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In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting,
photoprotection and structural stability of a variety of pigment–protein complexes. Here, we investigated the
consequences of altered carotenoid composition for the functional organization of photosynthetic complexes
in wild-type and various mutant strains of the cyanobacterium Synechocystis sp. PCC 6803.
Although it is generally accepted that xanthophylls do not play a role in cyanobacterial photosynthesis in low-
light conditions, we have found that the absence of xanthophylls leads to reduced oligomerization of photosys-
tems I and II. This is remarkable because these complexes donot bind xanthophylls. Oligomerization is evenmore
disturbed in crtHmutant cells, which show limited carotenoid synthesis; in these cells also the phycobilisomes
are distorted despite the fact that these extramembranous light-harvesting complexes do not contain caroten-
oids. The number of phycocyanin rods connected to the phycobilisome core is strongly reduced leading to high
amounts of unattached phycocyanin units. In the absence of carotenoids the overall organization of the thylakoid
membranes is disturbed: Photosystem II is not formed, photosystem I hardly oligomerizes and the assembly of
phycobilisomes remains incomplete. These data underline the importance of carotenoids in the structural and
functional organization of the cyanobacterial photosynthetic machinery.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In all living systems carotenoids (Cars) are themost widespread pig-
ments with important structural and functional roles [1]. They can be
classified as carotenes and their oxygenated derivatives, the xantho-
phylls. These pigments can be essential for the assembly of protein
complexes [2,3], and for maintaining the membrane integrity [4], but
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they might also contribute to the regulation of membrane fluidity [5].
In photosynthetic organisms Cars can function as accessory light-
harvesting pigments [6,7], but they also serve as photoprotective
agents, especially when the organisms are exposed to excess light [8,
9]. In particular, Cars are able to quench triplet excited states of chloro-
phylls (Chls), and directly scavenge singlet oxygen. Due to their hydro-
phobic characteristics Cars are mostly localized in the thylakoid
membrane, most often in the vicinity of or incorporated in pigment–
protein complexes.

Cyanobacteria are prokaryotic photosynthetic organisms, the an-
cestors of plant chloroplasts. They were fundamental participants in
the formation of the oxygenic atmosphere on Earth. Nowadays
cyanobacteria represent an ecologically important group especially
in the oceans; they have a major role in carbon- and nitrogen-
fixation and are often present as symbiotic partners. In cyanobacteria
the most abundant Cars are β-carotene and various xanthophylls,
such as synechoxanthin, canthaxanthin, caloxanthin, echinenone,
myxoxanthophyll, nostoxanthin and zeaxanthin [10,11]. X-ray crys-
tallographic studies have revealed that in the cyanobacterium
Thermosynechococcus elongatus 22 and 12 β-carotene molecules are
located in photosystem I (PSI) [12] and photosystem II (PSII) [13]
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monomers, respectively. Also the electron transport component, cy-
tochrome b6f (cytb6f) complex, contains a β-carotene molecule [14].
Recently a new, less abundant β-carotene–protein complex, Ycf39–
Hlip, was observed in cyanobacteria, which is involved in the early
steps of PSII assembly [15]. In the most often used model organism,
Synechocystis sp. PCC 6803 (hereafter Synechocystis), the most com-
mon xanthophylls are zeaxanthin, myxoxanthophyll (myxol-2′-
fucoside), echinenone, hydroxy-echinenone and synechoxanthin.
Hydroxy-echinenone or echinenone serves as an activator switch in
the orange carotenoid protein (OCP), which is responsible for non-
photochemical quenching in cyanobacteria [16,17] and protects the
cells from oxygen radicals [18]. Occasionally, zeaxanthin can also
be inserted into OCP, but with lower affinity and eventually this
leads to lower efficiency of OCP [19]. The hydrophobic character of
carotenoids leads to their preferential presence in the lipid mem-
brane environment. The majority of Cars, especially xanthophylls
are located in the outer, cytoplasmic and thylakoid membranes.
Most of them are bound to proteins but they can also be constituents
of the lipid phase [10], where they can influence the membrane dy-
namics and microviscosity [5] and perform protective roles [5,20].
Although the amounts of the xanthophyll molecules and their distri-
bution among the cell compartments are influenced by environmen-
tal conditions [21,22], they can be predominantly found in the
thylakoid membranes. It is generally accepted that in cyanobacteria
zeaxanthin and myxoxanthophyll provide efficient protection
against photooxidation and lipid peroxidation under various stress
conditions [20,22,23]. In addition, myxoxanthophyll appears to be
an important factor in maintaining extended thylakoid membrane
sheets [4]. Less information is available about the role of
synechoxanthin [24], but it seems that it is mostly present in the
Fig. 1. HPLC analysis of photosynthetic pigment extracts of wild-type and mutant cells. Chrom
recorded at 440 nm. The samples containing equivalent chlorophyll concentrations were load
retention times. β, β-carotene; C, cis-carotenes; Chl, chlorophyll; DM, deoxy-myxoxanthophyll;
rivatives; Z, zeaxanthin.
cell membrane, and participates in protecting the cells against high
light exposure [25].

Biosynthesis of carotenoids in cyanobacteria has been intensively
studied and several mutants deficient in different Cars are available
[10,11]. In the ΔcrtRO double mutant strain of Synechocystis an almost
complete loss of xanthophylls was obtained by the inactivation of
two biosynthetic enzymes (carotene β-ketolase and carotene β-
hydroxylase) [26] and thus the mutants contain only β-carotene,
synechoxanthin and a myxoxanthophyll precursor, namely deoxy-
myxol-2′-dimethyl-fucoside (Fig. 1). The basic photosynthetic process-
es andmembrane integrity appear to be unaffected in this mutant; only
the light sensitivity of the cells in high-light intensities increases [26,27].
The crtHmutant strain is deficient in the CrtH enzyme, which catalyzes
the cis-to-trans isomerization of carotenoids at the early steps of their
synthesis. Photo-isomerization can still occur if the cells are cultivated
under continuous light conditions [28]. However, photo-isomerization
is unable to completely replace the enzymatic cis-to-trans isomerization
[28,29]; the light-grown crtH and wild-type cells contain the same Car
species, but the ratio of the various Cars is somewhat different [28]
(Fig. 1), whereas the dark-grown crtH cells are unable to synthesize
trans-carotenoids due to the lack of both enzymatic and photo-
isomerization. This strain can produce only some Car precursors, pri-
marily cis-lycopenes and a small amount of all-trans carotenes, but no
xanthophylls [28,29].

Recently, a completely Car-freeΔcrtH/Bmutant strain has been gen-
erated by the inactivation of the crtB gene, encoding the phytoene syn-
thase in crtH cells [30]. The ΔcrtH/B mutant cells do not contain
phytoene or any downstream carotenoid biosynthesis intermediates.
TheΔcrtH/B cells are extremely light sensitive and only capable of grow-
ing in the dark, under light-activated heterotrophic growth (LAHG)
atograms of WTL (A); crtR/OL (B); crtHL (C); WTD (D); ΔcrtBD (E), and crtHD (F) cells were
ed. Car derivatives were identified on the basis of both their absorption spectra and their
E, echinenone; M,myxoxanthophyll; S, synechoxanthin; U, unknown non-carotenoid de-
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conditions [31], like the Car deficient green algae [3]. Cells of the
cyanobacterial ΔcrtH/B mutant possess no oxygen-evolving capacity,
suggesting the absence of photochemically active PSII complexes and/or
the absence of a functional water-splitting enzyme. In these cells only a
small amount of non-functional, partially assembled PSII core complex
can be detected [30]. However, cytb6f complexes were present in these
cells [30], as in the Car-deficient green algae [3]. The thylakoid structure
is also influenced by the mutations as only a few fragmented thylakoids
were found in the mutant cells [10]. For the current study, in order to in-
vestigate the effect of Car deficiency, we have generated a new ΔcrtB sin-
gle mutant, which led essentially to the same results as the ΔcrtH/B
double mutant.

In summary, in the photosynthetic machinery of cyanobacteria the
xanthophylls seem to play a role only under stress conditions, while
the additional lack of β-carotene has far more severe effects.

In photosynthetic organisms, the pigment–protein complexes em-
bedded in the thylakoidmembrane carry out the conversion of light en-
ergy into chemical energy. The various pigments contained in the
photosynthetic complexes have distinct characteristics to ensure the
optimal funneling of excitation energy toward the photosynthetic reac-
tion centers (RCs) [6]. Both photosystems (PSII and PSI) have highly
conserved protein structures. In cyanobacteria and plants PSII core is
present in a dimeric multi-protein complex of approx. 20 proteins.
Each monomer contains two inner antennae, CP43 and CP47 and the
RC, which is composed of the D1 and D2 proteins and the cytochrome
b559. PSII possesses a total of 35 chlorophylls a (Chls a) per monomer.
Despite the high structural homology of PSI in plants and cyanobacteria,
in cyanobacteria PSI often exists as a trimer instead of a monomer,
which is the dominant form in plants. The PSI core complex consists of
PsaA and PsaB proteins and several small molecular weight subunits.
It harbors the RC and inner antenna and per PSI monomer 96 Chls a
are bound. The main differences between cyanobacterial and plant PSI
reside in their low molecular weight protein constituents. Some of
these small molecular weight proteins were proven to be important
for trimerization of the PSI monomers into trimers [12]. The most im-
portant of these subunits is the PsaL protein, which is necessary for
trimerization,whereas PsaMand PsaI have a trimer-stabilizing function.
Chl a has an in vivo absorption maximum typically at ~680 nm and
emits fluorescence at ~685 nm except for a few long-wavelength Chl
a molecules (LWCs) in PSI, emitting at longer (~730 nm) wavelengths.
The LWCmolecules aremore abundant in PSI trimers than inmonomers
due to some pigment–pigment interactions, which are only present in
the trimer [12]. Although the exact position and role of LWCs are contro-
versial, the emitted long-wavelength fluorescence is often used as an
in vivo sign of the presence of PSI trimers [32].

In cyanobacteria, peripheral antenna complexes, the phycobilisomes
(PBSs), serve as light-harvesting antennae for the photosynthetic
complexes [33]. In PBSs the phycobilin pigments (phycocyanobilin,
phycourobilin, phycoerythrobilin, phycobiliviolin) attached to phyco-
biliproteins (phycocyanin, allophycocyanin, phycoerythrin, phyco-
erythrocyanin) are responsible for light harvesting. In Synechocystis
each PBS contains approximately six phycocyanin (PC) rods attached to
the three allophycocyanin (APC) core cylinders. Each PC rod comprises
typically three hexameric disks (18 bilins/hexamer) while all the APC
core cylinders consist of four trimeric disks (6 bilins/trimer). There are
various linker proteins, which are responsible for maintaining the PBS
structure, and these linkers can be divided into groups according to
their function [34]. The rod linker (LR) proteins attach to the hexameric
rod units and organize them into rods [35]. The different LR proteins are
named according to their molecular masses. The LR10 protein is believed
to be localized at the endof the rods as a cap andhas a stabilizing function.
LR30 attaches the last hexameric unit to the middle one, while LR33 is re-
quired for the linkage of the first and second units. The rod-core linkers
(LRC) bind the rods to the core cylinders. The small core linkers (LC) stabi-
lize the core cylinders and the membrane-core linker (LMC) anchors the
PBSs to the PSs [34].
The incident light is absorbedmainly by the pigments of the PC rods,
which have maximum absorbance at around 620 nm and fluorescence
emissionmaximum at 640–650 nm. As a next step, the absorbed energy
is transferred to the pigments of the APC in the PBS core with 650 nm
absorption. The two core cylinders closest to the membrane contain
some special APC trimers [36], that function as terminal emitters (TEs)
of the PBSs. These special trimers possess low-energy bilins, which en-
sure the direct excitation energy transfer (EET) to the Chl a-containing
photosystem cores [37]. Most of the APC trimers show fluorescence
emission around 660 nm (APC660), while the TEs fluoresce at around
680 nm (APC680).

The fluorescence emitted by the pigment–protein complexes can
provide information about the rate and efficiency of various photosyn-
thetic processes. Although a wealth of information is available about
the function of Cars in cyanobacteria, no systematic comparative study
has been performed in these organisms on their specific role on the ex-
citation energy transfer processes in the light-harvesting antenna, and
in the assembly and stability of the main constituents of the thylakoid
membranes.

The present study focuses on the role of various Cars in the function-
al organization of the photosynthetic complexes in Synechocystis cells.
We studied several Synechocystis mutants impaired at various Car bio-
synthetic steps and characterized them using picosecond fluorescence
spectroscopy or microscopy combined with biochemical methods and
electronmicroscopy. Our results show that the various Car classes influ-
ence the membrane organization, assembly and oligomerization of PSI
and PSII to different extents. Furthermore,we have found that the struc-
ture of PBS strongly depends on the Car composition of the thylakoid
membranes, despite the fact that carotenoids are known not to be pres-
ent in PBSs.
2. Methods

2.1. Cell culturing

Synechocystis sp. PCC 6803 cells were cultivated in BG11 medium
[38] buffered with 5 mM HEPES (pH 7.5) on a rotary shaker at 30 °C.
The cellswere grown either under photoautotrophic growth (PAG) con-
ditions for WT, crtR/O and crtH [28] (WTL, crtR/OL and crtHL) or under
light-activated heterotrophic growth (LAHG) conditions [31] for the
ΔcrtB, crtH and WT strains (ΔcrtBD, crtHD and WTD). Under PAG condi-
tions the cells were illuminated with continuous white light using
35 μmol photons m−2 s−1 PPFD (Photosynthetic Photon Flux Density).
Under LAHG conditions BG11 was supplemented with 10 mM glucose
and daily pulses of 20 μmol photons m−2 s−1 PPFD light was provided
for 10 min per day. The mutant cells were cultured in the presence of
the appropriate antibiotics (40 μg ml−1 spectinomycin for crtR/O and
ΔcrtB, 40 μg ml−1 kanamycin for crtR/O and crtH). The cells were har-
vested during the logarithmic growth phase.
2.2. Construction of Synechocystis sp. PCC 6803 ΔcrtB and crtR/O mutant
strains

A construct containing part of the crtB gene and an omega cas-
sette [30] were used to transform WT cells of Synechocystis sp. PCC
6803. Transformants were selected under LAHG conditions on
BG11 agar plates supplemented with glucose and increasing con-
centration of spectinomycin by several restreakings of single
colonies.

The crtR/Omutant was a gift from Kazumori Masamoto (Kumamoto
University, Japan). This mutant was created by introducing kanamycin
and spectinomycin cassettes into the coding regions of the crtR and
crtO genes, respectively. Complete segregation of the mutant cells was
confirmed by PCR.
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2.3. Pigment analysis

The cells were harvested by centrifugation, frozen in liquid nitro-
gen and stored at −80 °C until the extraction. Pigments were ex-
tracted with 100% methanol and passed through a PTFE 0.2-μm
pore size syringe filter. Samples containing equivalent amounts of
chlorophyll were separated by high-pressure liquid chromatography
(HPLC) on a Shimadzu LC-20 HPLC system using a 4.6 × 250-mm
ReproSil-Pur Basic RP-18 columnwith 5 μmparticle size (Dr. Maisch,
Ammerbuch, Germany). The columns were equilibratedwith solvent
of acetonitrile:water:triethylamine (9:1:0.01) and eluted with one
step linear gradient (25 min) of 100% ethylacetate at a constant
flow rate of 1 ml min−1. Car derivatives were identified on the
basis of both their absorption spectra and their retention times. The
relative content of pigments was estimated by a comparison of
peak areas on chromatograms recorded at 440 nm. The concentra-
tions of carotenoid species were calculated from Beer–Lambert's
law using their specific extinction coefficients at 440 nm [39]. The
values are the means ± SD of at least three independent
experiments.

2.4. Electron-microscopy analysis

The collected cellswerefixed in 1%paraformaldehyde and 1%glutar-
aldehyde for 4 h at 4 °C andpost-fixed in 1%osmium tetroxide. The sam-
ples were dehydrated and further treated according to the standard
procedure described earlier [40].

2.5. Isolation of phycobilisomes

Phycobilisomes were prepared from Synechocystis sp. PCC 6803
wild-type and mutant cells according to [41] with some modifications.
Cells were pre-treated with 0.2% lysozyme at 37 °C. The cells were
disrupted with 0.1 mmdiameter glass beads in 0.75 M K–Na phosphate
buffer (pH 7.0) using a beadbeater homogenizer. After 5% Triton X-100
treatment for 50 min at room temperature the thylakoid membranes
were pelleted by centrifugation at 15,000 g. The supernatant was treat-
ed again with 3% Triton X-100 for 20min prior to loading onto a discon-
tinuous sucrose density gradient. After 20 h of centrifugation at 90,000 g
at 14 °C the PBS containing blue-colored layers were removed from the
gradients and stored at room temperature until spectroscopic and pro-
tein analysis was applied.

2.6. Protein analysis

Membranes for two-dimensional blue native/denaturing polyacryl-
amide gel electrophoresis (BN/SDS-PAGE) were isolated by breaking
cells in 25 mM MES/NaOH buffer (pH 6.5) containing 10 mM CaCl2,
10 mM MgCl2 and 25% glycerol using glass beads in a beadbeater. The
thylakoid membranes were collected by centrifugation and were solu-
bilized with 1% dodecyl-β-D-maltoside. First-dimension, blue-native
electrophoresis was performed at 4 °C in a 4–14% polyacrylamide gel.
5 μg Chl containing samples were loaded onto each lane. The protein
composition of the complexes was assessed by second-dimension elec-
trophoresis in a denaturing 12 to 20% linear gradient polyacrylamide gel
containing 7 M urea. The lanes from the native gel were excised along
their entire length, incubated for 20 min in 25 mM Tris/HCl (pH 7.5)
containing 1% SDS and 1% dithiothreitol (w/v) and placed on top of
the denaturing (SDS) gel. Proteins separated in the gel were stained
with Coomassie Blue [42]. Identification of the protein bands was per-
formed either by specific antibodies or byMS as described in Knoppova
et al. [15].

Protein composition of isolated PBSswas studied using Tricine–SDS-
PAGE 10 to 16% linear gradient according to Schagger [43]. The isolated
PBSs were precipitated by adding an equal volume of 20% trichloroace-
tic acid and incubating on ice for 5 min. After centrifugation the pellet
was resuspended in loading buffer and heated for 5 min at 85 °C.
40 μg of total protein containing samples was loaded onto each lane.
The separated proteins were stained with Coomassie Blue.

2.7. Picosecond time-resolved measurements

Two-photon excitation (860 nm) Fluorescence Lifetime ImagingMi-
croscopy (FLIM) measurements were performed as described in [44].
Fluorescence was detected through a band-pass (BP) filter of 647 nm
with 58 nm bandwidth (BP 647/58) with time steps of 12 ps per chan-
nel. 64 × 64 pixel images were collected with 0.2 μm× 0.2 μmpixel res-
olution. Low excitation power (60 μW average power at 860 nm) was
used in combination with long integration times (20–30 min). Cells
were immobilized in 3% low gelling temperature agarose, type VII
(Sigma-Aldrich), dissolved in BG11 media. FLIM images were analyzed
using Glotaran as graphical user interface for the R-package TIMP
(glotaran.org) [45]. Only pixels with fluorescence intensity above
75 counts per second were selected for global analysis. Global analysis
of the image results in the same set of lifetimes for all selected pixels
whereas the amplitudes can vary. The amplitude-weighted average life-
times were calculated as described in [44,46].

Time-resolved emission spectrawere recorded at room temperature
(293K)with a synchroscan streak-camera system [47] using 100–200 fs
laser excitation pulses centered around 590 or 400 nm. The time win-
dow was either 800 ps or 2 ns. The laser repetition rate was 250 kHz
and the laser powerwas typically 70 μWwith a spot size of ∼100 μm(di-
ameter). Cells with an optical density of 0.3–0.6 cm−1 at the excitation
wavelength were used for the measurements. The cells were dark-
adapted for 10 min before and circulated in a 1 mm flow cell during
the measurements with a flow speed of ~2.5 ml/s.

Images were corrected for the background and photocathode shad-
ing, and then sliced up into traces of 5 nmwidth. Global analysis of the
streak images was performed using the Glotaran graphical user inter-
face for TIMP [48]. Data obtained with 800 ps and 2 ns time windows
were linked during the global analysis. A single, Gaussian-shaped in-
strument response function was used for the analyses and its width
was a free fitting parameter resulting in typical value between 4–6 ps
for the 800 ps and 10–12 ps for the 2 ns time window, respectively.

3. Results

3.1. Carotenoid composition of the different strains

The xanthophyll deficient crtR/Omutant can grow photoautotrophi-
cally (hereafter crtR/OL), while the completely carotenoid-less ΔcrtB
possesses extreme light sensitivity and is only capable of growing in
the dark, under light-activated heterotrophic growth conditions (here-
after ΔcrtBD). We also studied the crtH mutant either cultivated under
photoautotrophic or light activated heterotrophic growth conditions
(hereafter crtHL and crtHD, respectively). In order to distinguish the ca-
rotenoid induced changes from the ones induced by the growth condi-
tions, the wild type cells were grown under photoautotrophic and light
activated heterotrophic growth conditions as well (hereafter WTL and
WTD, respectively).

The pigment composition of mutants used in this study was de-
termined by HPLC (Fig. 1). The carotenoid composition of the WTD
cells does not differ significantly from WTL. The xanthophyll-
deficient crtR/OL cells contain no zeaxanthin, echinenone, but have
deoxy-myxoxanthophyll instead of the myxoxanthophyll [26]. In
the crtH mutant a large amount of cis-carotene is present under
both growth conditions indicating that the isomerization of the cis-
carotene is the rate-limiting step of the synthesis [28]. A small
amount of unknown non-carotenoid derivatives was also observed
in crtHL and crtHD. In addition, in crtHL cells all carotenoid classes
are present but their relative amounts are different than in the WT.
The estimated molar ratio of β-carotene to Chl is 0.131 ± 0.003 in

http://glotaran.org
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WTL and 0.097± 0.008 in crtHL. In crtHD cells grown in the dark no β-
carotenes or xanthophylls are present. The carotenoid deficient
ΔcrtBD cells contain only chlorophyll and a small amount of un-
known non-carotenoid derivatives, similar to what was observed
previously for ΔcrtH/B [30].

3.2. Electron microscopy analysis

The effect of Cars on thylakoid membrane organization was investi-
gated by standard transmission electron microscopy. The xanthophyll-
deficient crtR/OL and the crtHL cells show similar morphology as WT
Synechocystis cells (Fig. 2). All strains contain multi-layered membrane
sheets of 3–6 pairs of thylakoids runningmostly parallel to the cytoplas-
mic membrane within the peripheral region of the cell and occasionally
some thylakoidmembrane pairs traverse the central cytoplasm. The av-
erage distance between adjacent membrane pairs is approximately
40 nm, which is a typical value for WT Synechocystis cells [49].

The dark-grown WTD cells exhibit a reduced number of thylakoid
layers in a less-ordered structure thanWTL cells (Fig. 2). Only short sec-
tions of membrane pairs run parallel to the cell wall with slightly in-
creased inter-thylakoidal distances (~50 nm) and more thylakoid
sheets are penetrating into the central region of the cell. The complete
lack of Cars in the ΔcrtBD cells and crtHD cells, however, results in
more disorganized thylakoid structures than in WTD cells. In both the
ΔcrtBD and crtHD cells, the thylakoids do not form multilayer mem-
branes parallel to the cell wall but only membrane pairs randomly dis-
tributed in the cell. The distance between adjacent thylakoid sheets
increases to 60–140 nm andmembrane pairs enclose a slightly inflated
thylakoid lumen. In summary, the absence of xanthophylls or limited
availability of carotenoids leaves the thylakoid structure intact but the
complete absence of carotenoids largely disturbs the ultrastructure of
thylakoid membranes.

3.3. Protein analysis of thylakoid membranes

Wehave investigated the presence of thylakoid-membrane proteins
and their complexes by 2D gel electrophoresis (Fig. 3). In the first
WTL

WTD

crtR/

crtBΔ

A B

D E

Fig. 2. Electronmicrographs of Synechocystis sp. PCC 6803wild-type and carotenoid biosynthesi
crtHL (C); WTD (D); ΔcrtBD (E), and crtHD (F) cells. C: Carboxysome; P: polyphosphate bodies.
dimension, native protein complexes, obtained by mild solubilization
of thylakoid membranes, were separated and in the second dimension,
the subunit composition of the complexes was determined by denatur-
ing SDS-PAGE, allowing the detection and quantification of the different
oligomeric forms of PSI, PSII, and other proteins/complexes.

InWTL cells (under PAG conditions) PSII is predominantly present as
a dimeric core complex (arrows 1), closely followed by PSII core mono-
mers, while the amount of RC47 (PSII monomeric core complex lacking
CP43) is negligible (arrow 2). PSI predominantly exists as trimers (ar-
rows 3 and 4) while the level of PSI monomers is much lower (arrows
7 and 8) and the amount of PSI dimers is negligible (arrows 5 and 6). In-
terestingly, PSI trimers (unlike monomers and dimers) show strong re-
sistance against SDS-induced disassembly and only the small subunits
PsaF and PsaE are significantly released during SDS-PAGE while the
large PsaA and PsaB subunits remain together with the majority of
PsaD and PsaL.

Xanthophyll-deficient crtR/OL cells show a significantly lower level
of PSII dimers and PSI trimers (arrow 1) than WTL cells (arrows 2 and
3) and a concomitant increase of the monomeric form of these com-
plexes, indicating destabilization of oligomerization in the absence of
xanthophylls. These results confirm the overall stabilization effect of
xanthophylls on the structure of PSI trimers.

The crtHL strain contains an even lower amount of PSII dimers as
compared to monomers and the level of RC47 is higher than in WTL.
Also the PSI trimer tomonomer ratio is far lower than inWTL andPSI tri-
mers aremore efficiently disassembled by SDS. Our results show amore
severe effect on photosystem complexes upon β-carotene limitation
than in the absence of xanthophylls only.

2D gel electrophoresiswas also applied to theWTD strain (Fig. 3) and
theΔcrtBD and crtHD strains. As compared toWTL, the amount of dimer-
ic PSII core complexes is drastically reduced, and the amount of RC47
has increased in the WTD strain. In both ΔcrtBD and crtHD strains, how-
ever, the PSII complexes are almost completely absent and a trace
amount of RC47 is the only PSII complex detectable by protein staining
in both mutants.

The strong depletion (crtHD) or absence (ΔcrtBD) of Cars also leads to
the almost complete lack of PSI trimers and the presence of mostly
OL crtHL

crtHDD

C

F

smutant strains.White arrows indicate thylakoidmembrane pairs inWTL (A); crtR/OL (B);
Bars: 0.25 μm.
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monomers or occasionally dimers, in contrast to the dominance of tri-
mers in WTD cells. Also the stability of the PSI complexes is largely af-
fected as indicated by their decreased stability of the native complex
during SDS-PAGE. Interestingly, ΔcrtBD PSI monomers are lacking the
PsaL subunit while the trimers still contain it. The PsaL subunit is easily
released from the trimers of themutants but not fromWTD andWTL tri-
mers. This indicates that PsaL binding in the trimer-forming domain of
the PSI monomer is destabilized in the absence of Cars, leading to its re-
lease from the monomer during BN-PAGE. In summary, PSII complexes
are not formed in the absence of carotenoids, whereas PSI complexes
are still formed but PSI monomers dominate.

3.4. Streak-camera measurements of whole cells

The process of excitation energy transfer (EET) can be monitored
particularly well with time-resolved fluorescence techniques. Photo-
synthetic systems have relatively short fluorescence decay times if
both EET and charge separation (CS) are efficient. In cyanobacteria
light ismainly captured by PBSs and the excitation energy is transferred
toward the RCs, where it is used for CS. In the case of open PSII RCs no
long, 1–2 ns fluorescence lifetimes are present, unless EET energy is
blocked somewhere. Here we studied EET and CS in mutant cells
using streak-camera measurements (Fig. 4) and applying two excita-
tion wavelengths: the 590 nm light mainly excites the PBSs (90%) and
the 400 nm light excites mainly the Chls but also PBSs to some extent
[17].

Global analysis of streak-camera data obtained for WTL cells
(Fig. 4) results in similar decay-associated spectra (DAS) as ob-
served and discussed before for cells under similar conditions [17].
Upon 590 nm excitation (Fig. 4A) five components are observed:
the 6–8 ps (black color line) DAS reflects excitation equilibration
within the PC rods of the PBSs, the 30 ps (red color line) DAS
shows downhill EET from PC to APC660 with the typical positive
sign on the short-wavelength side (corresponding to fluorescence
decay) and the negative sign at longer wavelengths (corresponding
to a rise of fluorescence due to EET to the corresponding pigments).
The 117 ps (green color line) component reflects EET from APC660 to
APC680 + Chls and the 199 ps (blue color line) component is due to
excitation trapping by the RCs (charge separation). Also a long-lived
component (~1 ns) can be observed (cyan color line), which has
very low amplitude and probably reflects competition between sec-
ondary charge separation and charge recombination [17,50].



Fig. 4. Streak images and decay-associated spectra of light grown strains. Data obtained forWTL (A, B), crtR/OPAG (C, D) and crtHPAG (E, F) cells are shown. DAS were obtained from global
fitting of the time-resolved fluorescence data recorded with the streak camera. The corresponding lifetimes are given in the figures in ps. The excitation wavelengths were 590 nm and
400 nm, as indicated. The spectra are normalized to the second (red color line) lifetime component. Streak images show 1 ns timewindows of the fluorescence kinetics. Arrows represent
the start of the fluorescence.
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Upon 400 nmexcitation (Fig. 4B) the fluorescence components orig-
inate fromdifferent pigment–protein complexes and they are less easily
separated into various processes: the 6 ps DAS component (black color
line) reflects both equilibration within PC rods (see above) and EET in
PSI from bulk to red Chls [44]. The dominating 21 ps (red color line)
component representsmainly CS in PSI (leading to decay of Chl fluores-
cence) but it also shows some contribution of the ~30 ps PBS compo-
nent, which is observed upon 590 nm excitation. The 125 ps
component (blue color line) shows characteristics of the 117 ps (down-
hill EET) and 199 ps components (charge separation in PSII) observed
upon 590 nm excitation. The 240 ps component is rather similar to
the 199 ps DAS in Fig. 3 (panel A) and is most probably due to CS in PSII.

Although the DAS of crtR/OL cells (Fig. 4C and D) were similar to
those of WT cells grown under the same conditions, a fraction of long-
lived (783 ps) fluorescence could be observed (590 nm excitation)
with PBS spectral characteristics (max 660 nm), which was not ob-
served forWT cells. This component reflects a small fraction of distorted
PBSs or PBSs that are badly connected to the PSs. 400 nm excitation
leads to similar results as for WTL cells. Although, a decreased amount
of PSII dimers is observed by 2D-PAGE (Fig. 3), the in vivo PSII fluores-
cence is not influenced in the mutant significantly. However, the PSI
DAS (~23 ps) shows less contribution on the long-wavelength side
(above 700 nm), reflecting less red pigments in PSI.

For crtHL cells the obtained DAS and corresponding lifetimes are dif-
ferent from those of WTL (Fig. 4C). Upon 590 nm excitation there is no
clear component for EET from the PBSs to the pigments fluorescing
around 675–680 nm (Chls and some red-shifted bilins in the core of
the PBSs) [51]. For these cells dominant ~600 ps and less pronounced
~2 ns components are present with a maximum of around
640–650 nm. These components originate mostly from energetically
disconnected PC units, showing that PBSs are to a large extent not as-
sembled. In addition, the ~600 ps component has a shoulder around
680 nm which is more pronounced upon 400 nm excitation demon-
strating that it is partly due to Chl a. This long-lived Chl fluorescence
might originate from the RC47 complex observed with 2D-PAGE
(Fig. 3) due to the incomplete assembly of PSII. On the other hand, the
PSI signal is similar to that obtained for crtR/OL cells (red color line).

For WTD cells a smaller fraction of functionally coupled PBS–PSII
complexes is detected than forWTL cells, which is reflected in the small-
er negative amplitude of the green color lineDAS and the smaller ampli-
tude of the blue color line DAS upon 590 nm excitation (Fig. 5A). In
addition, a fraction of long-lived, ~1.3 ns fluorescence is observed orig-
inating from functionally disconnected PBSs. Upon 400 nm excitation
the PSI signal has a similar shape as observed for WTL, i.e.with the pro-
nounced shoulder above 700 nm.

The lack or strong decrease of Cars induces drastic increase (3-fold)
in the fluorescence decay time of the Synechocystis cells (ΔcrtBD and
crtHD) when compared to WTD (see Fig. 5 streak camera images). The
obtained DAS are very similar for ΔcrtBD and crtHD cells. Upon 590 nm
excitation the dominating blue color line DAS with ~700 ps lifetime



Fig. 5. Streak images and decay-associated spectra of dark grown strains. Data obtained for WTD (A, B), ΔcrtBD (C, D) and crtHLAHG (E, F) cells are shown. DAS were obtained from global
fitting of the time-resolved fluorescence data recorded with the streak-camera setup. The corresponding lifetimes are given in the figures in ps. The excitation wavelengths were 590 nm
and 400 nm, as indicated. The spectra are normalized to the positive peak of the second (red color line) lifetime component. Streak images show 1 ns time windows of the fluorescence
decays. Arrows represent the start of the fluorescence.
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has spectral features that are very similar to those of crtHL cells and they
are characteristic for PC rods. The three faster components all show
down-hill EET characteristics somewhat similar to those of WT cells.
However, there is no clear proof for EET to PSII, since no PSII decay com-
ponent can be resolved from the data. The longest lifetime components
probably represent the fluorescence emitted predominantly from the
terminal emitter of the PBSs that do not transfer their energy to PSII.
Aswas also observed for the other Carmutants (Fig. 4 and Supplemental
Fig. 2), the red shoulder of the PSI fluorescence emission above 700 nm
has decreased significantly for ΔcrtBD and crtHD cells upon 400 nm
excitation.
3.5. Identification of phycobiliprotein fractions separated by sucrose
gradient

In order to determine to which extent PBSs assemble in the absence
or under limited availability of Cars, PBSs were isolated from the differ-
ent Car mutant strains and the assembled PBSs were purified using
sucrose density gradient centrifugation. The PBS bands from crtHL,
ΔcrtBD and crtHD cells appeared to be shifted to lower densities suggest-
ing reduced size, and two additional low-density subfractions appeared
(Figs. 6 and 7). The two low-density subfractions show very similar PC-
like fluorescence spectra with a maximum at around 650 nm, suggest-
ing that the fluorescence is emitted by the same pigments (Fig. 6).
These results indicate that PC rods in two different aggregation states
are responsible for the unconnected PC fluorescence signal in the
ΔcrtBD, crtHD and crtHL cells in vivo.

In order to obtain structural information about the assembled PBSs
of the ΔcrtB and crtH mutants, the protein composition of their PBSs
was analyzed by denaturing Tricine–SDS gel electrophoresis (Fig. 6).
Based on their molecular mass, the individual proteins can easily be
identified [34,35]. The results show that the amount of rod linkers LR30

and LR33 is drastically reduced in PBSs from ΔcrtBD, and crtHL. The LR30

and LR33 rod linker proteins are necessary for connecting the PC units
to each other [35]. The decreased amount of the linker proteins indi-
cates that the PC rods of themutant PBSs are reduced in size and contain
predominantly one PC hexameric unit instead of three as is characteris-
tic for WT [35].

3.6. Streak-camera measurements of phycobilisomes

Using the streak camera, EET was studied in PBSs isolated fromWTD
and ΔcrtBD cells (Fig. 7). PBSs isolated fromWTL andWTD did not show
significant difference (Supplemental Fig. 3). The calculated DAS of WT
PBSs are similar to those presented by Tian et al. [51]with an extra fluo-
rescence decay component, with ~250–300 ps lifetime in our case. A
similar extra component (maximum ~660 nm)was observed previous-
ly [44] and was ascribed to some distorted PBSs. The other components
are a 6 ps component, reflecting energy redistribution within PC rods,
20 ps corresponding to EET from PC to APC660 and 80 ps characterizing
EET from APC660 to APC680. The ~1.6 ns component corresponds to the
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excited-state lifetime of equilibrated PBSs. However, in ΔcrtB PBSs
(Fig. 7) only 4 components can be resolved. The ΔcrtB PBSs show re-
duced fluorescence in the PC region as compared toWT PBSs, and faster
Fig. 7.Decay-associated spectra of isolated phycobilisomes. PBSs ofWTD (A) andΔcrtBD (B) stra
lifetimes are given in thefigures in ps. The spectra are normalized to the longest (cyan color line
the right upper corner.
EET from high- to low-energy pigments. This is ascribed to a shortening
of the PC rods, which is consistent with the results of the protein analy-
sis of isolated PBSs.

3.7. Fluorescence Lifetime Imaging Microscopy measurements

The crtHL strain shows a WT-like thylakoid organization (Fig. 2)
without any apparent indication of disconnected TEs of PBSs (Fig. 4),
while a substantial number of unattached PC rods are present. There-
fore, thismutant provides an excellent tool for studying the intracellular
localization of the detached rod units. FLIM images of crtHL cells were
collected, using a 647/57 nm band pass filter (Fig. 8), which preferen-
tially detectsfluorescence of detachedPC rods. Global analysis of the im-
ages allowed separation of three lifetimes, namely 66, 264 and 764 ps
(Fig. 8). The average lifetimes are significantly longer in the center of
the cells.

Although the fitted lifetimes for the FLIM images differ from those of
the streak-camera measurements due to differences in time resolution
and detectionwindow, a clear correlation is present (for more FLIM im-
ages see Supplemental Fig. 1). The 66 ps component probably originates
from EET in assembled PBSs. The 264 ps is a relatively short lifetime
component, and therefore it is ascribed to photochemically quenched
PBSs and/or PSII. The longer 764 ps component mainly represents de-
tached PC rods; the corresponding spatial distribution is shown in
Fig. 8 (panel D). This component has a relatively high contribution in
the central region of the cells while it is clearly lower along the cell
wall. In contrast, the two short components show opposite behavior,
they have the highest contribution along the cell wall. The results
show that the detached PC rod fractions (with 764 ps lifetime) are not
co-localizedwith the thylakoidmembranes in crtHL cells, but aremainly
present in the center of the cells.

4. Discussion

4.1. Carotenoids play a role in the formation of thylakoid membranes

The presence of Cars is known to be essential for preserving the in-
tegrity of thylakoid membranes [4,10], as indicated by the observation
that Car-deficient mutants contain thylakoids with largely fragmented
membrane sheets (Fig. 2) [4,10]. One might argue that the thylakoid
fragmentation can be attributed to the decrease of PSII protein content
due to the lack of Cars (Fig. 3), but this assumption can be ruled out
based on the fact that a PSII-deficient mutant shows normal thylakoid
sheets [52]. Severely fragmented thylakoids were observed in the
absence of fucosylated myxoxanthophyll [4], suggesting a membrane-
stabilizing function for this Car. In our experiments the xanthophyll-
ins were studied by streak-camera setup using 590 nmexcitation light. The corresponding
) lifetime component. The sucrose gradient profiles of the phycobilisomes are presented in
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deficient (crtR/OL) mutant possesses properly organized thylakoid
membranes (Fig. 2 and [10]). In this mutant the deoxy-myxol-2′-
dimethyl-fucoside intermediate of myxoxanthophyll biosynthesis,
in addition to β-carotene [27,53] may replace myxoxanthophyll
due to its similar chemical structure. It seems that the fucose mol-
ecule attached to the myxoxanthophyll has a major role in the for-
mation of thylakoids, with a possible contribution of β-carotene as
well.

4.2. β-Carotene is necessary for photosystem I trimerization

In cyanobacteria, especially when grown under low-light intensity,
most PSI is found in trimeric form [54,55]. The crystal structure of PSI tri-
mer from T. elongatus has revealed the presence of 22 β-carotenemole-
cules per monomer [12,56]. In the present study we demonstrate that
the Car-deficient ΔcrtB mutant contains predominantly PSI monomers
and only a few PSI trimers. (Figs. 3 and 4) [30]. Despite the relative
abundance of Cars in PSI, the basic functionof PSI is only slightly affected
in a Car-deficient mutant [57], similar to what was observed for green
algae [3]. However, the increased amount of monomers could be attrib-
uted to the destabilization of the PSI trimers, which disassemble during
the sample preparation. The in vivo decrease of PSI trimers as compared
to the monomers was confirmed using picosecond fluorescence mea-
surements. Since PSI trimers in general contain more long-wavelength
Chls (LWCs) than PSI monomers [58,59], the substantial decrease of
the LWCs in the PSI fluorescence signal of Car-deficient cells (Fig. 5
and Supplemental Fig. 2) also indicates a considerable decrease in the
trimer/monomer ratio as compared to WT cells. However, we cannot
exclude that the decrease of the red Chl contribution is due to changes
in the local environments of some of these Chls when carotenoids are
not present. In the Car deficient cells PSI trimers appeared to be less re-
sistant against SDS than PSI trimers from WT cells (Fig. 3) and in the
mutant the interaction of the PsaL subunit with the PSI complex is
weaker (Fig. 3). The PsaL protein is necessary for PSI trimer formation
[56,60] and, according to the crystal structure of trimeric PSI, it is in
close contact with three β-carotenes [56,60]. These β-carotenes are
not in the vicinity of any Chl a molecules and were hypothesized to be
involved in trimer stabilization [12,55,56]. Similarly, the (light-grown)
crtHL cells, which have a limited availability of Cars, including β-
carotene (Fig. 1) show an increased relative amount of monomeric
PSI, whereas the binding of PsaL to monomeric PSI is weaker (Fig. 3).
Probably the lack of the structurally important “linker” Cars leads to
the destabilization of PsaL binding, and thus to a destabilization of the
PSI trimer.

Previously, xanthophyll molecules have also been observed in PSI
preparations [54,57,61]. This might be explained by co-purification of
xanthophylls, or by assuming that PSI trimers contain loosely connected
xanthophylls, which are lost upon crystallization. Klodawska et al. ob-
served a significant increase in the amount of echinenone in PSI trimer
samples as compared to themonomer samples and hypothesized a pos-
sible role of echinenone in trimer formation [54]. Remarkably, in
xanthophyll-deficient (crtR/OL) cells protein analysis also showed
slightly less PSI trimers and relatively more PSI monomers than in WT
cells (Fig. 3), which is accompanied by a decrease of LWC contribution
to the fluorescence (Fig. 4 and Supplemental Fig. 2). Unlike in Car-less
cells, in xanthophyll deficient cells the PsaL protein binds to the PSI
monomer with similar affinity as in WTL or WTD cells, and thus it is
also present in the monomeric PSI complex (Fig. 3). It is noteworthy
that in cyanobacteria the lack of xanthophylls does not induce a de-
crease of the PSI protein level in thylakoid membranes as compared to
PSII as was observed in higher plants [62]. In plants xanthophyll defi-
ciency induced the almost complete lack of the PSI complex due to the
suppressed translation and accelerated degradation of PsaA and PsaB
subunits [63].

The different affinity of the PsaL protein to the PSI complex in Car-
deficient (ΔcrtB) and xanthophyll-deficient (crtR/O) cells implies
that the increase in PSI monomers may have different reasons in the
two mutants. We propose that, in addition to PsaL [56,60] and a
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phosphatidylglycerol molecule [64], β-carotenes are also necessary for
the stabilization of the trimerization domain,most probably via stabiliz-
ing the interaction between PSI and the PsaL protein, while xantho-
phylls might surround the PSI trimer and externally stabilize it.

4.3. Influence of carotenoids on photosystem II structure

Although PSII contains less Cars than PSI (12 vs. 22 β-carotenes per
monomer, in T. elongatus) [13,65], Cars are essential for the assembly
of PSII dimers in cyanobacteria [30,66] and green algae as well [3]. Ac-
cordingly, in Car-less Synechocystis cells only trace amounts of the par-
tially assembled (CP43-depleted) RC47:PSII subcomplex can be
detected (Fig. 3), as was demonstrated earlier [30]. We also could not
distinguish a clear PSII fluorescence signal from the Car-deficient cells
(Fig. 5) [29]. Our results show that the production of carotenoids by
photoisomerization only, without the CrtH-catalyzed pathway, results
in partially impaired PSII functioning (crtHL Fig. 4) similar to what was
found in rice when the homologue enzyme of CrtH was knocked out
[67]. The relatively fast fluorescence decay observed in these cells
(Fig. 4), as compared to ΔcrtB cells, indicates a considerable amount of
functional PSII, which is capable of photochemical quenching. However,
the amount of active PSII complexes seems to be lower than inWT cells,
unlike what was proposed by Masamoto et al. [29].

Our protein analyses obtained for xanthophyll deficient mutants re-
vealed a significant decrease in the amount of detected PSII dimers
(Fig. 3) in low-light grown cells, but no corresponding change was
seen in the PSII related in vivo fluorescence (Fig. 4 blue color line DAS
upon 400 nm excitation), indicating that PSII is probably less stable
and disassembles in the PAGE. These observations support the notion
that the assembly of functional PSII requires the presence of β-
carotene, whereas xanthophylls seem to have a minor, stabilizing func-
tion even under low-light conditions.

4.4. Proper assembly of phycobilisomes requires β-carotene

Although there is no report on the presence of Cars in PBSs, we have
found that they strongly influence PBS integrity. In Car-deficient (ΔcrtB)
cells time-resolved fluorescence at room temperature revealed a high
level of energetically disconnected, non-transferring PC units, which
are not present in WT cells (Fig. 5). Further measurements on this
Car-less mutant showed the presence of assembled PBSs as well, but
with reduced size. In the mutant PBSs we detected faster excited-state
equilibration with the cores using time-resolved fluorescence (Fig. 8)
which is attributed to the reduced length of radial rods, a notion con-
firmed by their protein composition (Fig. 6). Our results imply that
Car-deficient PBSs contain predominantly rods with only one or two
hexameric PC units, although small amounts of full-length rods, com-
posed of three hexameric units, are also present.

Besides the fully assembled PBSs, two fractions of phycobiliprotein
complexes were separated by sucrose density gradient in the Car-less
mutant (Fig. 6). Both fractions show the typical PC fluorescence
(Fig. 6), but they differ in size. We conclude that in Car-deficient cells
most of the PBSs possess a reduced number of the peripheral PC rods,
and that part of the PC is present as unconnected units. It should be
noted that the xanthophyll-less crtR/Omutant contains properly assem-
bled PBSs, similar to WT cells (Fig. 7). Therefore, we conclude that the
lack of β-carotene or fucosilated myxoxanthophyll may cause PBS dis-
tortion. Assuming a direct PBS-stabilizing role for Cars would imply
the presence of a Car molecule inside or in the vicinity of the PBS rods,
but up to now there is no evidence supporting this assumption. There-
fore, at present an indirect effect of the Car composition on the structure
of the PBSs seems more likely.

The decreased level of the rod linker proteins in the carotenoid defi-
cient mutant would explain the abundance of unconnected PC units.
The absence of the last two peripheral rod units observed in PBSs of
Car-deficient cells also occurs in the mutant lacking LR33, the 33 kDa
rod linker, which connects the last two hexamers to the basal PC rod
unit [35]. Surprisingly, the LR33-deficient mutant exhibits only one frac-
tion of the detached rods [35], while two are present in the Car-lessmu-
tant. This difference suggests distinct reasons for improperly assembled
PBSs in the two mutants. In light-grown crtH cells the Car content is al-
most restored to theWT level (Fig. 1) [28]. Our results show that the Car
synthesis in crtHL cells is insufficient to warrant assembly and stability
of pigment–protein complexes to the same level as for WT cells
(Figs. 3 and 4), which is most apparent in case of the PBSs. In this mu-
tant, independent of the presence of light, the PBSs are distorted to a
similar extent as for the carotenoid deficient (ΔcrtB) cells (Figs. 4 and
5). We can speculate that under limited carotenoid availability β-
carotene incorporates preferentially into those proteins that are in-
volved in the most essential processes; e.g. in the light-grown crtH
cells themajor part of photosynthetic reaction centers seems to be func-
tional while the PBSs are largely unassembled.

The light-grown crtH strain shows a WT-like thylakoid organization
(Fig. 2) but a detached population of PC rods is present while the APC
cores of the PBSs are still transferring energy to the PSs (Fig. 4). We
used this mutant for studying the intracellular localization of the de-
tached rod units. FLIM experiments demonstrate that the fluorescence
decay component originating from PC (Fig. 4) has a higher relative con-
tribution in the middle of the cells (Fig. 9). Therefore, we can conclude
that the detached rod units are accumulated in the cytoplasm, away
from the thylakoid membrane. A similar dislocation of disconnected
rod units was observed by Tamary et al. [68] upon exposing the cells
to extreme-high intensity illumination.

The lack of PSII itself cannot be the reason for the improper assembly
of PBSs in the absence of Cars, since PBSs are fully compiled in WT cells
even under dark condition, when a considerable amount of PBSs is un-
attached and photochemically unquenched (Figs. 5 and 8), or in a mu-
tant containing only a trace amounts of Chl [69]. Furthermore, in crtHL

cells a high amount of unconnected PC units was detected, although a
significant amount of PSII complexes was observed (Fig. 3).

Based on our results, we have to conclude that proper PBS assembly
requires the presence of β-carotene in the cells.

4.5. Concluding remarks

Although it is generally believed that xanthophylls do not to play an
important role in cyanobacterial photosynthesis under low-light condi-
tions, our current results demonstrate that this picture has to be modi-
fied. Indeed the excitation energy transfer within the PBSs and the PSs,
aswell as the charge separationwithin PSI and PSII seem to be unaffect-
ed in the absence of xanthophylls. However, it remains unclear how
xanthophylls stabilize the PSI trimers and PSII dimers, because their
presence in PSI and PSII has hitherto not been observed.

The study of the crtHL cells shows that in case of limited carotenoid
formation, the oligomerization of PSI and PSII is substantially disturbed,
although PSI and PSII are still assembled and the thylakoidmembrane is
similarly organized. EET from PBSs to PSs is largely absent, which is not
only due to a decrease in PSI and PSII oligomerization but also to the fact
thatmany PBSs are not fully assembled. Results show that a large part of
the PC rods do not attach to the PBS core and these non-attached PC
complexes are not located in the vicinity of the thylakoid membranes.
It seems that only fully assembled PBSs attach to the PSs. ΔcrtBD and
crtHD cells do not have any or hardly any carotenoids and the thylakoid
structure appears to be completely disturbed. PSII is not formed, where-
as PSI is formed but less stable and occurs mainly in its monomeric
form. Again, a large part of the PC rods is not attached to the PBS core,
which is accompanied by a drastic reduction of linker proteins in the
mutant PBSs. This reduction is surprising because carotenoids have
never been found as part of the PBSs. One might thus speculate that
xanthophylls and carotenoids are essential ingredients of the assembly
and maintenance machinery of the photosynthetic complexes in the
cells.
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