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The problem of existence of best approximations by transformed and con- 
strained rational functions with respect to a generalized integral norm is studied. 

Let X be a compact topological space which is also a measure space and let 
J- denote the integral over X. Let 7 be a continuous mapping of the real line 
into the nonnegative real line. For a real (finite) measurable g, defined on X, 
set 

llgil = s 48). 

Let (94 ,..., 44, {A ,..., Z/J,,) be linearly independent subsets of C(X). Define 

Let (T be a continuous mapping of the real line into itself. Define 

Let P be a subset of n + nz space. The approximation problem is: givenf, 
finite, measurable, to find an A* E P for which IIf- @I, .)I1 attains its 
infimum 

p(f) = inf{llf- F(A, *)11: A E P}. 

Such a parameter A * is called best and F(A *, -) is called a best approximation 
off. 

The study of linear approximation by T-“norms” was begun by Walsh and 
Motzkin [.5]. The case where X is an interval, a(x) = x, and the only 
constraint on the parameters A is that Q(A, .) + 0 is considered in [2]. 
Cases in which a weight function is used are handled by incorporating the 
weight function into the measure or integral. 
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Q WITH THE ZERO MEASURE PROPERTV 

In case Q(A, x) + 0, F(A, x) is well defined. We need a convention for 
cases in which Q(,4. x) has zeros x. We use a hypothesis of Boehm [l] as 
adapted in [2]. 

DEFINITION. Q has the zero measure property if Q(A, .) + 0 implies that 
the set of zeros of Q(,4, .) is of zero measure. 

EXAMPLE. Let X = [0, l] >: [0, l] and Q(A, (x, v)) = a,,, t anfZx + 
Q~+~JJ, then if Q(A, .) & 0, the zeros of Q(A, .) form at most a line segment 
in X. 

If this condition holds, F(A, .) may need an extra definition on a set of 
measure zero, if Q(A, .) $ 0. But the values of F(A, *) on a set of measure 
zero have no effect on the value of J ~(.f - F(A, *)), so it does not matter how 
we define F(A, x) for the zeros x of Q(A, x). 

Since R(olA, x) = R(A, x) for all 01 > 0, any rational which does not have 
its denominator vanishing identically can be normalized so that 

Define P, to be the set of parameters A satisfying (1) and Q(A, *) 3 0. 

LEMMA 1. Let Q have the zero measure property and there exist B such that 
Q(B, -) > 0. Let Q(A, *) 3 0, Q(A, .) + 0, then R(A, .) is measurable. 

Proof. If Q(A, *) :, 0, R(A. .) is continuous and, therefore, measurable. 
If Q(A, .) > 0, Q(A, .) f 0, define 

R(A”, x) = R (y A + $- B, x) 

then Q(A”, .) > 0, hence R(A”, .) E C(X), R(A”, .) measurable, and R(A”, x) 
converges to R(A, x) if Q(A, x) = 0, hence R(A, a) is measurable [3, p. 431. 

COROLLARY. Under the same hypotheses, F(A, *) is measurable. 

The analog of Lemma 2 of [2] follows. 

LEMMA 2. Let j a(t)1 --f CC as [ t / + 03. Zf {II A” II> + co then there is a 
closed neighborhood N in X such that 

inf{]f(x) - a(R(A”, x))]: x E N} + 0~) as k --f co. 
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THEOREM 1. Let Q have the zero measure property and there exist B with 
Q(B, *) > 0. Let T(t) ---f co as [ t 1 + 00 and 1 a(t)/ + co as I t I -+ 0~). Let 
neighborhoods be of positive measure. Let P be a nonempty closed subset of PO . 
There exists a best approximation to each bounded measurable function. 

Proof. Let /If - F(A”, *)I[ be a decreasing sequence with limit p(f). By 
Lemma 2 it can be easily seen that (11 Ak /I} must be a bounded sequence. Thus, 
{A”} has an accumulation point A”, assume without loss of generality that 
{A”} ---f A”. As P is closed, A0 E P and 

iI IaO,+k/ = 1. 

It follows that the set of zeros of Q(A”, a) is of measure zero. If Q(A”, x) # 0, 
R(A”, x) + R(A”, x) and I f(x) - &tL, x >I -+ I f(x) - &4O, x)1. By Fatou’s 
theorem [3, p. 591, 

llf - W”, .>I1 < liy+up Ilf - FW, *>I1 = p(f). 

PARAMETER SPACES 

We now consider some subsets of PO under the assumption that B exists so 
that Q(B, .) > 0. 

(1) PO is a closed nonempty set. 

(2) Let {x, ,..., x,} be a finite subset of X and { y1 ,..., y,} be real 
numbers. Define 

P, = {A: F(A, xi) = yi , i = I,..., p}. 

When the convention of Boehm [l] is used to assign values to rational 
functions, PI need not be closed and best approximations need not exist. 

EXAMPLE. Let U(X) = x, R(A, x) = aJ(az + a3x). Let 

A” = (l/k, l/k, (k - 1)/k) 

then R(A”, 0) = 1. We have {A”} -+ (0, 0, 1) = A0 and since @to, x) = 0 
for x # 0, R(A”, 0) = 0 by Boehm’s convention. Let us approximatef: 

f(x) = 1, x = 0; 
zzz 0, x > 0, 
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on [0, l] under the constraint R(A, 0) = I. As i’f’- R(Ak, .)~, + 0, a best A 
would satisfy Ilf- R(A, .)I] == 0. The only rational R(A, .) for which this is 
true is the zero function, which does not satisfy the constraint. 

Goldstein has used a convention [4, pp. 84-891 in which R(A, x) is assigned 
any desired value when P(A, x) = Q(A, x) = 0. With this convention P, can 
be made closed. Let {A”} satisfy the constraints 

F(LP, Xi) = yj ) iz 1 ,..., PT (2) 

and (A”) + A. If Q(A, xi) # 0, F(Ak, xi) - F(A, xi). If Q(A, xi) = 0, 
P(A, x,) # 0, then j F(A”, xi)1 ---f a. If P(A, xi) = Q(A, xi) = 0 we assign 
to F(‘(A, xi) the value yi . It follows that P, is closed, As denominators are not 
a problem in linear approximation (m = l), P, is closed in transformed linear 
approximation. 

(3) Let U, v be functions mapping X into the extended real line, u < P, 
and 

This choice of parameters is associated with the problem of constrained 
approximation. Special cases of interest are those of one-sided approximation 
in which II = -co, v = f or u = f, v = + co. In dealing with P, we use also 
the convention of Boehm [l]. 

LEMMA 3. Let Q have the nonzero dense property artd Boehm’s convention 
be used. Let u be lower semicontinuous into the extended real Iine and v be 
upper semicontinuous into the extended real line, then P, n P, is closed, 

Proof. Let {A”} be a sequence in P2 n P,, and (A”} + A. Let Q(A, x) f 0, 
then {R(A”, x)} --f R(A, x), hence {F(A”, x)> --f P(A, x). We, therefore, have 
4.4 5; F(A, x) < v(x) for such x. Let Q(A, x) = 0. There exists a sequence 
{xl;} ---f x such that Q(A, xl;) i: 0 and 

lim sup{R(A, v): y ---f x, Q(A, y) # 0) = Ii-h R(A, x,), 

hence 

But u(R(A, xk) 2 LI(X~) so by lower semicontinuity of II, u(R(A, x) > u(x) 
Similarly a(R(A, x)) .< v(x). 

(4) LetJ={j, ,..., jD}beasubsetof{l,2 ,..., n+m},andlet{s, ,..., s,} 
be a set of signs (+ 1 or - 1). Let P3 be the set of coefficient vectors A such 
that 

sgn(a,) == sk or 0, k E J. 
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P, is closed, hence PO n P3 is closed. A special case is where all coefficients 
of A are to be nonnegative [6]. 

(5) Let X be a compact subset of the real line and Y be a closed subset 
of X. Let P, be the set of coefficient vectors A such that R(A, .) is monotonic 
increasing on Y. If Boehm’s convention [l] can be used on Y (which implies 
that Y has no isolated points) then P, n P, is closed. 

Suppose not then there exists a sequence {A”} C P4 n P, and A $ P, 
such that {A’“) + A. Hence there are points X, y E Y, x < y and E > 0 such 
that R(A, x) - R(A, JJ) > E. By Boehm’s convention there are x’, y’ E Y, 
x’ < y’ such that Q(A, x’) > 0, Q(A, y’) > 0, and R(A, x’) - R(A, y’) > 42. 
For all k sufficiently large we have R(Ak:, x’) - R(AL, v’) > c/4, contra- 
dicting monotonicity of R(Aki, .) on Y. 

We may want F(A, .) to be monotonic. If 0 is monotonic we need merely 
make R(A, .) monotonic. 

ADMISSIBLE APPROXIMATION 

A transformed rational function is called admissible if it can be expressed 
as a(R(A, .)), Q(A, *) > 0. In some cases we can show that a best approxi- 
mation exists which is admissible, and hence the problem of approximation 
by admissible transformed rational functions has a solution. 

DEFINITION. (R, P) has the admissible property if for given A E P, 
J- dJ’ - W, -1) < cc implies that there is BE P, Q(B, .) > 0 with 
R(A, *) - R(B, .) = 0 almost everywhere. 

COROLLARY. Let the hypotheses of the theorem hold and (R, P) have the 
admissible property. There exists a best admissible approximation to all 
measurable bounded functions. 

Proof. By the theorem there exists a best approximation F(A, .), A E P. If 
J- dJ’ - 64 .>) < co there is BE P, Q(B, .) > 0 such that F(B, .) - 
F(A, .) = 0 almost everywhere, and hence l ~(f - F(A, e)) = j ~(f - F(B, .)). 
We apply the corollary to the most common case of interest, which covers 
all L, norms, 1 < p < co, on an interval X = [a, b]. 

THEOREM. Let there exist 01, K such that T(t) > 01 1 t 1 for all I t I > K. Let 
there exist ,8, M such that / a(t)1 >, /3 1 t 1 for j t 1 > M. Let f be a bounded 
measurable function on [a, b]. Let 

W, 4 = PM x)lQM 4 = f akxk--l 
k=l 

/ f anflcxlz-l. 
k=l 
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Let P be a closed subset of’ P, and be such that if A t P, R(A, .) is pole jiee, 
then there is B E P with Q(B, .) 3, 0, R(A, .) = R(B, .). Let there exist A E P 
with //f - F(A, .)li < co. There exists an admissible best approximation with 
parameter in P to f. 

Proof. Let r E RE:i[a, b] have a pole. Let 

L = {x: If(x) - u(r(x))I > K), 

then 

Ilf - 4r)ll 2 I:, ~(f - u(r)) + jL CY. If - dr>l 2 01 [j, I +)I - jL If I]. 

Let N = (x: / r(x)1 >, M} then 

jL I 49 t jLnc M) I 4>I + P jLnM I r I. 

As the integral of I r I over any neighbourhood of the pole is infinite, 
lL I u(r)/ = cc and jif- u(r)!1 = rx). It follows that if ll,f- F(A, *)I1 < co, 
R(A, .) is pole-free, and there is admissible R(B, *) with R(A, x) = R(B, x) for 
x not a zero of Q(A, .). Under Boehm’s convention R(A, .) = R(B, a). 

The hypothesis on P on the theorem is satisfied by P, and P,, n P, . The 
example given previously for PI shows that the theorem does not hold for 
P = PI n P,, . The argument of the theorem cannot be extended to cover all 
transformers CJ, for in the case u(x) = log(x) 

j’ log(l/x)dx = 1“ log(t)d(l/t) = jm (log(t)/t2)dt = [(l/t)(log(t) - l)]; -1 
0 m 1 

and approximations with a pole do not have infinite error. 

APPROXIMATION ON FINITE POINT SETS 

The zero measure property does not hold if X has isolated points of 
positive measure and our previous theory does not apply. In the case X is a 
finite point set we can use an alternative convention to obtain existence. Let X 
be a p point set, say 1, 2 ,..., p then the norm is of the form 

II g II = i w-k(9), 
k=l 

wj > 0. 

We define 

F(A, i) = a(~), P(A, i) # 0, QM i> = 0, 

= f (9, P(A, i) = Q(A, i) = 0, 
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using a convention similar to that of Goldstein [4, pp. 84ff.l. The analog of 
Lemma 2 follows. 

LEMMA 4. If /I Ak II ---f co and 1 o(t)1 - 00 as I t / - cc then there exists 
an integer i, 1 < i < p such that 

If(i) - F(A”, i>l - 03. 

Let P be the set of parameters A satisfying the normalization (1). 

THEOREM. Let T(t) --f co as j t 1 --f co and 0 be a minimum for T. Let 
I a(t)1 -+ 0~) as 1 t 1 -+ co. Let P be a nonempty closed subset of PO or p. There 
exists a best approximation to each boundedfunction on finite X. 

Proof. Let {Ak} C P and (11 f  - F(A”, .)ll} be a decreasing sequence with 
lim p(f) = inf{llf - F(F(A, .)II: A E P>. From Lemma 4 it is seen that (11 Ak Ii} 
is a bounded sequence with accumulation point A E P. By taking a subsequence 
if necessary we can assume that {A”} -+ A. If Q(A, .) vanishes on an integer i 
where P(A, .) does not, {P(Ak, i)/Q(A”, i)} -+ co as k -+ co, hence 
{w&(i) - F(A”, i))} --f co, (11 f  - F(A”, .)Il> ---f 00, contrary to hypothesis. 
Hence if Q(A, i) = 0, P(A, i) = 0 also and F(A, i) = f(i). We have 

wiT(f(i) - F(A, i)) = wi mm 7 < wp(fi - F(Ak, i)), Q(A, i) = 0 

= lj~ w&f(i) - F(A”, i)), QV, 9 f 0 

Combining these we get 

llf - FM *>I1 d &-j llf - Wk, *Ill = p(f). 

OTHER TRANSFORMERS 

There are transformers u of interest which do not satisfy the condition 
1 u(t)1 ---f 00 as I t I + co. One such transformer is u(t) = exp(t). 

THEOREM. Let P, Q have the zero measure property and there exist B with 
Q(B, .) > 0. Let -r(t) --f co us I t I + co. Let u(t) - CO us t -+ 00 and u(t) 
tend to a$nite limit S as t --f - co. Let P be a nonempty closed subset of PO . 
If we add Sz to the family of approximations, a best approximation exists to each 
bounded measurable function. 

Proof. Let jl f  - F(A”, *)I1 be a decreasing sequence with limit p(f). We 
have two possibilities. First, (11 A” II} can be an unbounded sequence, then by 
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taking a subsequence if necessary we can assume that A’ + Z. Define 
Blc = At/,1 A”‘/ then ‘/ B’; I and {B”] has an accumulation point B, 

I’ = 1. Assume without loss of generality that I@) + B. The sequence 
;(:;+, )...) d n,~nJ) is bounded and has an accumulation point C, assume that 
the sequence converges to C. By the normalization ( I ), Q(C, .) me 0. We claim 
that for x not a zero of Q(C, .), P(B, x)/Q(C, x) ’ 0. Suppose not, let 
P(B, x)/Q(C, x) ;-. 0 then there is E .:, 0 and a neighborhood N of x such that 
P(B, v)/Q(C, v) :, E for y E N, hence for all k sufficiently large R(A’>‘, 4‘) 
1; AX’ 1 42 for y E N. It follows that 

inf{ 1 f(y) - a(R(A”, y))l : y E N) + 00, 

hence !jf- R(Ak, *)I1 --f a, giving a contradiction. Hence P(B, .)/Q(C, .) is 
negative almost everywhere and a(R(A”, .)) --f Q almost everywhere. By 
Fatou’s theorem [3, p. 591, ll,f- 52 11 = p(f). The second possibility is that 
{IlA” j} is bounded and that is handled by an earlier theorem. 

In cases of practical interest D may never be best. Let us suppose that the 
range of 0 is (Sz, a) and the family of rationals includes all constant functions. 
Then we would expect the range off to be in (G’, a) and then there exists 
a constant p between 8 and f. If 7 is strictly monotonic on (- co, 0) and 
(0, co), p is a better approximation. 

It appears that we may be able to guarantee the existence of a best 
admissible approximation only in the case of transformed linear approxi- 
mation (m = 1). Consider for example the case where X = [0, 11, 
a(t) = exp(t), and R is a polynomial rational approximating function. The 
approximation F(A, x) = exp(- I/x) is continuous on [0, 11, is the uniform 
limit of a sequence of admissible approximations, and corresponds to no 
admissible approximation. 
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