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Abstract 

Two imbeddings of a graph G are considered to be adjacent if the second can be obtained 
from the first by moving one or both ends of a single edge within its or their respective rotations. 
Thus, a collection of imbeddings S of G, called a ‘system’, may be represented as a ‘stratified 
graph’, and denoted SG; the focus here is the case in which S is the collection of all orientable 
imbeddings. The induced subgraph of SG on the set of imbeddings into the surface of genus k is 
called the ‘kth stratum’, and the cardinality of that set of imbeddings is called the ‘stratum size’; 
one may observe that the sequence of stratum sizes is precisely the genus distribution for the 
graph G. It is known that the genus distribution is not a complete invariant, even when the 
category of graphs is restricted to be simplicial and 3-connected. However, it is proved herein 
that the link of each point - that is, the subgraph induced by its neighbors - of SG is 
a complete isomorphism invariant for the category of graphs whose minimum valence is at least 
three. This supports the plausibility of a probabilistic approach to graph isomorphism testing 
by sampling higher-order imbedding distribution data. A detailed structural analysis of 
stratified graphs is presented. 

1. Introduction 

The set of imbeddings of a graph G admits a natural concept of adjacency between 
imbeddings. We thereby obtain a graded ‘edge-colored’ graph, denoted SG, that we 
call the ‘stratified graph’ for G. A few preliminaries and the formal definition of SG 
appear in this section, shortly below. 

The stratified graph SG is very much larger than G itself. Indeed, each point of SG 
typically has more neighbors than G has vertices. Some of the structure of such 
a neighborhood is described by Cayley graphs we call ‘circular arrangement graphs’, 
which we examine in Section 2. In Section 3, we study the general structure of the 
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neighborhood of any point in SC, with particular attention paid to cliques. In 
Section 4, we show how to reconstruct a graph from a neighborhood of any point in 
the colored stratified graph, thereby establishing the colored stratified graph as 
a complete invariant of isomorphism type over the category of all graphs of minimum 
valence at least 3. The uncolored stratified graph is considered in Section 5 and related 
to the medial graph of an imbedding. The cubic case is analyzed completely and is 
shown to provide a large supply of constant link (Zykov-regular) graphs. 

Beyond the inherent topological interest in the formulation of this nonsuperficial 
complete invariant for isomorphism type, one might well wonder about the usefulness 
of something so large in isomorphism testing. In Section 6 we illustrate how two 
graphs might be ‘nearly isomorphic’, yet distinguishable by accessible properties of 
their stratified graphs. 

Throughout this paper a graph is ‘simplicial’, that is it has no multiple adjacencies 
or self-adjacencies. It is taken to be connected, unless one can readily infer otherwise 
from the immediate context. 

The closed orientable surface of genus j is denoted by Sj. By an imhedding we mean 
a cellular imbedding of a (labeled) graph into a closed orientable surface. Some authors 
call this a ‘labeled’ imbedding. In general, the methods described here are readily 
adaptable to the non-orientable surfaces and to the collection of all closed surfaces. 

In the present exposition, it is assumed that the reader is familiar with the 
fundamentals of topological graph theory, as described by Gross and Tucker [lS], 
or - with minor terminological differences - by White [32]. 

We regard two imbeddings as udjacent if one can be obtained from the other either 
by moving an edge-end in the rotation at its vertex to somewhere else in that rotation, 
or by moving both ends of the same edge within their respective rotations. With this 
definition of adjacency, the set of all imbeddings of a graph G forms itself a graph, 
which we denote SC and call the stratified gruph of G. For clarity, we refer to ‘vertices’ 
and ‘edges’ in G, and to ‘points’ and ‘lines’ in SC. Each point (imbedding of G) in SC is 
labeled by the genus of the corresponding imbedding surface. We think of the 
point-labels as altitudes. The two kinds of imbedding-adjacency (i.e., one edge-end or 
both) are called VM-lines and EM-lines, for ‘vertex modification’ and ‘edge modifica- 
tion’, respectively. 

The induced subgraph of SC on all points labeled j (all imbeddings of G of genus j) is 
called the jth strutum of SC and is denoted SjG. Lines of SC that lie within a single 
stratum of G are called level lines. All other lines of SC run between consecutive strata 
and are called transverse lines (or transversals). 

The size of the jth stratum is denoted gj(G), or simply gj, if there is only one graph 
whose imbeddings are under consideration. Thus, the sequence 

of stratum sizes is just the genus distribution for the graph G. Conversely, we observe 
that the problem of describing the structure of the stratified graph SC is precisely 
a refinement of the problem of calculating the genus distribution of G. 
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Thus, stratified graphs are a proper member of the hierarchy of graph invariants 
that correspond to distributional information about the entire system of cellular 
embeddings of a graph, described by Gross and Furst [ 111. There are already several 
calculations of formulas for genus distribution, region-size distribution, and other 
invariants at the low end of that hierarchy. 

The first such calculation for any infinite classes of graphs is the result of Furst et al. 
[lo] establishing the genus distributions of closed-end ladders and of ‘cobblestone 
paths’, which they prove to be strongly unimodal. Stahl [25,28] substantially general- 
izes these results to ‘linear families’ of graphs. Stahl [24,26] derives asymptotic 
estimates of the genus distribution of bouquets and then generalizes his approach to 
show how certain small-diameter graphs have Stirling-like genus distributions, and 
are therefore strongly unimodal. 

Gross et al. [14] derive the genus distributions of bouquets, by using a formula of 
Jackson [16] concerning representations of the symmetric group. 

Rieper’s [21] thesis includes a computation of the region-size distributions for 
bouquets and several other significant results, based on enumerative methods of 
Redfield [20]. Mull et al. [19] enumerate the congruence classes of imbedding 
distributions of wheels and of complete graphs. Kwak and Lee [ 171 extend and refine 
these results by using subgroups of automorphisms in the congruence relation. 

Gross and Furst [l l] also initiate the study of the average genus of an individual 
graph, which is continued by Gross et al. [12]. Earlier work of Stahl [23] considers 
the average genus of graph imbeddings taken over a class of graphs. Stahl [27] 
provides a general upper bound for average genus. Chen et al. [S] calculate a general 
lower bound for average genus. Stahl [30] calculates bounds for the case of an 
amalgamated graph. Stahl [29] explores the average genus of random graphs. Chen 
and Gross [7] obtain forbidden subgraph results for average genus. 

2. On circular arrangement graphs and the VM-structure of SC 

Two cyclic permutations of d symbols are considered to be udjacent if one can be 
transformed into the other by moving a single symbol. For instance, if we move the 
symbol i within the ‘standard d-cycle’ 

C = (1 2...d) 

to a new location preceding the symbol j, then we obtain the adjacent d-cycle 

(1 . ..i- 1 i+ l...j- 1 ij...d) ifi<j 
or 

(l...j- 1 ij...i- 1 i+ l...d ifi>j. 

Under this notion of adjacency, the collection of d-cycles form what we call the 
circular arrangement graph on d symbols and denote by CAd. 
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Circular arrangement graphs are highly symmetric; they are a form of Cayley 
graph. Given a group A and a generating set X, we recall that the (right) Cayley graph 
for A and X has the elements of A as its vertex set, and that for every a E A and for 
every x E X there is an edge from a to ax. It follows that if some generator and its 
inverse are both in X, then there are two edges adjoining various pairs of vertices. Let 
us call the result of collapsing all such edge pairs onto single edges a reduced Cayley 
graph. 

Left multiplication by A on the vertices of a reduced Cayley graph G yields 
a subgroup of the automorphism group of G. This subgroup acts transitively and 
without fixed points of the vertex set. Conversely, as Sabidussi [22] demonstrated, if 
a group acts transitively and without fixed vertices on graph, then that graph is 
a reduced Cayley graph for the group. 

Theorem 2.1. Let G be the reduced Cayley graph for the full symmetric group ‘& 1, 
using as a generating set the union of the collection of all cycles of consecutive 
integers - that is, cycles of the form (i i + 1 . . . j - 1 j), where 1 < i < j < d - and the 
collection of all powers of (12...d - 1). Then the circular arrangement graph CA,, is 
isomorphic to G. 

Proof. To establish a bijection /? from the vertex set of CAI to the membership set of 
Ed_ 1, let us first represent each d-cycle C as a row in which the symbol d appears last. 
For instance, the cycle (4 3 5 2 1) is represented as 2 14 3 5. The image B(C) E Ca_ 1 is 
obtained by regarding the row representation of C as a rearrangement of the symbols 
1 , . . . ,d - 1. For instance, the row 2 14 3 5 corresponds to (12) (3 4) in x4. Thus, 
/?(4 3 5 2 1) = (12) (3 4). It is routine permutation algebra to verify that the vertex 
function b is a bijection. 

Now suppose that an adjacency between two d-cycles C1, C2 E CAI arises from 
moving symbol i, where i < d. Then their representations as rows would be identical, if 
the symbol i were deleted from both. We may assume that the symbol i occurs in 
locations j and k in the row representations of Ci and Cz, respectively, with j < k. 
Then /ZI(C,) 0 (jj + l... k) = f?(C,), which implies that this form of adjacency in CAI 
corresponds to an adjacency in G. Alternatively, if the adjacency between Ci and 
C, arises from moving the symbol d exactly k places forward in C1, then 
/?(C,) 0 (12 . ..d - l)k = fi(C,). It is clear that this correspondence of edges is also 
invertible. 0 

The spanning subgraph of SG containing only the VM-lines is called the 
VM-subgraph. The proof (omitted) of the following structure theorem is an exercise in 
definitions. 

Theorem 2.2. Let G be a graph with valence sequence dI , . . . , d,. Then the VM-subgraph 
of SG is isomorphic (as a graph, neglecting altitude labels) to the Cartesian product of 
n circular arrangement graphs on dI , dz, . . . , d, symbols, respectively. 
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Theorem 2.2 raises the recognition problem for stratified graphs: which labelings of 
Cartesian products of circular arrangement graphs are realizable as VM-subgraphs of 
stratified graphs? Since CA3 is just the complete graph Kz on two vertices, the case of 
3-regular graphs is of particular interest: which labelings of the n-cube Qn are 
isomorphic to the VM-subgraph of the stratified graph for a 3-regular graph? 

3. Links of points in the stratified graph 

If u is a vertex of a graph G, then the link of v is the subgraph of G induced by the set 
of all vertices adjacent to v (this does not include u itself). Given a point p in the 
stratified graph SC, let TL@) and VL( p) d enote, respectively, the link of p in SG, and 
the link of p in the VM-subgraph of SG. Call TL(p) the total link of p and VL(p) the 
VM-link of p. The purpose of Sections 4 and 5 of this paper is to show how to 
reconstruct an underlying graph G from the total link TL(p) of any point in the 
stratified graph SC. In order to do this, we must understand the adjacency structure of 

VP). 
If two points of TL(p) are obtained from p by moving one or both the ends of the 

same edge e, then those two points are adjacent to each other, again by moving ends of 
the edge e. Call such an adjacency or such a line in TL(p) standard. The structure of 
TL(p) would be reasonably easy to describe if all lines in TL(p) were standard: each 
edge e in G gives rise to a clique of points in TL(p) corresponding to all embeddings 
q which agree with p except for the placement of the end of edge e. Call such a clique 
an edge-clique. Every point in TL(p) is in some edge-clique. 

Two edge cliques in TL(p) share a point q if and only if the two edges el and e2 that 
generate those cliques are consecutive at some vertex u in the imbedding p (that is, 
e2 immediately follows el in the rotation at vertex u or vice versa), and q is obtained 
from p by switching el and e2 at vertex u. Call q a switch point. 

The existence of extra adjacencies is a complicating factor. For example, suppose 
that p, q, and r are imbeddings which agree at every vertex except vertex u, where the 
rotations are 

(P) u* . ..eoe1e2e3e4... 

(q) u. . . . eoe2e3e1e4... 

(r) u. . . . eoe3ele2e4... . 

Then q and r are both in TL(p), the former by moving el and the latter by moving e3. 
However, q and r are also adjacent to each other by moving e2. This is not a standard 
adjacency in TL(p). Call it a tricluw (extra) adjacency. 

Suppose instead that G has edges uu, uw and wu, and that in the embedding p the 
edges uu and uw are consecutive at vertex u, that VW and wu are consecutive at vertex w, 
and that wu and uu are consecutive at u; call such a 3-cycle in the imbedding 
p a consecutive tricycle. Let q. be the imbedding obtained from p by switching edges uu 
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and VW at vertex v and by switching edges VW and wu at vertex w. Thus q, is obtained 
from p by moving edge VW. Define q, and q, similarly. Then yU and q, agree at vertex 
w but differ at vertices u and u. Thus yU and q, are adjacent by moving the edge IJU. This 
is an extra adjacency in TLtp). These are also extra adjacencies between y. and q, and 
between y,,, and q,. Call these tricycle (extra) adjacencies. 

The following theorem shows that the two types of extra adjacencies just described 
are the only extra adjacencies in TL(p). To help in the analysis, let us call a point in 
TL(p) a VM-point if it VM-adjacent to p and an EM-point otherwise. 

Theorem 3.1. Every extra adjacency in TL(p) is either triclaw or tricycle. 

Proof. Let q and r be adjacent points in TL(p). Since they are in TL(p), the number of 
vertices at G at which either differs from p is at most two. 

First, suppose that y and rare both VM-points of TLtp). If they differ from p at two 
different vertices, u and v respectively, then the only way they can be adjacent is if they 
are obtained by moving opposite ends of an edge adjoining u and u; that is, they would 
be standardly adjacent in TL(p). Therefore, assume that y and r differ from p at the 
same vertex u. Let el and e3 be the respective edges by whole respective u-endmotions 
in p the imbeddings q and r are obtained. It follows that y and r are adjacent by 
moving the v-end of some edge e2. We assume that ez # e, or e3 , since otherwise, 
q and r would be standardly adjacent. 

If the edge e2 were deleted, then the imbeddings q and r would be identical, and they 
would agree with p for the placement of the v-ends of the edges e, and e3. It follows 
that the v-ends of the edges e, and e3 are consecutive at vertex v in p, say in the order 
el e3, and that they are consecutive at vertex v in y and r, but in opposite order e3e1. 
Now consider the placement of edge e2 at vertex v in p. If the order is e, e2e3 in p, it 
must be e2e3el in q since only e, moves and el goes after e3 in y. Similarly the order 
must be e3el e2 in r, since only e3 moves this time and again el goes after e3. Therefore 
if the order is e, e2e3 in p, we have a triclaw extra adjacency. If instead the order at p is 
e2ele3, then the order in q must be e2e3eI since only el moves and e, goes after e3. 
But then q is adjacent to p by moving e3. Since r is already adjacent to p by moving e3, 
it follows that q and r are standardly adjacent by moving e3. Similarly, if the order in 
p is e, e3e2, then q and r are standardly adjacent by moving edge e, . 

Second, suppose that q is a VM-point of TLfp) and r is an EM-point. If q agrees 
with p except at the vertex u and r agrees with p except at v and w, where v # u and 
w # U, then there can be no way of changing q at all three vertices u, v, and 
w simultaneously. Thus q and r are not adjacent. If q agrees with p except at vertex 
u and r agrees with p and except at u and u, then the only adjacency between y and r is 
a standard one obtained by moving the ends of edge uv, We conclude there are no 
extra adjacencies between VM- and EM-points. 

Finally, suppose that y and r are both EM-points of TL(p) and are obtained from 
p by moving both ends of edges el and e 2, respectively. Then el and e2 meet at some 
vertex u, or it would be impossible for y and r to be adjacent. Let u be the other end of 
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e, and w th other end of e2. Since the graph G is simplicial, the edges ei and e2 cannot 
share both endpoints, so u # w. 

Since y and r are both EM-points of TL(p), they differ from p at u and w, 
respectively, from which it follows that they differ from each other at u and w. Since 
y and r are adjacent imbeddings, it follows that they differ from each other in at most 
two vertex rotations, so they must agree at u. We infer that there is an edge e3 from 
u and w whose endmotions account for the extra adjacency of q and r. Since q moves 
edge e, and r moves edges e2, in order for q and r to be the same vertex u the edges 
el and e2 must be consecutive in p, q and r at II. Since q agrees with p at w but is 
adjacent to r by moving edge e3, it must be that imbedding r at vertex w is obtained 
from p not only by moving e2, as hypothesized, but also by moving e3. Therefore, 
e2 and e3 are consecutive a vertex w in both p and r. Similarly, e, and e3 are 
consecutive at vertex u in both p and q. Therefore, el, e2, and e3 form a consecutive 
3-cycle and the extra adjacency is tricycle. 0 

With Theorem 3.1 in hand, we have a complete understanding of the adjacency 
structure of TL(p). Our method of reconstructing the graph G from TL(p) also uses 
the line-color distinction between VFM-lines and EM-lines. In view of Theorem 2.2, 
Lemma 3.2 represents further analysis of the structure of VL(p), the VM-link of p. 

Lemma 3.2. The link of u vertex in CA, is u single vertex. The link of u vertex in CA4 is 
a bcycle. The link of a vertex in CA*, for d > 4 consists of d copies H, , Hz,, . . , Hd of the 
complete graph Kd _ 2 arranged in a circle so that Hi shares exactly one vertex with Hi _ , 
and exactly one vertex with Hi+l, and, in addition, for each i there is an extra edye 
joining a vertex of Hi with a vertex of Hi+ 2 (the joined vertices are not shared vertices). 
In particular, the link of a vertex in CA*, for all d > 2, is connected and nonempty. 

Proof. Consider the general case d > 4 first. Since CA,, is vertex symmetric, we can 
just look at the link of the standard d-cycle C. There are d - 2 different positions the 
symbol i can occupy in an arrangement of the symbols 1, . . . , d - I other than position 
i itself. Thus the set of vertices in CAI obtained from C by moving symbol i induces in 
the link of C a complete graph Hi. The subgraphs Hi and Hj share a vertex if and only 
if i and j are consecutive in cycle C, that is j = i + 1 or i = j + 1. The extra edge joining 
vertices in Hi and Hi+z is that corresponding to a triclaw extra adjacency. 

For d = 3 clearly CA3 is a two-vertex graph so the link of a vertex is a single vertex 
(technically, the description for d > 4 still holds since 3 copies of K, each sharing 
a vertex with the other is simply a single vertex). For d = 4, one might expect the link 
to be a 4-cycle together with both diagonals as the extra edges, but again the 
description requires the extra edges to be between vertices in Hi and Hi + 2 that are not 
shared with another Hj. When d = 4, each of the two vertices in Hi is shared vertex. 
Alternatively, one can check that the two vertices (2 3 14) and (3 12 4) joined by an 
extra edge, although apparently obtained by moving 1 and 3, respectively, are also 
obtained by moving 4 and hence are already standardly adjacent. 0 
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The clique structure of TL(p) is complicated by extra adjacencies, but it is still 
possible to give a complete description. The extra triclaw lines join points in edge 
cliques which do not share a switch point. Hence each of these lines is a clique of size 
two. If t is consecutive 3-cycle in the imbedding p, then the three switch points in 
TL(p) corresponding to t form a second 3-cycle TL(p). Finally, a third type of 3-cycle 
is created in TL(p) by t among any two EM-points q and r joined by extra tricycle line 
together with the switch point shared by the edge cliques containing q and r. Call these 
three types of triangles in TL(p), respectively, the I44 3-cycle, and EM 3-cycle and the 
VEM 3-cycles (there are three of them) created by the consecutive 3-cycle t. As long as 
G is not K4, it is impossible to have a configuration of four consecutive 3-cycles in the 
imbedding p based on four vertices in G. It follows that each of the 3-cycles created by 
a consecutive 3-cycle is not contained in a larger clique. Thus each of these 3-cycles is 
a clique itself, and every clique of size larger than 3 is an edge clique. We summarize 
this discussion in the following theorem. 

Theorem 3.3. Let G be a graph of minimum valence 3 and p a point in SC. Then the 
cliques of TL(p), listed by size, are as follows: 

(1) there are no cliques of size 1; 
(2) every clique of size 2 is a triclaw adjacency; 
(3) every clique of size 3 is a VM, EM or VEM triangle created by a consecutive 

triangle in p, or the edge clique of an edge in G joining two vertices of valence 3; 
(4) all cliques of size 4 or greater are edge cliques. 

4. The complete invariance of colored stratified graphs 

We will show a graph G can be recovered in a canonical way from the link of any 
point in the stratified graph SG, if we are given the coloring of lines of SG as VM or 
EM. An edge uv in a graph G is combinatorially contracted by deleting the edge, 
identifying u and v, and removing any resulting multiple adjacencies. 

Theorem 4.1. Let G be any graph of minimum valence at least 3 and let p be any point in 
the stratified graph SG. Then G is isomorphic to the graph obtained from the link TL(p) 
by deleting all EM-points and then combinatorially contracting all VM-lines. 

Proof. The link of a vertex in a Cartesian product is the disjoint union of the links of 
the coordinates of that vertex in the factors of the Cartesian product. Therefore, the 
VM-link VL(p) consists of n disjoint graphs of the form described in Lemma 3.2, one 
,for each of the n vertices of G. Since each of these graphs is connected, again by 
Lemma 3.2, each in different components of VL(p) corresponds to a vertex of G. 
Moreover, there is a line joining points in different components of VL(p) if and only if 
the corresponding vertices of G are joined by an edge (extra triclaw lines only join 
points in the same component of VL(p) and extra tricycle lines only join EM-points in 
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TL(p)). Thus if EM-points are deleted and VM-lines contracted, each component of 
VL(p) will contract to a single point, corresponding to a single vertex of G, and the 
points will be joined by lines if and only if the corresponding vertices in G are joined 
by edges. 0 

Corollary 4.2. The VMIEM-colored stratijed graph is a complete isomorphism invari- 
ant for simplicial graphs of minimum valence at least 3. 

If the graph at hand were not simplicial, one could also recover multiple adjacencies 
and self-adjacencies. The number of points in a component of VL(p) determines the 
degree of the corresponding vertex of G. The number of EM-lines joining different 
components of VL(p) determines the number of edges joining the corresponding 
vertices of G. Once the degree of each vertex and a number of multiple adjacencies 
have been determined, the number of self-adjacencies at each vertex is determined. 
The simplicial structure of G is already determined by Theorem 4.1. We therefore have 
the following corollary for non-simplicial graphs. 

Corollary 4.3. The VMIEM-colored stratified graph is a complete isomorphism invari- 
ant for all graphs of minimum valence at least 3. 

5. The uncolored stratified graph of a cubic graph 

We would like to be able to recover G from its stratified graph SG without using the 
VM-coloring, but purely from the adjacency structure alone. In this section, we show 
how this can be done for a 3-regular simplicial graphs. We also consider the case when 
G has minimum valence 4. 

Suppose that G is a 3-regular and simplicial and that p is a point in SG. Each 
component of VL( p) is a single point, corresponding to a reversal of rotation at some 
vertex v of G, which implies that in applying the conclusion of Theorem 4.1, no edge 
contractions are necessary. Since any two of these points of VL(p) are EM-adjacent if 
and only if their corresponding vertices are adjacent, and since no two points of VL(p) 
are VM-adjacent, it follows that the graph G is isomorphic to the subgraph TL(p) 
induced by the VM-points. The trouble is that, without seeing the VM-coloring, it is 
not obvious which points of TL(p) are VM-points. Nevertheless, the entire adjacency 
structure of TL(p) is not difficult to describe. Each EM-point in TL(p) is standardly 
adjacent to two VM-points: each edge-clique in TL(p) consists of a 3-cycle containing 
one EM-point (corresponding to moving both ends of the edge) and the two 
VM-points (corresponding to moving either end of the edge). There are no triclaw 
extra adjacencies. However, since every 3-cycle in a cubic graph is a consecutive 
triangle, for every 3-cycle t in G there is a 3-cycle of extra line of tricycle in TL(p) 
joining the three EM-points corresponding to moving both ends of each of the three 
edges of t. We can summarize this discussion as follows. 
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Theorem 5.1. Let G he u 3-regular simplicial graph and p any point in SC. Then TL(p) is 
isomorphic to a graph obtainedfrom G asfollowszhrst double every edge; next, subdivide 
each new edge by inserting an extra vertex in its interior; thenfor each 3-cycle t of G, add 
an extra 3-cycle by mutually adjoining the three new vertices on the doubled edges. In 
particular, unless it is isomorphic to K,, the graph G is isomorphic to the subgraph of 
TL(p) induced by the set of all 6-valent points that are themselves adjacent to at least 
three Cvalent points. 

Proof. The first assertion of the conclusion is simply a summary of the discussion 
immediately preceding the theorem. To verify the second assertion, we observe that 
the VM-point pU corresponding to reversing the rotation at vertex v is EM-adjacent in 
TL(p) to the three VM-points corresponding to reversals of the rotations at the three 
respective neighbors of v and VM-adjacent in TL(p) to the three EM-points that 
correspond to reversing the rotations at both ends of the respective edges incident on 
v. Thus, not only is pv 6-valent in TL(p), but also the three VM-points to which it is 
EM-adjacent are 6-valent in TL(p). 

Now consider the EM-point p”,,, of TL(p), corresponding to reversing the rotations 
at both ends of the edge VW of G. Its only VM-neighbors in TL(p) are pV and p,,,, both 
of which are 6-valent in TL(p). It has zero, two, or four EM-neighbours, depending on 
whether the edge VW lies on zero, one, or two 3-cycles in G. (More than 3-cycles would 
be impossible, since G is 3-regular.) In particular, the point p”,,, is 6-valent if and only if 
the edge VW lies in two 3-cycles, say uvw and wvy. If pVW has at least three 6-valent 
neighbors, then at least one of its EM-neighbors, say pVy, is also 6-valent. It follows 
that in addition to the 3-cycle uvy, the edge vy lies on some other 3-cycle, say on 
vyz. It follows in turn that z = u, since otherwise the vertex v would have four 
distinct neighbors, viz., u, w, y and z. This leads to the conclusions that G is 
isomorphic to Kq. 0 

Corollary 5.2. Let G be any 3-regular simplicial graph. Then every point in the stratified 
graph has the same link. 

Various authors (see, for example, [3]) have studied the question of which graphs 
can be the link in a constant link (‘Zykov-regular’) graph. Corollary 5.2 provides 
a large supply of such graphs: for any triangle-free, 3-regular simplicial graph G, 
double every edge of G, and insert a vertex of valence two in each added edge. 

Corollary 5.3. The uncolored, unlabeled stratified graph is a complete isomorphism 
invariant for 3-regular simplicial graphs. 

Proof. By Theorem 5.1, it suffices to distinguish the stratified graph K4 from the 
stratified graphs for other cubic graphs. This is simply a matter of counting vertices: if 
G has n vertices, then SC has 2” points. Therefore, K4 is the only cubic graph whose 
stratified graph has 16 points. 0 
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6. The general case of an uncolored stratified graph 

Given any graph G, we recall that the line graph LG has the edges of G for its vertex 
set, and that two edges of G are considered to be adjacent if they share at least one 
endpoint. When G is simplicial, adjacent edges share exactly one endpoint. 

For any imbedding p of the graph G, there is an interesting spanning subgraph of 
LG known as the medial graph, and denoted MC,,. Two edges of G are considered to 
be adjacent in MC, if and only if those edges are consecutive in p at some vertex of G. 
Obviously, when G is 3-regular, all the medial graphs, regardless of the choice of an 
imbedding, are isomorphic to the line graph. In general, however MG,depends on the 
imbedding p. It also depends on G, but does not determine G; for example, the medial 
graphs of an imbedding and its dual imbedding are isomorphic. For an interesting 
application of medial graphs to self-dual graphs, see [2]. Our next theorem shows how 
to recover the medial graph MC,, from the link of a point p in the uncolored stratified 
graph SC, for mst graphs G. 

Theorem 6.1. Let G he a graph of minimum vulence 3 such thut no 3-cycle in G contains 
more thun 3-vulent vertex. Thenfor uny point p ofSG, the mediul yruph MC, is ismorphic 
to the suhgruph of the clique yruph of TL(p) induced by the subset of cliques that either 
include more than three points of TL(p) or include exactly three points, at least one of 
which is 2-vulent. 

Proof. By Theorem 3.3, every clique in TL(p) of size greater than 3 is an edge-clique. 
Conversely, every edge in G incident to a vertex of valence greater than 3 gives rise to 
a clique in TL(p) of size greater than 3. By Theorem 3.3, every clique in TL(p) of size 
3 containing a point of valence 2 is an edge clique corresponding to an edge in 
G between two vertices of valence 3. Since by hypothesis e does not lie on a 3-cycle in 
G, the point in TL(p) corresponding to moving both ends of edge e is not involved in 
any extra adjacencies and hence has valence two in TL(p). It follows that the 
edge-clique for e has size 3 and contains a point of valence 2. We conclude that the 
vertices in the graph constructed in the statement of this theorem correspond to the 
edges of G. Since the two edge-cliques in TL(p) share a vertex if and only if the 
corresponding edges are consecutive at some vertex in the imbedding p, the construc- 
ted graph is the medial graph MC,. 0 

We believe that the restriction in Theorem 5.4 on triangles and vertices of valence 
3 is not necessary, and that even for general G the clique structure decribed in 
Theorem 3.5 can be used to identify which cliques of size 3 in TL (p) are edge cliques. 
On the other hand, we do not see how to recover the original graph G, not just the 
medial graph, from TLfp) alone. It is conceivable that nonisomorphic graphs may 
have some isomorphic links in their uncolored stratified graphs. If that is the case, we 
cannot count alone on a local structure of the uncolored stratified graph SC to 
determine the isomorphic type of G. We nevertheless conjecture that the uncolored 
stratified graph is a complete isomorphism invariant. 
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7. Strata for two ‘nearly isomorphic’ graphs 

To draw an entire stratified graph would be quite laborious. After all, the number of 
imbeddings of an n-vertex graph might be about as large as (n!)“, the average 
VM-valence about n3, and the average EM-valence abut n4. Even to draw the strata 
tends to be a formidable task, and to compute the strata sequence of a graph is 
evidently more difficult than to compute the genus distribution, which is simply the 
sequence of strata sizes. However, if our objective is to distinguish isomorphism types, 
we cannot content ourselves with genus distributions. 

Although Gross et al. [12] use elementary methods to construct arbitrarily many 
nonisomorphic 2-connected graphs with the same genus distribution, the construction 
of nonisomorphic 3-connected simplicial graphs with the same genus distribution was 
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bef acd 

\ 
abef 

/’ 

acde 

\ 

bed - bcde - bee 

/ \ 
bd 

/ 
adb Je, 

\ 
adbf 

\ /’ 

acef 

abb ae-ade adfaf- acf 
g2 =24 

be ad b;ef aldf abde 

0 abcdef 

Fig. 1. The VM-strata of CL3. 
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resistant until Rieper successfully used Redfield enumeration. Even if such examples 
were not known, the similarity in the genus distribution 

2,38,34 

of the circular ladder CL3 with the three rungs (a.k.a. Kz x K3, see [ll]) and the 
genus distribution 

0,40,24 

of the Mobius ladder ML3 on three rungs (a.k.a. KJ, 3, see [ 111) is disquieting, since 
one could not expect to distingusih the two easily with a small sample of imbeddings. 

g2 =24 

ad,, ade,, ae aef,, al . adf,, 
. . . w . . . . . 

acd,, acde,, ace,, acef,, acf,, acdf .. 
. 

bed,, bcde,, bee,, beef,, bcf,, bcdf .. 

0 
abc 

g1=40 

0 
abcdef 

0 
def 

Fig. 2. The VM-Strata of MLB. 
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Moreover, McGeoch [18] has proved that, in general, circular ladders and Mobius 
ladders with the same number of rungs have nearly identical genus distributions. In 
particular, they have the same number of imbeddings in all surfaces of genus two or 
larger, and differ elsewhere only in that the circular ladder has two sphere imbeddings 
and the Mobius ladder none, but two fewer toroidal imbeddings than the Mobius 
ladder. 

Chen and Gross [4-61 investigate the occurrence of limit points in the set of values 
of average genus. They prove that every upper limit point represents an instance of 
‘ear-adding’ and that there are no lower limit points. Moreover, they prove that each 
possible value of average genus is shared by at most finitely many cut-edges (a.k.a. 
bridgeless) graphs. 

Having explained our motivation for examining such large objects, we now con- 
sider the VM-Strata of CL3 and of ML3. As illustrated by Figs. 1 and 2, the VM-strata 
are overtly different in various readily apparent respects. Details of the derivations of 
these illustrations are omitted because, although numerous, they are not difficult once 
the imbedding labels are explained. In Fig. 1, we imagine that the vertices on one 
3-cycle of CL3 are labeled a, b, and c and on the other 3-cycle d, e, and f so that ad, be, 
and c$are rungs. Then the imbedding label 8 refers to a fixed imbedding of CL3 in SO, 
and each other imbedding label or . . . u, in Fig. 1 means the imbedding in which the 
rotations at vertices u , , . . ., u, have been reversed. In Fig. 2, recalling that ML3 z K3,3 
we imagine that labels u, b, c are assigned to the three vertices in one part of the 
bipartition and labels d, e, f to the three vertices in the other part. Then imbedding 
label (71 refers to a fixed 3-hexagon imbedding in Sr, and the convention for other 
imbedding labels is the same as for Fig. 1. 

8. Algorithmic implications 

We conclude this investigation by considering how stratified graphs relate to the 
determination of maximum and minimum genus and to the implicit program of Gross 
and Furst [l l] for probabilistic isomorphism testing. 

Gross and Rieper [ 131 have established that there are no false strict maxima in the 
uncolored stratified graph, which complements the polynomial-time maximum-genus 
algorithm of Furst et al. [9]. By way of contrast, they also construct arbitrarily deep 
local maxima, which complements the excellent result of Thomassen [31] that 
minimum genus is NP-complete. 
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