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Abstract

In this work, the analytical properties of the heat exchanger infinite-dimensional dynamic model are discussed. More
importantly, those of a 2nd-order lumped-parameter model using the logarithmic mean temperature difference (LMTD)
as driving force are derived and shown to agree with those of the former. Three essential aspects are focused: existence
and uniqueness of solutions, equilibrium states, and stability properties. The results developed in this work are intended
to supply a solid support for the reliability on the use of the kind of simple compartmental model that is treated. This is
specially addressed to works where it is not the quantitative solutions but the qualitative behavior that is important, like
modelling and simulation of heat exchanger networks and complex industrial processes where heat exchangers are
involved.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Heat exchangers are widely used in industrial processes such as power plants [1], gas turbines [2], air con-
ditioning [3], refrigeration [4], (domestic, urban, or central) heating [5], and cryogenic systems [6], among
many others. Their universal application has conducted to the research for a better comprehension of their
dynamic behavior, modelling, simulation, identification, and control since the 1940s (with a boom in the
50s and 60s) [7,8]. Nevertheless, given their extremely complex dynamics1 and the increasing demands imposed
to the operation requirements of current industrial processes, they are still the subject of many studies under
the above mentioned frames. However, since they are generally part of a complex system or (heat exchanger)
network, dynamic analysis based on simplifying but acceptable assumptions and/or simple but suitable models
are desirable [10–14].
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The dynamics of heat exchangers is represented in two main ways: through distributed- and lumped-param-

eter models [8,15–17]. Since variations of the states that are concerned take place not only in time but also in
space, distributed-parameter models are those that best fit to the nature of heat exchangers [7]. Such models
are represented by a set of partial differential equations. Since these are in general difficult to analyze, com-
plicated for simulation, and complex for control synthesis, approximations through lumped-parameter models
are generally preferable (at least for such purposes) [14].

Lumped-parameter models have been extensively used for dynamic simulation [16,18–21], control design
[22–25], network modelling [12,15,26,27], or parameter identification [28–30], for instance. They are con-
structed considering the division of the whole exchanger in a finite number of elements (lumps) or cells, per-
mitting its dynamic representation through a set of ordinary differential equations. Such a lumping procedure
generally assumes that every element behaves like a perfectly stirred tank (or well-mixed compartment)
[8,10,11,16,18,26]. Consequently, the fluid temperature is considered to hold throughout each of the cells.
Its spatial distribution at every lump is therefore neglected. Only jumps in its values are considered at points
delimiting the elements (when more than one are considered). As a consequence, a large number of cells is in
general required for an acceptable modelling (approaching the distributed characteristic) [14]. This gives rise to
high order models that complicate the dynamic analysis and control design [21,25]. However, there is a special
low-order model that has been concluded to be—and actually used as—a reliable representation of the dynam-
ics of double-pipe heat exchangers [10,11,22]. But an analytical study supporting such an assertion is still miss-
ing in the literature. This is what constitutes the main motivation of the present work. Our goal is to develop a
formal study that contributes concrete analytical results that justify the above mentioned reliability on the use
of such a special low-order model.
1.1. Review of previous works

Reduction of the lumped-parameter model order with diminutive accuracy loss may be contemplated by
taking into account the temperature distribution at each lump instead of assuming a perfect mix of the fluid.
This idea was explored for instance in [10,11], where a comparative numerical study among three different one-
cell bi-compartmental models (one element per fluid covering the whole tube length) is proposed. Steady-state
characteristics as well as outlet-temperature step and frequency responses (of one of the fluids) to inlet-tem-
perature and flow disturbances (at the other fluid) were compared to those of the distributed dynamics of
counterflow exchangers. Each of the considered compartmental models included two first-order (coupled)
ordinary differential equations, one per compartment (fluid), which is the simplest modelling case. The differ-
ence among them consisted on the respective consideration of a uniform (perfect mix), linear, and exponential
temperature distribution for the selection of the heat exchange driving force expression. For each of those
cases, such a term was respectively expressed in terms of the outlet temperatures difference, the arithmetic

mean temperature difference (AMTD), and the logarithmic mean temperature difference (LMTD). The results
showed that the model using the LMTD as driving force is the one that best approaches the distributed
dynamics, while that assuming perfect mix (uniform distribution) is the worst. Moreover, it is concluded that
a one-cell bi-compartmental (2nd-order) model with LMTD-driving-force keeps the dynamic properties of the
distributed one. The consideration of more than one bi-compartmental cells was though suggested for strin-
gent quantitative modelling requirements.

Lumped-parameter models with LMTD-driving-force have been shown to be appropriate in several other
works. In [19], for instance, such dynamic representations were tested through simulation considering 2–10
compartments. It was concluded that a two-compartment model indeed keeps the qualitative behavior of
the distributed dynamics. The consideration of more than two compartments was though reported to be con-
venient to improve accuracy in steady-state characteristics and achieve sufficient transport time lag. Similar
tests were done and conclusions drawn in [20], where quantitative adjustments from two to five bi-compart-
mental cells were even found to be slight. Superiority of low-order compartmental models using the LMTD as
driving force (compared to those using the AMTD or the outlet temperature difference) was also corroborated
(through similar tests) in [27], where they were concluded to be advantageous for simulation of heat exchanger
networks.
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Lumped-parameter models with LMTD-driving-force have also been considered by Alsop and Edgar in
[22] where a 2nd-order model was used for control synthesis on a counterflow exchanger. The closed-loop
scheme was tested through simulation using a 20 bi-compartmental cell (40th-order) model. Temperature
responses to flow step changes were shown using both (the 2nd- and the 40th-order) models; small differ-
ences were observed among them. It is worth noting that Alsop and Edgar went further in the low-order
modelling by taking the bulk temperature to be the average among the inlet and outlet temperatures at each
fluid (for the accumulation term), instead of just the outlet temperature. Since constant inlet temperatures
were considered, the time derivative of the bulk (average) temperature ended up in half the time derivative
of the outlet one. Consequently, the model used in [22] keeps the same traditional structure of the previous
works but doubles the convective and conduction heat transfer rates (i.e., a 2 appears multiplying every
right-hand-side term of the dynamic equations). This, on the one hand, has no effect in the steady-state val-
ues and, on the other, speeds up the system dynamics improving the response time (getting closer to that of
the distributed-parameter model trajectories).

Based on the above mentioned studies, low-order lumped-parameter models with LMTD-driving-force
have been used by several authors as reliable dynamic representations of heat exchangers. For instance, they
were used in [23] and [24] for control design [31] and [32] for stability limit closed-loop analysis [19] and [20] for
the development of dynamic simulators, and [12] for heat exchanger network modelling and simulation. How-
ever, the fact that such representations keep the dynamic properties of the distributed-parameter models was
concluded in the previous works [10,11,19,20,22,27], from numerical results through simulation. An exhaus-
tive study showing such a fact under an analytical framework is still missing in the literature.

1.2. The contribution of this work

In this work, we aim at filling in the gap that was just mentioned above: under specific assumptions gen-
erally made for the derivation of the heat exchanger infinite-dimensional dynamic equations, analytical proofs
are developed showing that a 2nd-order compartmental model with the LMTD as driving force keeps the
main dynamic properties of the distributed-parameter model it is approached from. Three essential aspects
are focused. First, existence and uniqueness of solutions are shown to be a common characteristic of both
dynamic models. Then, equilibrium solutions of the finite-dimensional dynamics are obtained and shown
to accurately agree with the outlet values of the temperature equilibrium profiles of the distributed model. Fur-
thermore, such equilibrium states are concluded to be exponentially stable and globally attractive on the sys-
tem state-space domain in both dynamic representations. These results formally state the qualitative behavior
of heat exchangers under the stated assumptions. From such a point of view, they further bring to the fore the
exact analogy of the simple compartmental model (considered in this work) with the original distributed
dynamics it is approached from.

Other studies on the dynamic behavior of double-pipe heat exchangers that are found in the literature
propose a different perspective. For instance, frequency analysis through transfer functions were developed
in [33–35]. But such approaches implicitly assume a linear behavior which is suitable only locally. On the
contrary, the analysis developed in this work is based on a non-linear model that captures the whole global
essential phenomena. Other works derived exact (space-time) solutions for special cases [36] or characterized
them via transient response analysis [37]. But these approaches focus on quantitative system responses.
Fundamental properties (like existence and uniqueness of solutions) are bypassed and qualitative aspects
(like equilibrium stability and convergence of solutions) are omitted. This work, on the contrary, focuses
on fundamental and qualitative aspects rather than quantitative ones. In [38], on the other hand, the effect
of data uncertainty on the performance of a concentric tube heat exchanger was studied. But this study was
carried out through stochastic analysis and only considered the steady-state response of the distributed-
parameter model. This work, on the contrary, focuses on the system dynamics studied within a deterministic
model analysis framework. Furthermore, qualitative analyses of heat exchangers may be found in [39–41].
But they are developed within an infinite-dimensional dynamic systems context, since it is the distributed-
parameter model that is analyzed in those works. In this work, on the contrary, it is a simple 2nd-order
compartmental model that is proved to accurately capture the qualitative behavior of the former. This
was intended to be done in [10,11], but such studies were carried out through numerical simulations.
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On the contrary, this work develops the formal proofs within a framework suitable for the qualitative anal-
ysis of dynamic systems.

The work is organized as follows: Section 2 states the notation used throughout the paper. In Section 3, the
distributed-parameter model is presented and its analytical properties are discussed. Section 4 presents the
compartmental model, proves its dynamic properties, and brings to the fore their accurate agreement with
those of the distributed dynamics. Conclusions are given in Section 5.
2. Nomenclature and notation

The following nomenclature is defined for its use throughout this work:
F mass flow rate
Cp specific heat
M total mass inside the tube
t fluid velocity
l total exchanger length
U overall heat transfer coefficient
A heat transfer surface area
T temperature
t time
x position on the exchanger
DT temperature difference
R set of real numbers
Rn set of n-tuples (xj)j=1, . . . , n with xj 2 R

Rþ set of positive real numbers
Rn
þ set of n-tuples (xj)j=1, . . . , n with xj 2 Rþ
Subscripts
c cold
h hot
i inlet
o outlet

Let Th = Th(t,x) and Tc = Tc(t,x), respectively denote the temperature of the hot and cold fluids at time t

and position x 2 [0, l]. Furthermore, let DT1 and DT2 stand for the temperature difference at each terminal side
of the heat exchanger, i.e., (see Figs. 1 and 2)
DT 1 ¼
T hi � T co if counterflow;

T hi � T ci if parallel flow;

�
ð1Þ
Fig. 1. Counterflow heat exchanger.



Fig. 2. Parallel flow heat exchanger.
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and
DT 2 ¼
T ho � T ci if counter flow;

T ho � T co if parallel flow:

(
ð2Þ
Consider the sets B, C, and D with B � C, and a mapping f :C! D. We denote fjB the restriction of f to B, i.e.,
fjB :B! D :y # fjB(y) = f(y), "y 2 B. The boundary of a subset, say B, is represented as oB. Within the dis-
tributed dynamics framework, the system state space will be considered to be the Hilbert space
H ¼L2ð0; lÞ �L2ð0; lÞ (with the standard inner product hf ; gi ¼

R l
0
½f1ðxÞg1ðxÞ þ f2ðxÞg2ðxÞ�dx), where

L2ð0; lÞ denotes the space of continuous functions that are square-integrable on [0, l].
3. The distributed-parameter model

Let us consider the following assumptions:

A1. The fluid temperatures and velocities are radially uniform.
A2. The fluid temperatures and velocities are radially uniform.
A3. The thermophysical properties of the fluids are constant (in time and space).
A4. There is no heat transfer with the surroundings (perfectly insulated external tube).
A5. The heat transfer coefficient is axially uniform and is flow, temperature, and time invariant.
A6. The fluids are incompressible and single phase.
A7. Heat conduction along the flow axis is negligible.
A8. There is no energy storage in the walls.
A9. Inlet temperatures, i.e., Tci and Thi, are constant.

Under Assumptions 1–6, a distributed-parameter dynamic representation of heat exchangers may be
derived (see for instance [7]). With them in mind and the consideration of Assumption 7, such a model is given
by (see for instance [25,41])
oT c

ot
¼ atc

oT c

ox
þ UA

M cCpc

ðT h � T cÞ;

oT h

ot
¼ �th

oT h

ox
� UA

MhCph

ðT h � T cÞ;
ð3Þ
where
a ¼
1 for countercurrent flow;

�1 for parallel flow:

�
ð4Þ
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Furthermore, Assumption 8 guarantees the existence of an equilibrium solution of system (3) (as will be cor-
roborated later in the present section). In vector notation, such a model may be expressed as
oT
ot
¼ A1

oT
ox
þ A2T ; ð5Þ
where
T ¼
T c

T h

� �
; A1 ¼

atc 0

0 �th

� �
; and A2 ¼

� UA
McCpc

UA
McCpc

UA
MhCph

� UA
MhCph

 !
;

or more compactly through the abstract differential equation
_T ¼ A0T ; ð6Þ
where A0 is the unbounded linear operator A0 : DðA0Þ � H ! H : f 7!A0f ¼ A1
df
dx þ A2f with DðA0Þ ¼

ff 2 H j df
dx 2 H , f2(0) = Thi, f1ð1þa

2
lÞ ¼ T cig. Let us note that, letting T * stand for the equilibrium solution

of the system, such that A1
oT �

ox þ A2T � ¼ 0, (due to linearity of A0) the model may be taken to represent the
dynamic behavior of the temperatures of the fluids, or that of their deviation with respect to T *. The former
case is generally considered to get the temperature equilibrium profile of the system (as will be seen later in the
present section). In the latter case, the boundary conditions (inlet temperatures) shall be taken zero in the def-
inition of DðA0Þ, i.e., DðA0Þ ¼ ff 2 H j df

dx 2 H , f2ð0Þ ¼ f1ð1þa
2

lÞ ¼ 0g. Such a way of considering T (i.e., as the

temperature deviation with respect to T *) in the distributed-parameter model is standard in stability analysis
of the system equilibrium profile (see for instance [39–41]). Subsequently, the distributed-parameter model will
be indistinctly referred as (3), (5), or (6).

Existence and uniqueness of solutions: Existence of solutions of the distributed-parameter model is guaran-
teed. This is corroborated through Theorem 91 in [42, Chapter V]. Furthermore, the unbounded linear oper-
ator A0 in (6) is the infinitesimal generator of a C0-semigroup, U(t), on H (this was proved in [40]). Then,
solutions of (6), T :H! H :T0 # T(t), are uniquely defined for each T0 2 H as T(t) = U(t)T0 2 H (see for
instance Theorem 2.1.10 in [43]).

Equilibrium profiles: In equilibrium
oT �

h

ot ¼
oT �c
ot ¼ 0. Then, from (5), the temperature equilibrium profile is

determined by
dT �

dx
¼ �A�1

1 A2T �; ð7Þ
whose unique solution is given in Appendix A.
Stability: Stability of the equilibrium profile is treated in [39–41]. In [39], asymptotic stability is proved

through a Lyapunov functional. Strong stability in the counterflow case is proved in [40] within an infinite-
dimensional linear systems context, while later on, such stability property is proved to be exponential in [41].
4. The lumped-parameter model

Application of the lumping procedure to the distributed dynamics, considering the whole exchanger as a
unique bi-compartmental cell, results in a 2nd order lumped-parameter model given by (see for instance
[10,11,22])
_T co ¼
a

M c

F cðT ci � T coÞ þ
UA
Cpc

DT ðT co; T hoÞ
� �

;

_T ho ¼
a

Mh

F hðT hi � T hoÞ �
UA
Cph

DT ðT co; T hoÞ
� �

;

ð8Þ
where a = 1 if the bulk temperature is taken to be that at the outlet of the tube, as in [10,11], or a = 2 if it is
approached as the average of those at the inlet and outlet, as in [22]. DT(Æ, Æ) is the mean temperature difference
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throughout the exchanger, modelled in this work through the LMTD. It is actually this term that shall be ad-
justed for (8) to express the lumped dynamics of the countercurrent or the parallel flow exchanger. The typical
expression is given as (see for instance [44–47])
DT ¼ DT ‘,
DT 2 � DT 1

ln DT 2

DT 1

;

with DT1 and DT2 as defined in (1) and (2), which may be rewritten as
DT ‘ ¼
T ho � T hi þ aðT co � T ciÞ

ln DT 2

DT 1

; ð9Þ
(see (4)). It is worth noting that this expression reduces to an indeterminate form when DT1 = DT2, which is
specially problematic in the counterflow case. However, taking
DT ¼ DT L,
DT ‘ if DT 2 6¼ DT 1;

DT 0 if DT 2 ¼ DT 1 ¼ DT 0;

�
ð10Þ
results in a well-defined continuously differentiable LMTD for every positive DT1 and DT2 (see [48]). This and
other useful analytical properties of DTL in (10) are proved in Appendix B.

Subsequently, system (8) will be generically represented as _T o ¼ f ðT oÞ, with To = (To1,To2)T
, (Tco, Tho)T

and
f ðT oÞ ¼
f1ðT oÞ
f2ðT oÞ

� �
,

a
Mc
½F cðT ci � T coÞ þ UA

Cpc
DT ðT co; T hoÞ�

a
Mh

F hðT hi � T hoÞ � UA
Cph

DT ðT co; T hoÞ
h i

0
@

1
A: ð11Þ
Let us note that by using (10), the right-hand-side expressions in (8) are continuously differentiable on the sys-
tem state-space domain
D ¼ fT o 2 R2 j T ci < T oj < T hi; j ¼ 1; 2g if a ¼ 1;

fT o 2 R2 j T ci < T o1 < T o2 < T hig if a ¼ �1:

(

A reasoning underlying such a definition of D is furnished in [49, Section 3.2]. Its sense will appear clear from
the analysis developed in the following subsection.
4.1. Existence and uniqueness of solutions

We now prove that for every T oð0Þ ¼ T 0
o 2 D, system (8) has a unique solution T oðt; T 0

oÞ 2 D, "t P 0. Since
the right-hand-side expressions of (8) are continuously differentiable on the system state-space domain, and D

is a bounded set (implying compactness of its closure) contained in R2
þ, a sufficient condition to guarantee glo-

bal existence and uniqueness of solutions on D is that D be positively invariant with respect to (8) (see for
instance [50, Theorem 2.4]). To prove that such is the case, let us define L1,fT o 2 R2jT co ¼ T hi P
T ho P T cig, L2,fT o 2 R2 j T ho ¼ T ci 6 T co 6 T hig, L3,fT o 2 R2 j T co ¼ T ci < T ho 6 T hig, L4,fT o 2
R2 j T ho ¼ T hi > T co P T cig, and L5,fT o 2 R2 j T ci 6 T co ¼ T ho 6 T hig. Notice that oD ¼

S9�a
2

j¼2�aLj. Further-

more, considering the analytical properties of DT = DTL stated in Appendix B (see specifically Lemma 2 and
Remark 3), let us note that f1ðT ci; T hoÞ ¼ aUA

McCpc
DT ðT ci; T hoÞ > 0, "To 2 L3, and f2ðT co; T hiÞ ¼ � aUA

MhCph
DT

ðT co; T hiÞ < 0, "To 2 L4, for both configuration cases; f1ðT hi; T hoÞ ¼ aF c

Mc
ðT ci � T hiÞ < 0, "To 2 L1, and

f2ðT co; T ciÞ ¼ aF h

Mh
ðT hi � T ciÞ > 0, "To 2 L2, for the counterflow case; and f1ðT ho; T hoÞ ¼ � aF c

Mc
ðT ci � T hoÞ < 0

and f2ðT ho; T hoÞ ¼ aF h

Mh
ðT hi � T hoÞ > 0, "To 2 L5, for the parallel flow case. This shows that at any T o 2 oD,

the vector field f(To) points inwards D; see Figs. 3 and 4. Consequently, oD is unreachable by any orbit of
(8) with initial conditions in D, concluding that T 0

o 2 D) T oðt; T 0
oÞ 2 D, "t P 0.



Fig. 3. Direction of f on oD: a = 1.

Fig. 4. Direction of f on oD: a = �1.
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4.2. Equilibrium solutions

Let Q represent the set of equilibrium points of (8), i.e., Q,fT o 2 D j f1ðT oÞ ¼ f2ðT oÞ ¼ 0g. Notice that
McCpc

a f1ðT oÞ þ MhCph

a f2ðT oÞ ¼ F cCpcðT ci � T coÞ þ F hCphðT hi � T hoÞ (see (11)). Therefore, Q � fðT co; T hoÞ 2
D j F cCpcðT ci � T coÞ þ F hCphðT hi � T hoÞ ¼ 0g, that is, every equilibrium point of (8), T �o, satisfies
ðT �ho � T hiÞ ¼ �RðT �co � T ciÞ; ð12Þ

with R ¼ F cCpc

F hCph
(as defined in Appendix A). Then, 8T �o 2 Q
M cCpc

a
f1ðT �oÞ ¼ F cCpc � UA

a� R

ln DT 2

DT 1

" #
ðT ci � T �coÞ ¼ 0; ð13Þ
(where (9) has been used) if a � R 5 0 (i.e., for parallel flow with any R > 0 or counterflow with R 5 1), and
M cCpc

a
f1ðT �oÞ ¼ F cCpcðT ci � T �coÞ þ UAðT hi � T �coÞ ¼ 0; ð14Þ
if a = R = 1 (i.e., for counterflow with R = 1; notice that in this case, from (12), we have T �ho � T ci ¼ T hi � T �co,
i.e., DT �2 ¼ DT �1, implying, according to (10), that DT ðT �co; T

�
hoÞ ¼ T hi � T �co ¼ T �ho � T ci). Eq. (13) is satisfied on

D if and only if the term within the brackets is zero. Consequently, for a � R 5 0, we have
F cCpc � UA
a� R

ln
DT �2
DT �1

¼ 0 () ln
DT �2
DT �1
¼ a

UA
F cCpc

� UA
F hCph

;
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where from we get
DT �2 ¼ e
UA a

F cCpc
� 1

F hCph

� �
DT �1: ð15Þ
The unique solution of the system of Eqs. (12), (14), and (15) is given by (A.2) (see Appendix A). Following

a similar procedure, the consideration of
MhCph

a f2ðT �oÞ ¼ 0 leads to the same result. Consequently, Q ¼ fT �og,
with T �o ¼ ðT �co; T

�
hoÞ

T as in (A.2). Finally, it is not hard to verify that whatever (positive) value R takes, P
and RP in (A.2) satisfy 0 < P < 1 and 0 < RP < 1, "a 2 {� 1,1}, and (additionally) P + RP < 1 if a = �1.
Therefore, T ci < T �co < T pi and T ci < T �ho < T pi (see (A.2)) for both flow configurations, and (additionally)
T �co < T �co þ ð1� P � RP ÞðT hi � T ciÞ ¼ T �ho in the parallel flow case, showing that T �o 2 D.

Remark 1. From the equilibrium profile Eq. (A.1), one sees that T hðlÞ ¼ T �ho and T cð1�a
2 lÞ ¼ T �co. Therefore,

system (8) with DT as in (10) gives output temperature equilibrium values that accurately correspond to those
gotten through the distributed-parameter model in steady state. This is essential since other simple models—
like those using the AMTD (see equation (B.2) in Appendix B) as driving force, or the output temperature
difference, i.e., DT = Tho � Tco, for instance—may have analytical/dynamical properties that are similar,
analog, or equivalent to those of the infinite-dimensional model, (3), but could hardly be able to accurately
reproduce the static solutions of the outlet temperatures as (8)–(10) does.
4.3. Stability

We now prove that the unique equilibrium point of system (8), T �o in (A.2), is asymptotically stable
and globally attractive on D. To prove its asymptotic stability, let us consider the Jacobian matrix of f, i.e.,
of
oT o

¼

of1

oT co

of1

oT ho

of2

oT co

of2

oT ho

0
BB@

1
CCA;
with
of1

oT co

¼ � aF c

M c

þ aUA
M cCpc

oDT
oT co

;

of1

oT ho

¼ aUA
M cCpc

oDT
oT ho

;

of2

oT co

¼ � aUA
MhCph

oDT
oT co

;

and
of2

oT ho

¼ � aF h

Mh

� aUA
MhCph

oDT
oT ho

:

Its characteristic polynomial is given by P(k) = k2 + b(To)k + c(To), where
bðT oÞ ¼ �
of1

oT co

� of2

oT ho

¼ aF c

M c

� aUA
M cCpc

oDT
oT co

þ aF h

Mh

þ aUA
MhCph

oDT
oT ho

; ð16Þ
and
cðT oÞ ¼
of1

oT co

of2

oT ho

� of1

oT ho

of2

oT co

¼ 4F cF h

M cMh

� 4F hUA
M cMhCpc

oDT
oT co

þ 4F cUA
M cMhCph

oDT
oT ho

: ð17Þ
Notice that from the analytical properties of DT in (10) (see specifically Lemma 3 in Appendix B), we have that
oDT
oT ho

> 0 and oDT
oT co

< 0, 8ðT co; T hoÞ 2 D. Consequently, b(To) > 0 and c(To) > 0, 8T o 2 D (see (16) and (17)).
Therefore, at any point on D, both roots of P(k) have negative real part implying that of

oT o
is Hurwitz at

all T o 2 D. This proves that the unique equilibrium point, T �o, is asymptotically stable. To prove its global
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attractivity on D, let us first note that since of1

oT co
þ of2

oT ho
¼ �bðT oÞ < 0; 8ðT co; T hoÞ 2 D, limit cycles are excluded

from D (according to Bendixson’s criterion; see for instance [50, Theorem 7.2]). Furthermore, from the asymp-
totical stability of T �o, homoclinic orbits are excluded from D too (see for instance [51, Section 1.8]). Now, from
boundedness of D and its positive invariance with respect to the system dynamics (according to the analysis
developed in Subsection 4.1 above), every solution of (8) has a nonempty, compact, and invariant positive limit

set, C+, and T oðt; T 0
oÞ ! Cþas t!1, 8T 0

o 2 D (see for instance [50, Lemma 3.1]). Then, since limit cycles and
homoclinic orbits are excluded in D, we conclude that the unique equilibrium point, T �o, is the only point con-
tained in C+ for every solution of (8). Consequently, limt!1T oðt; T 0

oÞ ¼ T �o, 8T 0
o 2 D, showing the global attr-

activity of T �o on D.

Remark 2. From (B.4) and (B.3) in Lemma 1 (see Appendix B), it is not hard to see that DT in (10) is infinitely
differentiable on D. Then, of

oT o
is bounded and Lipschitz on the closure of Br ¼ fT o 2 R2 j kT o � T �ok2 < rg,

and hence on Br, for any r > 0 such that Br � D. Then, the asymptotic stability of To is actually exponential
(see for instance [50, Theorem 3.13]), which agrees with the stability results exposed in Section 3 for the
equilibrium profile of the distributed-parameter model.
5. Conclusions

In this work, the analytical properties of a heat exchanger 2nd-order lumped-parameter dynamic model
using the LMTD as driving force, were derived and shown to coincide with those of the distributed-parameter
model it is approached from. Three essential aspects were focused. First, existence and uniqueness of solutions
were shown to be a common characteristic of both dynamic models. Then, equilibrium solutions of the finite-
dimensional dynamics were obtained and shown to accurately agree with the outlet values of the temperature
equilibrium profiles of the distributed model; this actually proves to be an essential aspect since other simple
models may have analytical/dynamical properties that are similar, analog, or equivalent to those of the infi-
nite-dimensional model, but could hardly be able to accurately reproduce the static solutions of the outlet tem-
peratures. Furthermore, such equilibrium states were concluded to be exponentially stable and globally
attractive on the system state-space domain in both dynamic representations.

The results developed in the present work permit one to conclude that, under the considered assumptions
(commonly taken for the derivation of the heat exchanger infinite-dimensional dynamic equations), 2nd-order
lumped-parameter models with LMTD-driving-force are reliable dynamic representations for heat exchang-
ers. This is specially important in cases where it is not the quantitative solutions but the qualitative behavior
that is important, like modelling and simulation of heat exchanger networks and complex industrial processes
where heat exchangers are involved.
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Appendix A. Equilibrium profiles

The solution of (7) is given by
T �ðxÞ ¼
T �cðxÞ
T �hðxÞ

� �
¼

T �co

T �ho

� �
þ ðT hi � T ciÞ

gcðxÞ
ghðxÞ

� �
; ðA:1Þ
where 8
gcðxÞ ¼

S � Sx=l

1þ R
if a ¼ �1;

S � Sð1�x=lÞ

1� RS
if a ¼ 1;R 6¼ 1;

� Px
l

if a ¼ 1;R ¼ 1;

>>>>>><
>>>>>>:
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ghðxÞ ¼

�RðS � Sx=lÞ
1þ R

if a ¼ �1;

Rð1� Sð1�x=lÞÞ
1� RS

if a ¼ 1;R 6¼ 1;

P 1� x
l

	 

if a ¼ 1;R ¼ 1;

8>>>>>><
>>>>>>:
and
T �co

T �ho

� �
¼

1� P P

RP 1� RP

� �
T ci

T hi

� �
; ðA:2Þ
with R ¼ F cCpc

F hCph
,

P ¼

1� S
1þ R

if a ¼ �1;

1� S
1� RS

if a ¼ 1;R 6¼ 1;

UA
UAþ F cCpc

if a ¼ 1;R ¼ 1;

8>>>>>>><
>>>>>>>:
and S ¼ e
UA a

F hCph
� 1

F cCpc

� �
. In the counterflow case, algebraic manipulations were done to express the solution

T*(x;Tco,Thi) as T*(x;Tci,Thi).

Appendix B. Analytical properties of the LMTD

Throughout the following developments, the mean temperature difference is considered a bivariable func-
tion, whether the logarithmic model in (10),
DT LðDT 1;DT 2Þ ¼
DT 2�DT 1

ln
DT 2
DT 1

if DT 2 6¼ DT 1;

DT 0 if DT 2 ¼ DT 1 ¼ DT 0;

(
ðB:1Þ
[48], or the arithmetic one, (see for instance [44])
DT aðDT 1;DT 2Þ ¼
DT 1 þ DT 2

2
; ðB:2Þ
is referred. In order for this work to be self-contained, some useful analytical properties of DTL in (B.1), that
were derived in [48], are proved in this Appendix. We begin by stating a useful equivalent expression.

Lemma 1 [48, Lemma 1]. Let
LðDT 1;DT 2Þ,1þ
X1
i¼1

1

2iþ 1

DT 2 � DT 1

DT 2 þ DT 1

� �2i

; ðB:3Þ
for all (DT1,DT2) such that DT1 + DT2 5 0. Then
DT LðDT 1;DT 2Þ �
DT aðDT 1;DT 2Þ

LðDT 1;DT 2Þ
; ðB:4Þ
8ðDT 1;DT 2Þ 2 R2
þ.
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Proof. We divide the proof in two parts:

(1) DT1 5 DT2. From Formula 4.1.27 in2 [52], we have
2 Fo
2
P1

i¼0
3 In

an P d
ln
DT 2

DT 1

¼ 2
X1
i¼0

1

2iþ 1

DT 2 � DT 1

DT 2 þ DT 1

� �2iþ1

;

8ðDT 1;DT 2Þ 2 R2
þ. Then, for all ðDT 1;DT 2Þ 2 R2

þ such that DT1 5 DT2, we get
DT 2 � DT 1

ln DT 2

DT 1

¼ DT 2 � DT 1

2
P1

i¼0
1

2iþ1
DT 2�DT 1

DT 2þDT 1

� �2iþ1
¼ DT 2 � DT 1

2 DT 2�DT 1

DT 2þDT 1

� �
1þ

P1
i¼1

1
2iþ1

DT 2�DT 1

DT 2þDT 1

� �2i
� � ¼ DT 1þDT 2

2

1þ
P1

i¼1
1

2iþ1
DT 2�DT 1

DT 2þDT 1

� �2i

¼ DT aðDT 1;DT 2Þ
LðDT 1;DT 2Þ

ðfrom ðB:2Þ and ðB:3ÞÞ;
(2) DT1 = DT2. Notice from (B.3) and (B.2) that L(DT0,DT0) = 1 and DTa(DT0,DT0) = DT0, "DT0 5 0.
Then, for DT1 = DT2 = DT0 > 0, we have DT aðDT 0;DT 0Þ

LðDT 0;DT 0Þ ¼ DT 0 ¼ DT LðDT 0;DT 0Þ. h

Remark 3. Let us note that the quotient function DT a
L ðDT 1;DT 2Þ ¼ DT aðDT 1;DT 2Þ

LðDT 1;DT 2Þ
is defined on a subset wider than

the domain of DTL. Actually, DT a
L : fðDT 1;DT 2Þ 2 R2 j DT 1 þ DT 2 6¼ 0g ! R. Then DT a

L is an extension of DTL

(actually Lemma 1 can be synthesized as: DT L � DT a
L jR2

þ
). Therefore, DT a

L may be used to extrapolate DTL to
points on R2 where the latter is not defined. This is helpful for analysis purposes. For example, one sees from

(B.3) that LjoR2
þ
¼
P1

i¼0
1

2iþ1
, and since 1

2iþ1
> 1

2ðiþ1Þ, "i P 0, then
P1

i¼0
1

2iþ1
is divergent according to Theorems

3.28 and 3.25 in3 [53]. Therefore DT aðDT 1;DT 2Þ
LðDT 1;DT 2Þ

! 0 as ðDT 1;DT 2Þ ! oR2
þ which, from Lemma 1, implies that

DTL(DT1,DT2)! 0 as (DT1,DT2) approaches oR2
þ (from the interior of R2

þ). Then, zero can be considered
the value that the LMTD (as a bivariable function) takes at any point on oR2

þ. This is useful in the analysis
developed in Section 4.1 of the present work.

Lemma 2 [48, Lemma 2]. The LMTD model in (B.1) is continuously differentiable and positive on R2
þ.

Proof. Since LðDT 1;DT 2ÞP 1; 8ðDT 1;DT 2Þ 2 R2
þ (see (B.3)), one sees from (B.4) that DTL exists and is con-

tinuous on R2
þ. Moreover, from (B.4), we have
oDT L

oDT i

¼
L
2
� DT a

oL
oDT i

L2
; ðB:5Þ
i = 1,2, where the arguments have been dropped for the sake of simplicity, and from (B.3), one sees that oL
oDT i
¼P1

i¼1
2i

2iþ1
S2i�1 oS

oDT i
, with S ¼ DT 2�DT 1

DT 2þDT 1
and oS

oDT i
¼ ð�1Þi2DT 3�i

ðDT 1þDT 2Þ2
. From these expressions, one observes that oDT L

oDT i
, i = 1,2,

exist and are continuous on R2
þ, proving continuous differentiability. On the other hand, notice (from (B.2))

that DTa(DT1,DT2) > 0, 8ðDT 1;DT 2Þ 2 R2
þ (the average of two positive numbers is positive). From this and the

fact that L(DT1,DT2) P 1 on R2
þ, we have 0 < DT aðDT 1;DT 2Þ

LðDT 1;DT 2Þ
6 DT aðDT 1;DT 2Þ,8ðDT 1;DT 2Þ 2 R2

þ. Then, from
Lemma 1, positivity of DTL follows too. h

Lemma 3 [48, Lemma 3]. The LMTD model in (B.1) is strictly increasing in its arguments, i.e., oDT L
oDT i

> 0, i = 1,2,
8ðDT 1;DT 2Þ 2 R2

þ.
rmula 4.1.27 in [52] states the following well-known (infinite) series expansion of the logarithmic function: ln z ¼
1

2iþ1 ðz�1
zþ1 Þ

2iþ1; 8z : RðzÞP 0; z 6¼ 0.
[53], Theorem 3.28 states that

P1
n¼1

1
np converges if p > 1 and diverges if p 6 1, while point (b) of Theorem 3.25 states that if

n P 0 for n P N0 (for some N0), and if
P1

n¼1dn diverges, then
P1

n¼1an diverges.
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Proof. From (B.1) (for DT2 5 DT1) and (B.5) (for DT2 = DT1), we have
4 Fo
ln y <
oDT L

oDT i

¼

ð�1Þi ln
DT 2

DT 1

� DT 2 � DT 1

DT i

� �

ln
DT 2

DT 1

� �2
if DT 2 6¼ DT 1;

1

2
if DT 2 ¼ DT 1;

8>>>>>>><
>>>>>>>:

ðB:6Þ
i = 1,2, existing and being continuous on R2
þ according to Lemma 2. Notice from (B.6) that the proof of the

lemma amounts to demonstrate positivity of ð�1Þi½ln DT 2

DT 1
� DT 2�DT 1

DT i
�, i = 1,2, for all ðDT 1;DT 2Þ 2 R2

þ such that

DT1 5 DT2. Then, from Formula 4.1.33 in4 [52], we have, for all such (DT1,DT2): DT 2�DT 1

DT 2
<

ln DT 2

DT 1
< DT 2�DT 1

DT 1
() ð�1Þi ln DT 2

DT 1
� DT 2�DT 1

DT i

h i
> 0, i = 1,2, proving the lemma. h
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