p1

)
= 2n

1

p1
− deg(Ψn).

Note that

λ = 2n
1

p1
− deg(Ψn)

= 3n
1

p1
− 2 deg(Ψn) + deg(A0)

= 3

2

(
2n

1

p1
− 4

3
deg(Ψn)

)
+ deg(A0)

> deg(A0)

� g(A0) = g(A1).

Thus λ > 0 and the gap between A0 and A1 exists. Hence

g(Ψn) = max
{

g(A0), λ, g(A1)
} = λ = 2n

1

p1
− deg(Ψn). �

Lemma 6. Let n = p1 p2 p3 where p1 < p2 < p3 are odd primes satisfying:

D2: 2p3 > p2(p1 − 1).
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Then we have

g(Ψn) = 2n
1

p1
− deg(Ψn).

Proof. By Lemma 2 in [13] we have

Ψp1 p2 p3(x) = Φp1 p2(x) · Ψp1 p2

(
xp3

)
= Φp1 p2(x) · Φp1

(
xp3

) · Ψp1

(
xp2 p3

)
= Φp1 p2(x) · (1 + xp3 + · · · + x(p1−1)p3

) · (−1 + xp2 p3
)
.

We expand the above expression and name the parts as follows

− (
Φp1 p2(x)

B0

+ · · · + x(p1−1)p3Φp1 p2(x)

B p1−1

)

A0

+ xp2 p3
(
Φp1 p2(x)

B0

+ · · · + x(p1−1)p3Φp1 p2(x)

B p1−1

)
.

A1

Ψp1 p2 p3 (x)

Let

λ = tdeg(A1) − deg(A0) = 2n
1

p1
− deg(Ψn).

From D2, we have

λ = 2n
1

p1
− deg(Ψn)

= 2p2 p3 − p1 p2 p3 + (p1 − 1)(p2 − 1)(p3 − 1)

= p2 p3 − p1 p3 + p3 + p1 − 1 − p2(p1 − 1)

> (p2 − p1)p3 + p3 + p1 − 1 − 2p3

= (p2 − p1 − 2)p3 + p3 + p1 − 1. (5)

Thus λ > 0, i.e. there is no overlap between A0 and A1. Note that g(A0) = g(A1). Thus

g(Ψn) = max
{
λ, g(A0)

}
.

We claim that λ > g(A0). Note

D2 ⇔ ϕ(p1 p2) < 2p3 − (p1 − 1).

We will split the proof into the following two cases:

Case 1. ϕ(p1 p2) < p3.
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Note that deg(B0) = ϕ(p1 p2) and tdeg(B1) = p3. Hence there is no overlap between B0 and B1.
Likewise there is no overlap between Bi and Bi+1 for all i = 1, . . . , p1 − 2. Note

g(B0) = g(B1) = · · · = g(B p1−1) = g(Φp1 p2) = p1 − 1

from Theorem 1. Hence

g(A0) = max
{

p3 − ϕ(p1 p2), p1 − 1
}
.

From Eq. (5), we have

λ > (p2 − p1 − 2)p3 + p3 + p1 − 1 > p3 > p3 − ϕ(p1 p2),

λ > (p2 − p1 − 2)p3 + p3 + p1 − 1 > p1 − 1.

Thus we have proved that λ > g(A0) when p3 > ϕ(p1 p2).

Case 2. p3 � ϕ(p1 p2) < 2p3 − (p1 − 1).

Note

tdeg(B2) − deg(B0) = 2p3 − ϕ(p1 p2) > 0.

Thus B0, B1, . . . , B p1−1 overlap as the following diagram shows.

B0

B1

B2

B p1−1

0 ϕ(p1 p2)

p3

2p3

(p1 − 1)p3

. . .
. . .

In the above diagram, the tail exponent and the leading exponent of B0 are colored in black to
indicate that they actually occur in B0. The other exponents are colored in gray to indicate that they
may or may not occur. The same is done for B2, . . . , B p1−1 since they have the same sparsity structure
(shifting does not change the sparsity structure). In B0, there occurs at least one exponent between 0
and p3. Otherwise we would have p3 − 0 > p1 − 1 = g(B0) which is impossible. Let α be the largest
such exponent. Then p3 − α � p1 − 1. Since

2p3 > α + p3 � 2p3 − (p1 − 1) > ϕ(p1 p2),

the exponent α + p3 lies between ϕ(p1 p2) and 2p3 in B1.

B0

B1

B2

B p1−2

B p1−1

0 ϕ(p1 p2)

p3

2p3

(p1 − 1)p3

α

α + p3

. . .
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Now we consider the polynomials E1, L1, L2, . . . , L p1−2 and E2 indicated in the following diagram

B0

B1

B2

B p1−2

B p1−1

0 ϕ(p1 p2)

p3

2p3

(p1 − 1)p3

α

α + p3

. . .

E1 L1 L2 Lp1−2 E2. . .

where deg(E1) = α, tdeg(E2) = deg(Ψn)−α and deg(Li) = tdeg(Li+1). Since L1, L2, . . . , L p1−2 have the
same gap structure, we have

g(L1) = g(L2) = · · · = g(Lp1−2).

Hence, we have

g(A0) = max
{

g(E1), g(E2), g(L1)
}
.

From Theorem 1 and Eq. (5), we have

λ > (p2 − p1 − 2)p3 + p3 + p1 − 1 > p1 − 1 = g(Φp1 p2) � g(E1), g(E2).

Note

g(L1) � (α + p3) − α = p3.

From Eq. (5), we have

λ = 2n
1

p1
− deg(Ψn)

> p3(p2 − p1 − 2) + p3 + p1 − 1

> p3

� g(L1).

Thus we have proved that λ > g(A0) = max{g(E1), g(L1)} when p3 � ϕ(p1 p2) < 2p3 − (p1 − 1). �
Lemma 7. Let n = p1 p2 p3 where p1 < p2 < p3 are odd primes. Then we have

C1 ∨ C2 ⇒ D1 ∨ D2,

where

C1: 4(p1 − 1) � p2,

C2: p2
1 � p3,

D1: 2n
1

p1
>

4

3
deg(Ψn),

D2: p (p − 1) < 2p .
2 1 3
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Proof. Let n = p1 p2 p3 where p1 < p2 < p3 are odd primes. We will prove the contrapositive.

¬D1 ∧ ¬D2 ⇒ ¬C1 ∧ ¬C2.

Let

V = {
(p1, p2, p3): ¬ D1 ∧ ¬D2 ∧ p1 < p2 ∧ p2 < p3

}
.

It suffices to prove

(p1, p2, p3) ∈ V ⇒ ¬C1 ∧ ¬C2.

Note

V = {
(p1, p2, p3): h1 � 0 ∧ h2 � 0 ∧ h3 < 0 ∧ h4 < 0

}
,

where

h1 = 2n
1

p1
− 4

3
deg(Ψn),

h2 = 2p3 − p2(p1 − 1),

h3 = p1 − p2,

h4 = p2 − p3.

The shaded area in the plot below shows the cross section of the set V for a fixed p1.

h1 = 0

h2 = 0

h3 = 0

h4 = 0

p2
1

4(p1 − 1)

By finding the p2 coordinate of the intersection point between the curves h1 = 0 and h4 = 0, we have

(p1, p2, p3) ∈ V ⇒ p2 � 2(p1 − 1) +
√

4p2
1 − 10p1 + 6

⇒ p2 < 2(p1 − 1) +
√

4(p1 − 1)2
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⇒ p2 < 4(p1 − 1)

⇒ ¬C1.

By finding the p3 coordinate of the intersection point between the curves h1 = 0 and h2 = 0, we have

(p1, p2, p3) ∈ V ⇒ p3 �
1

2
(p1 − 1)

(
p1 + 1 +

√
p2

1 + 2p1 − 3
)

⇒ p3 <
1

2
(p1 − 1)

(
p1 + 1 +

√
(p1 + 1)2

)
⇒ p3 < (p1 − 1)(p1 + 1)

⇒ p3 < p2
1

⇒ ¬C2. �
4.3. Proof of Theorem 3

Theorem 3 follows immediately from Lemma 8 and Lemma 9.

Lemma 8. Let n = p1 p2 p3 where p1 < p2 < p3 are odd primes. We have

max

{
p1 − 1,2n

1

p1
− deg(Ψn)

}
� g(Ψn).

Proof. We recall the diagram in the proof of Lemma 6:

− (
Φp1 p2(x)

B0

+· · · + x(p1−1)p3Φp1 p2(x)

B p1−1

)

A0

+ xp2 p3
(
Φp1 p2(x)

B0

+· · · + x(p1−1)p3Φp1 p2(x)

B p1−1

)
.

A1

Ψp1 p2 p3 (x)

Let λ = tdeg(A1) − deg(A0). Then we have

λ = p2 p3 − (
deg(Ψn) − p2 p3

) = 2p2 p3 − deg(Ψn) = 2n
1

p1
− deg(Ψn).

If λ � 0, then λ � g(Ψn) obviously. If λ > 0, there exists a gap between A0 and A1, thus λ � g(Ψn).
We recall Eq. (4):

Φp1 p2(x) = 1 − x + xp1 + terms of degree higher than p1.

Therefore there exists a gap in B0 of size p1 − 1. Since p1 < p3, we have

Ψn(x) = 1 − x + xp1 + terms of degree higher than p1.

Hence, p1 − 1 � g(Ψn). �
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Lemma 9. Let n = p1 p2 p3 where p1 < p2 < p3 are odd primes. Then

g(Ψn) < 2n

(
1

p1
+ 1

p2
+ 1

p3

)
− deg(Ψn).

Proof. Let U = 2n( 1
p1

+ 1
p2

+ 1
p3

) − deg(Ψn). Then lemma follows from the following claims.

Claim 1. g(Ψn) � max{p1 − 1,deg(Ψn) − 2(p3 − (p1 − 1))}.

Let α be the largest exponent less than p3 occurring in Ψn and β = deg(Ψn) − α.

Ψn

α p3 β

C1 C2 C3

Then we have

g(Ψn) = max
{

g(C1), g(C2), g(C3)
}
.

Note that g(C1) = g(C3) � p1 − 1 and g(C2) � deg(Ψn) − 2α. Since α � p3 − (p1 − 1), we have

g(C2) � deg(Ψn) − 2
(

p3 − (p1 − 1)
)
.

Therefore, we have

g(Ψn) � max
{

p1 − 1,deg(Ψn) − 2
(

p3 − (p1 − 1)
)}

.

Claim 2. U > p1 − 1.

Note that

U − (p1 − 1)

= 2n

(
1

p1
+ 1

p2
+ 1

p3

)
− deg(Ψn) − (p1 − 1)

= 2(p1 p2 + p2 p3 + p3 p1) − (
p1 p2 p3 − (p1 − 1)(p2 − 1)(p3 − 1)

) − (p1 − 1)

= 2(p1 p2 + p2 p3 + p3 p1) − p1 p2 p3 + (p1 − 1)(p2 p3 − p2 − p3)

= 2(p1 p2 + p2 p3 + p3 p1) − p1 p2 p3 + p1 p2 p3 − p1 p2 − p1 p3 − p2 p3 + p2 + p3

= 2(p1 p2 + p2 p3 + p3 p1) − p1 p2 − p1 p3 − p2 p3 + p2 + p3

= p1 p2 + p2 p3 + p3 p1 + p2 + p3

> 0.
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Claim 3. U > deg(Ψn) − 2(p3 − (p1 − 1)).

Note that

U − (
deg(Ψn) − 2

(
p3 − (p1 − 1)

))

= 2n

(
1

p1
+ 1

p2
+ 1

p3

)
− 2 deg(Ψn) + 2

(
p3 − (p1 − 1)

)

= 2(p1 p2 + p2 p3 + p3 p1) − 2
(

p1 p2 p3 − (p1 − 1)(p2 − 1)(p3 − 1)
) + 2p3 − 2(p1 − 1)

= 2(p1 p2 + p2 p3 + p3 p1) − 2(p1 p2 + p2 p3 + p3 p1 − p1 − p2 − p3 + 1) + 2p3 − 2(p1 − 1)

= 2p1 + 2p2 + 2p3 − 2 + 2p3 − 2p1 + 2

= 2p2 + 4p3

> 0. �
Acknowledgments

Eunjeong Lee was supported by Priority Research Centers Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-
0028298). Hyang-Sook Lee and Cheol-Min Park were supported by the National Research Foundation
of Korea (NRF) grant funded by the Ministry of Education, Science and Technology. (No. 2010-
0000402).

We would like to thank the anonymous referees for their insightful and helpful suggestions.

References

[1] G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Number Theory 100 (2003) 104–116.
[2] M. Beiter, Coefficients of the cyclotomic polynomial F3qr(x), Fibonacci Quart. 16 (1978) 302–306.
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