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1. INTRODUCTION 

Given an operator A on a complex Hilbert space X in applications the 
question of determining the spectrum of A, i.e., its localization in the com- 
plex plane, often arises. For selfadjoint operators a variety of methods for 
obtaining upper and lower bounds on the eigenvalues exists (see, e.g., 
Collatz [ 11). For nonnormal operators, AA* # A*A, most of these bounds 
are not applicable since they either require the spectrum to be real or use 
in the proof the spectral theorem as an essential ingredient. Exceptions are 
the method in [2] and the bound of Gershgorin [3]. In the case of finite 
dimensional A? it localizes the spectrum in some circles of the complex 
plane (for a similar result see Brauer [4]). Its generalization to the finite 
dimensional case, however, excludes only spectral points in certain regions 
of the complex plane, sharing this feature with [a], leaving open the ques- 
tion of where in the complement of these regions the spectrum actually lies 
and whether the operator has spectrum at all. 

We shall pursue this question with a particular example of a nonnormal 
operator, the complex dilated Hamiltonian H(0) = - de ” + V(e”r) (0 a 
complex parameter) which is used for describing quantum mechanical 
resonances (see, e.g., Reed and Simon [S, pp. 51 ff and 183 ff]). Obtaining 
bounds on the width of a resonance which is proportional to the inverse of 
the imaginary part of the corresponding complex eigenvalue of H(0) has 
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been an open problem for a long time (see Simon [6, open problem B], 
Reinhardt [7], and Junkers [S] for more recent overviews). 

In the second section we prove a generalization of an earlier result of 
Algazin [9]. As an essential tool (regularized) Fredholm determinants are 
used. In the third section we show how these results apply to the complex 
dilation formalism described above and certain variants thereof. 

2. ROUCH~S THEOREM FOR OPERATORS IN l+.Yj, 

Let YP denote the trace ideal of order p, i.e., all bounded operators A on 
2 the p-trace norm jIAIJ,= (tr jAlp)“p of which is finite. For p= 1, the 
trace class operators, the Fredholm determinant may be defined by 

det( 1 + @) : = exp(tr(log( 1 + PA))) (1) 

for p small enough. By analytic continuation in p, the left-hand side is 
defined for all p. 

Now, by observing that for A E YP (p > 1) only the traces of the first 
p - 1 terms of the power series expansion of log( 1 + PA) can diverge, we 
can define a regularized determinant (Simon [lo]) as 

det,( 1 + A) : = det( 1 + R,(A)) (2) 

with 

R,(A)=(l+A)exp 

We can now formulate the theorem: 

THEOREM. Let r be a simply connected domain enclosed by the curve y; 
let f(z) : = 1 + F(z) and g(z) : = 1 + G(z) where F and G ure meromorphic 
&-valued functions on r, analytic on its boundary. Furthermore let 

max If(z) g(z) - 1 Ilp < 1. TE7 (4) 

Then 

& tr 1$ f’(z)f(z)-’ dz = -& tr $ g’(z) g(z)-’ dz. (5) 
i’ ‘i 



In particular, lf’ F is rmui?~tic~ in I. then 

NJ F) = numhrr of eigenw1ue.s ( - I ) of F(I) counted according 

to their algehruk multiplicit!> w,ith I E I‘ 

Proof: We first claim that (lj2rci) tr $./h’(z) h(L) ’ dz is an integer 
provided h fultills the analyticity hypothesis off and g and is invertible on 
;J. Assume /r(z) = 1 + H(z) with H(z) E J,. We have 

-4 2ni 1 7 illogexptrlog[l+R,(H)(z))]dz dz 

= & 4 tr f log[ I + R,(H(s))] dz 
1’ ‘L 

)I 

=&. tr 
f 

H’(;)(l +H(z)) ‘+f (‘x’ (-1)‘; (H(z))‘!dz 
z ,=I 

&tr 
i. 

H’(z)( 1 + H(z)) ’ dz. 

The general case follows now by an approximation argument. We 
remark that tr f, h’(z) h(z) ’ dz is finite for any h(z)= 1 + H(z) with 
H(z) E .Yp: 

tr 
P 

H’(z)( 1 + H(z))~ ’ dz 
: 

p I 
c (-l)“H(z)“+(-l)PH(~)P(l+H(z))~’ 

,I =o 1 

5 P ljH’(z)H(~)~(l +H(z))-‘II,dz 
;’ 

54 lI(1 + H(z))-’ H’(z)ll, llH(zY’III d2-c a. 
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Let the H,(z) be a sequence converging uniformly in I/. II,-norm to H(z); 
e.g., if e,, is an orthonormal basis of 2, define H,(z) by 

H,(z)e,, : = 
1 

Wk,, 
o for 

vln 
v > n. 

Then for h,(z) = 1 + H,(z) 

& tr $ h’(z) h(z))’ dz = & lim tr $ hi(z) h,(z))] dz. 
i’ “--rCX Y 

Thus the left-hand side is an integer as claimed. 
Second, we show that the left-hand and right-hand sides can be con- 

tinuously deformed into each other: Define on y 

h, =f(z)-’ + Ic(g(z) -f(z)-‘) 

which is well defined since, because of (4), f(z) is invertible on y. 
We have 

tr $ h;(z) h,(~)~’ dz = -tr 4 f’(z)f(z)-’ dz 

which is formally obvious. For the actual proof, however, an approxima- 
tion argument like that in the first step is needed to justify that f’(z) com- 
mutes with f(z))’ under tr f. We do not repeat the argument since it is 
completely analogous. Furthermore 

hi(z) h,(z)-’ = g’(z) g(z)-‘. 

Now we can connect both sides of (5) by an analytic function in K by 
writing the Neumann series 

h,(Z)-‘= 5 (f(Z)[g(Z)-f(z)~‘lf”f(Z)(-K)” 
1’ = 0 

= ,;,, (f(Z) g(Z) - 1)” f(Z)( --K)’ 

which converges because of (4) in II .I(,-norm. 1 

We remark that this theorem generalizes an earlier result of Algazin [9] 
who proved it for the case where f(z) is the resolvent of some operator A 
and g(z) = B-z. Algazin [9] did not require that A and B be in some 
trace ideal. For the applications we will discuss, this is not essential. We 
shall see that even for the unbounded operators H(8), the complex scaled 
Hamiltonians, spectral values can be localized by (5). It will, however, 

409.140.2-20 
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prove to be essential that we do not restrict ourselves to the case of 
resolvents for .f or g. 

3. LOCALIZATION OF RESONANCES 

In order to define resonances for a Schrodinger operator H = -A + V, 
we require that the potential V be exterior dilation analytic, i.e.: 

(i) V is a symmetric form with Q( V)‘Q(-A), where Q(V) and 
Q( - A) are the form domains of the potential and the Laplacian, respec- 
tively. 

(ii) (-A+ 1)p”2 V( -A + 1) “’ is compact. 

(iii) There are R, c( > 0 such that 

F(d)=(-A+l) ‘2(u,(t)) Vu,(d)- I)(-A+l) I.” 

which is defined for real 8 as an extension to an analytic bounded operator- 
valued function into the strip B,= (0 1 [Im 01 <a}, where u,(e) is the 
unitary transformation 

( uR( 0) f)(x) = det “(‘(t,YR)x)] 
12 

f(s(R R)x) 

with 

“;R+e”(i~/ -R)](x/lxl) 
for I-xl bR 

1x1 > R. 

A point in the discrete spectrum crrl( H,) of H(0) = u(O)( -A + V) u(d) ‘, 
the exterior dilated Schrijdinger operator with exterior dilation analytic 
potential V, is called a resonance of H if its imaginary part is nonzero, and 
a bound state otherwise. For further details of the exterior dilation analytic 
formalism we refer to [I I-131. Here we need only the fact that EE a,(H,) 
iff the complex dilated Rollnik kernel 

W R,o,E= 1 V(R, f3)I1’2 G,(R, %, E) V”‘(R, 0) 

has the eigenvalue one and its multiplicities are the same (G,(R, 0, E) is the 
exterior dilated free resolvent (E+ A)-‘, and V(R, 0) is the exterior dilated 
potential) for EI$ eP2”R+. We observe that W,,,,. is analytic as a function 
of E in this region. 

In order to apply the above theorem, we need not only compactness but 
some lower trace ideal property of the Rollnik kernel. For short range 
potentials the Rollnik kernel is Hilbert-Schmidt, and for longer range 
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potentials a higher trace ideal must be considered. (For a more detailed 
discussion see [2].) Assuming such a trace ideal property, we may choose 
in (4) 

f(E) = 1 - WR.,., 

and, e.g., 

g(E)= 1 +“WR,,,.+PWR,o.E+ ” 

with E dependent meromorphic functions x, /3, . . . 
As shown in [14, 151 there can be no eigenvalue one and thus no 

resonance or bound state at E if IIf g(E) - 1 II,, is less than one. There- 
fore WR, @, E can have eigenvalues only where this quantity is greater than 
or equal to one; i.e., if the contourline d(E) = 1 is closed, the resonances 
and bound states with E “above” the cut eP2’1W+ are enclosed by this con- 
tourline. In [ 14, 151, however, the existence or nonexistence of resonances 
within this contourline is not discussed. By application of the above 
theorem we get the exact number of resonances and bound states within 
this region. We shall demonstrate this for the exactly solvable example used 
in [lS] to exclude resonances, the b-shell potential V= -c6,( 1x1) where 6, 
is the (one-dimensional) Dirac distribution. Because of the spherical sym- 
metry of the problem we may look at each angular momentum subspace 
I, m separetely. The corresponding radial equation is one-dimensional. The 
d-potential can be treated as a form perturbation. The whole Schrodinger 
operator may then be defined as a direct product of these radial operators. 
The Rollnik operator W,,m,R,o,W p ro’ected onto the space with fixed J 

angular momentum I, m has an explicit “integral kernel” (sequence of 
kernels with potentials concentrated around 1x1 = a) in terms of Bessel 
functions 

W /,m.R,H.E = - IVI”2 (r) K,+,,,(,:--Er>)Z,+,,,($%r<) P”‘2(r’)(r.r’)‘i2 

(r, =max(r, r’) and Y, = min(r, r’)) which does not depend on R and 8 
since the potential has compact support. We may then apply the theorem 
with 

f(E) = 1- WE, 

where we have suppressed all indices except E; for g we choose 

-1 
g(E)=l+ tr( W,-- 1) WE. 

We observe that g(E) is an analytic function in E as long as E$ eC”% + 
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and one avoids the zeros of tr( W,- I ). Furthermore a straightforward 
calculation shows that with this choice of g in the complement of these E 

U’(E) g(E) - 111: = 0 

in the limit of the &potential. Thus, for each curve 6 surrounding a zero 
of tr( W, - 1 ), hypothesis (4) is fulfilled. 

Now g has a singularity where tr( W, - 1) = 0. Thus 

-&tr +,, fk g’(z) g(z)-’ #O, 

showing the existence of resonances at these points. 
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