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Summary 

Homozygous I g f l  -j- mice at 2 months of age had re- 
duced brain weights, with reductions evenly affecting 
all major brain areas. The g ross morphology of the CNS 
was normal, but the size of white matter structures in 
brain and spinal cord was strongly reduced, owing to 
decreased numbers of axons and oligodendrocytes. 
Myelinated axons were more strongly reduced in num- 
ber than unmyelinated axons. The volume of the den- 
tate gyrus granule cell layer was reduced in excess of 
the decrease in brain weight. Among populations of 
calcium-binding protein-containing neurons, there 
was a selective reduction in the number of striatal par- 
valbumin-containing cells. Numbers of mesencephalic 
dopaminergic neurons, striatal and basal forebrain 
cholinergic neurons, and spinal cord motoneurons 
were unaffected. Cerebellar morphology was unal- 
tered. Our findings suggest cell type- and region- 
specific functions for IGF-I and emphasize prominent 
roles in axon growth and maturation in CNS myelin- 
ation. 

Introduction 

Insulin-like growth factor (IGF)-I, IGF-II, and insulin are 
members of the insulin gene family, and they stimulate 
cellular proliferation and differentiation during embryonic 
and postnatal development (Rechler and Nissley, 1990; 
Baker et al., 1993; Liu et al., 1993). The three proteins 
exhibit overlapping specificity for their receptors; IG F-I and 
insulin are the most potent ligands for, respectively, the 
IGF-I receptor and insulin receptor (Daughaday and Rot- 
wein, 1989; Sara and Hall, 1990; Siddle 1992). The IGF-I 
receptor is a tyrosine kinase (Czech, 1989), and its interac- 
tion with IGF-I is modulated by a group of six known soluble 
high affinity IGF-I-binding proteins (IGFBP1-6; Ooi, 1990; 
Rechler and Brown, 1992; Clemmons et al., 1993). In the 
brain, IGFBP-2 is the most abundant binding protein and 
is present at high levels in the cerebrospinal fluid (Ocrant 
et al., 1990). In most brain areas, the temporal and spatial 
pattern of IGFBP-2 expression during embryonic and post- 
natal development closely resembles the expression of 
its IGF-I ligand, suggesting an important local interaction 

(Bondy et al., 1992; Lee et al., 1992, 1993). A similar corre- 
lation to the developmental expression of IGF-I has been 
reported for IGFBP-5 in other tissues, suggesting a role 
for the two binding proteins in targeting IGF-I to responsive 
cell populations (Bondy and Lee, 1993). 

IGF-I promotes survival and stimulates neurite out- 
growth from cultured central and peripheral neurons, in- 
cluding mesencephalic dopaminergic neurons, forebrain 
cholinergic neurons, and spinal cord motoneurons (Both- 
well, 1982; Aizenman et al., 1986; Caroni and Grandes, 
1990; KnL~sel et al., 1990; Ang et al., 1992; Beck et al., 
1993; Hughes et al., 1993; Neff et al., 1993). In vitro, IGF-I 
stimulates DNA synthesis and cell division of freshly disso- 
ciated neuroblasts, as shown for sympathetic cells (Di- 
Cicco and Black, 1988). Like a number of other factors, 
IGF-I increases the survival and myelin synthesis of cul- 
tured oligodendrocytes (Mozell and McMorris, 1991 ; Bar- 
reset al., 1992, 1993). A similar result has been obtained 
in vivo. Transgenic mice overexpressing IGF-I have larger 
brains, mostly owing to a strong up-regulation of oligoden- 
drocyte myelin synthesis (Carson et al., 1993). 

The correlation of the cell culture findings to the physio- 
logical role of IGF-I in vivo seems difficult to establish. 
Using Northern blotting analysis, I g f l  mRNA levels in the 
rat brain have been found to be highest during late devel- 
opment and then to decline gradually to low adult levels 
(Rotwein et al., 1988). In situ hybridization and immunohis- 
tochemical studies indicate that I g f l  mRNA is transiently 
expressed during development in many areas related to 
long projection neurons (Bondy, 1991; Garcia-Segura et 
al., 1991). The transient expression of IGF-I by projection 
neurons during axon growth and synaptogenesis has been 
taken to suggest an important role of IGF-I in these pro- 
cesses (Bondy, 1991). This speculation is supported by 
the permanent expression of IGF-I and its receptor in the 
olfactory bulb, where neuro- and synaptogenesis persists 
during adult life (Bondy, 1991). 

Mice carrying inactive genes for IGF-I allow additional 
insights into the developmental functions of this trophic 
factor (Baker et al., 1993; Liu et al., 1993; PowelI-Braxton 
et al., 1993). Homozygous I g f l  -~- mice show strongly re- 
duced perinatal survival and dwarfism due to generalized 
growth deficiency. In particular, at birth there is a strong 
reduction in the m ass of skeletal muscle, bone, and organs 
and, in addition, delayed ossification and impaired devel- 
opment of lungs and epidermis (Baker et al., 1993; Powell- 
Braxton et al., 1993). The small percentage (<5%) of 
I g f l  -/- mice that survive the perinatal period display unim- 
paired sucking behavior and feed normally after weaning. 
Recently, transgenic mice were generated that express 
human IGFBP-1 fused to the mouse metallothionein-I pro- 
moter (D'Ercole et al., 1994). Adult heterozygous mice dis- 
play retarded brain growth manifested in a 8%-16% re- 
duction of brain weight. 

In this study, we report the results of a detailed anatomi- 
cal analysis of the brains of Ig f l  -/- mice at 2 months of age. 
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Table 1. Body and Brain Weights 

Wild Type Igf l  + 
Weight (g) Weight (g) Change(%) 

Body 24.83 + 1.25 6.55 -4- 0.17 -74% a 
Brain 0.46 _ 0.02 0.29 _ 0.01 -38o/0" 

Ratio (brain to body) 1.9 4.4 +232% a 

Body and brain weights of Igfl + and wild-type mice at 2 months of 
age. Brains were weighted after cutting off the medulla at the caudal 
end of pons. Values are means _ SEM of n = 5 (3 males, 2 females) 
for Igf -~- and n = 6 for wild-type brains (3 males, 3 females). 
a Differs from wild type, p < .001. 

Figure 1. Comparison of Brains from Igfl -/- and Age-Matched Wild- 
Type Mice at P60 
(A) Dorsal and (B) ventral views; IGF-1 ~ brain is at right, and wild 
type is at left. 

Results 

Brain Weight and White Matter Axon Numbers 
and Axon Myelination Are Reduced in I g f l  + Mice 
The brains of I g f l  -/- mice were smaller than those of age- 
matched wild-type mice (Figure 1). All major parts of the 
brain were present, and the sizes of all parts were reduced 
to similar extents as compared with wild type. The brain 
weights of I g f l  -/- mice were 38% below weights of age- 
matched wild-type mice, whereas the body weights were 
reduced more dramatically, by 74% (Table 1). This differ- 
ential effect of I g f l  gene disruption resulted in a 2.3-fold 
increase in brain-to-body weight ratio. 

The thickness of the anterior commissure, which con- 
tains axons connecting the left and right frontal lobes, was 
strongly reduced in I g f l  -/- mice (Figure 2; Table 2). Histo- 
logical staining for myelin with eriochrome cyanine R re- 
vealed a weakly stained fiber bundle that occupied a 69% 
smaller area than the same structure at a corresponding 
level in wild-type mice. This decrease was more than twice 
as much as the general reduction in brain size~ Immunohis- 
tochemical staining with an antibody directed against oli- 
godendrocyte membranes and CNS myelin (MAB328, 

Chemicon) showed a smaller and more weakly stained 
anterior commissure in I g f l  -/- mice and thus confirmed 
the findings obtained with the histochemical method (Fig- 
ures 2C and 2D). Adjacent sections stained with cresyl 
violet showed high packing density of nuclei in the brain 
parenchyma surrounding the anterior commissure in 
I g f l  -/- mice, but in contrast, no increased density in the 
anterior commissure (Figures 2E and 2F). 

The fiber bundles forming the internal capsule in the 
striatum and the corpus callosum showed the same dra- 
matic reduction in thickness and myelin staining as the 
anterior commissure (Figures 2G-2J; Figures 3A-3D). 
The thickness of the medial part of the corpus callosum 
in I g f l  -/- mice was reduced by 70% compared with corre- 
sponding anterior-posterior levels in wild-type mice (Table 
2). In contrast, in the identical brain sections, the distance 
from the cortical to the basal surface of the brain and the 
thickness of the parietal cortex was only reduced by 30% 
and 26%, respectively. 

Also in the spinal cord, the white matter areas were 
strongly reduced in size. Figures 31 (wild type) and 3J 
( I g f l  -/-) show transverse sections at the level of the fifth 
cervical root stained with eriochrome cyan ine R and cresyl 
violet. The thickness of ventral, lateral, and dorsal funiculi 
was strongly reduced in I g f l  -/- mice, whereas the size of 
the area occupied by gray matter was unaffected. 

Immunohistochemical staining of oligodendrocytes was 
done using a rabbit antiserum directed against carbonic 
anhydrase II (CA II), which had been preabsorbed with 
brain extract of CA II-deficient mice. This antiserum selec- 
tively visualizes oligodendrocyte cell bodies (Ghandour 
et al., 1980; LeVine and Goldman, 1988). The staining 
revealed that the density of oligodendrocytes in white mat- 
ter structures of I g f l  -/- mice was unaffected (Figure 4 and 
Figure 5). Therefore, owing to the strong decrease in size 
of white matter, the total number of oligodendrocytes in 
I g f l  -/- mice was strongly reduced. 

Axon density and myelination in the anterior commis- 
sure and the medial part of the corpus callosum were ana- 
lyzed using electron microscopy (Figure 6). In the medial 
corpus callosum, the density of myelinated axons de- 
creased to 63.5% _+ 5.1% (mean _+ SEM of I g f l  -/- mice 
compared with wild type), whereas the density of unmy- 
elinated axons and the total axon density increased to 
161.1% _ 10.2% and 132.8% _ 9.9%, respectively(Fig- 
ure 7). In the anterior commissure, myelinated axon den- 
sity decreased to 66.4O/o _+ 7.1%, and the density of unmy- 



I g f l  Gene Disruption 
719 

Figure 2. Anterior Commissure and Internal Capsule 

Comparison of thickness and myelin content of anterior commissure and internal capsule fiber bundles in transverse brain sections at corresponding 
anterior-posterior levels from I g f l  ~/ (B, D, F, H, and J), and wild-type mice (A, C, E, G, and I). 
(A-D and G-I) Histological myelin stain combined with immunohistochemical staining for calbindin D-28k (visualized with a HRP/diaminobenzidine 
method) to enhance the contrast (A, B, G, and H) and immunohistochemical staining of oligodendrocytes/myelin with MAB328 (C, D, I, and J). 
The thickness and myelin content of the anterior commissure is strongly reduced. (E and F) Cresyl violet staining. 
Bars: 100 pm. 

Table 2. Size of White Matter Tracts 

Wild Type I g f l  ~ Reduction (%) 

Anterior commissure 
Area (ram 2) 0.91 ± 0.02 0.28 - 0.02 69% a,b 
Section area (mrn 2) 40.39 ± 0.03 28.81 ± 0.03 290/0 a 

Corpus callosum 
Thickness (mm) 0.35 ± 0.03 0.10 ± 0.01 70% a,b 
Section cortical to basal 
Surface dist. (mm) 11.27 ± 1.03 7.51 ± 0.08 30% ~ 
Parietal cortex 
Thickness (ram) 1.38 ± 0.10 1.02 ± 0.09 26% a 

Areas and distances of 4 each wild-type and I g f l  ~- mice were quantified in brain sections at corresponding anterior-posterior levels. For anterior 
commissure, corpus callosum, and comparative reference measurements, coronal sections from corresponding levels were used. Values are 
means ± SEM. The significance of differences was evaluated by Student's t test. 

Significantly different from wild type (p < .05). 
b Different from reference measurement (p < .01). 
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Figure3. Corpus Callosum, Hippocampus, 
and Spinal Cord 
Right column of photomicrographs (B, D, F, H, 
and J) is from I g f l  -j- mice; left column (A, C, 
E, G, and I)is from wild-type mice. Eriochrome 
cyanine R staining combined with immunohis- 
tochemical staining for calbindin D-28k is 
shown in (A) and (B), and immunohistochemi- 
cal staining with MAB328 is shown in (C) and 
(D). Thickness of corpus callosum is strongly 
reduced in Ig f l  -I- mice. Combined eriochrome 
cyanine R/cresyl violet staining of the dorsal 
hippocampus is shown in (E)-(H). Note strongly 
reduced size of the dentate gyrus (E and F), 
but identical thickness and packing density of 
dentate granule neuron cell body layers 
(arrow). (I) and (J) show combined eriochrome 
cyanine R/cresyl violet staining of spinal cord 
sections at level C4. Note the reduction in thick- 
ness of the white matter; dfu, Ifu, and vfu desig- 
nate the dorsal, lateral, and ventral funiculi, 
respectively, in Ig f l  - j mice. CPu, caudate- 
putamen; Cg, cingulate cortex; dg, dentate 
gyrus; CA1, cornu ammonis area 1. Bars, 
100 pro. 

el inated and all axons increased to 139.6% ± 11.1% and 
128.5% ± 8.1%, respectively. 

The Volume of the Dentate Gyrus Cell Body Layer 
Is Reduced in I g f l  + Mice 
Visual inspection of the hippocampus suggested that the 
cell number in the dentate gyrus of I g f l  - / -  mice is strongly 
reduced, with more modest reductions in the CA1-4 areas 
(see Figures 3E and 3F). Cell bodies in the dentate gyrus 
were packed at very high density, as was made evident 
by a high density of nuclei in cresyl v iolet-stained sections. 
Both the packing density and the average size of nuclei 
in the dentate gyrus and CA1-4 was not significantly differ- 
ent in I g f l  -~- and wild-type mice (see Figures 3G and 3H). 

Therefore, we estimated the changes in cell numbers in 
these areas by measuring and comparing the total volume 
occupied by their cell bodies (Table 3). The total volume 
of the area occupied by CA1-4 cell bodies, consisting 
mainly of pyramidal neurons, was reduced by 38%, which 
is identical to the decrease seen in overall brain weight 
(see Table 1). In contrast, the volume occupied by dentate 
gyrus cell bodies, which are almost exclusively dentate 
granule neurons, was reduced by 59% in I g f l  - / -  mice. 

Parvalbumin-Containing Neurons Are Lost 
in a Region-Dependent Manner 
Parvalbumin-containing neurons were counted in the stria- 
turn and the hippocampus (Table 4; Figure 8; see Figure 
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Figure 4. Oligodendrocytes in White Matter Structures 

Brain sections from corresponding anterior-posterior levels of Ig f l  /- (B, D, and F) and wild-type mice (A, C, and E) were immunoperoxidase stained 
with a CA ~1 antiserum that had been preabsorbed with brain extract from a CA II-deficient mouse strain. Only cell bodies are stained. Fimbria 
(A and B), anterior commissure (C and D), and corpus callosum (E and F) are delineated by arrows. Note identical density of labeled oligodendrocytes 
within white matter in Ig f l  -/- and wild-type mice. hi, hippocampus. Bars, 100 #m. 

10). In the hippoCampus, the numbers were reduced in 
I g f l  - / -  mice by 32% and 35% in CA1-4  areas and the 
dentate gyrus, respectively. In contrast, in the dorsal stria- 
turn, the decrease was 52%, which was signif icantly 
stronger than in the h ippocampus.  This was not simply 
due to a stronger reduct ion of the overal l  striatal vo lume 
in I g f l  - / -  mice. The striatal vo lume est imated from serial 
sect ions was decreased by 28%,  whereas the vo lumes 
occupied by the C A 1 - 4  and dentate gyrus cell bodies were 
reduced by 38% and 59%, respect ively (Table 3 and Table 
4). Therefore,  the number  of parvalbumin immunoposi t ive 
neurons in the str iatum was more strongly decreased rela- 
t ive to the striatal vo lume than in the CA1-4  areas, 
whereas they were less reduced in the dentate gyrus. 

The thickness of parietal cortex was reduced in I g f l  - l -  

mice (see Table 2). Both overal l  cell densi ty and the densi ty 
of parva lbumin immunoreact ive  neurons in all cortical ar- 
eas was increased, most evident ly  in layers IV and VI (Fig- 
ure 9, parietal cor tex shown). To assess the number  of 
cortical project ion neurons, which part ic ipate in the forma- 
t ion of white matter tracts, we establ ished the density of 
neurons with large nuclei in Nissl-stained 40 I~m thick sec- 
t ions of parietal and temporal  cortex layers III and V. In 
layer Ill, neuron densit ies in wi ld-type and I g f l  - / -  mice were 
1340 ___ 180 and 2090 _ 320 cel ls/mm 2 (mean _ SD; 
n = 3), respectively, amount ing to a 56% increase in 
I g f l  - / -  mice. In layer V, the corresponding values were 
1180 -4- 110 and 1860 +_ 210 cel ls/mm 2, result ing in a 

57% increase in density in I g f l  - / -  mice as compared with 
wi ld-type animals.  This increase in cell densi ty is compara-  
ble with the decrease in cortical vo lume (see Table 2), 
suggest ing that the total number  of cortical project ion neu- 
rons remained unchanged.  

m Wild type IGF-I -/- 

E 100 
8 
~ ~o 

60 T 

40 

2O 

0 o 

Ant. comm. Corp. call. Firnbria 

Figure 5. Density of Oligodendrocytes in Forebrain White Matter 
Structures 
Brain sections were immunostained for CA II, and oligodendrocyte 
cell bodies were counted in anterior commissure, corpus callosum, 
and fimbria of Ig f l  -/- and wild-type mice. Areas used for counting were 
measured with an image analysis system. Data are means _ SEM 
from four igH -/- and four wild-type mice, expressed as percentage of 
the density measured in the anterior commissure. 
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Figure 6. Myelination of CNS White Matter 
Tracts 

Electron micrographs of longitudinal (A and B) 
and cross-sections through the medial corpus 
callosum of wild type (A and C) and I g f l  ~ (B 
and D). Note reduced density of myelinated ax- 
ons in I g f l  -j- sections. Bar, 1 p.m. 

The Distribution of Astrocytes Immunopositive 
for Glial Fibrillary Acidic Protein and of 
Neurons Containing Calbindin D-28k and 
Calretinin Is Unaffected in I g f l  + Mice 
The distribution and staining intensity of glial fibrillary 
acidic protein (GFAP) immunopositive astrocytes was 
identical in all brain areas of wild-type and I g f l  - /-  mice 
(Figure 10, only hippocampus shown). Because of the re- 
gional changes seen in the numbers of parvalbumin- 
containing neurons, we analyzed the expression of cal- 
bindin D-28k and calretinin, two other cytoplasmatic 
calcium-binding proteins. In contrast to the situation found 
for parvalbumin, the distribution and the staining intensity 
of identified neurons was unaltered in all areas examined 
(Figures 10E-10H, only hippocampus shown). Therefore, 
the decrease in the number of calbindin D-28k and calreti- 
nin immunopositive neurons was proportional to the de- 
crease in volume of the respective brain area. 

The Numbers of Cholinergic and Dopaminergic 
Neurons and Spinal Cord Motoneurons 
Are Unaffected 
The decrease in cell numbers in IGF -~- mice did not include 
all neuronal populations. Numbers of striatal and basal 
forebrain choline acetyltransferase (CHAT) immunoposi- 

tive cholinergic neurons, ventral mesencephalic tyrosine 
hydroxylase (TH) immunopositive dopaminergic neurons, 
and the numbers of motoneurons in lumbar spinal seg- 
ments L4 and L5 were not significantly different in I g f l  -/  

and wild-type mice (Table 4). 

m Corp. call. ~ Ant. comm. 

Myelinated Unmyelinated Total 
Axons 

Figure 7. Axon Densities in White Matter Tracts 

Numbers of myelinated, unmyelinated, and total axons were counted 
within standardized areas of anterior commissure and medial corpus 
callosum as described in Experimental Procedures. Data are means 
_+ SEM expressed as percentage of the means in wild-type littermates. 
All values are significantly different from wild type (p < .05, Student's 
t test; n = 3). 
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Table 3. Volume of Hippocampal CA1-4 Pyramidal and Dentate Granule Neuron Cell Body 

Wild Type Ig f l  ~ Reduction (%) 

CA1-4 (mm 3) 17.7 _ 1.1 10.9 _+ 0.7 38% a 
Dentate (mm 3) 7.3 _ 0.4 3.0 __ 0.4 59% ~,b 
Ratio (dentate to CA1-4) 0.42 0.28 33% a 

Serial transverse sections (40 #m) through the entire extent of the hippocampus in 4 each wild type and Ig f l  ~ mice were stained with cresyl 
violet, and volumes occupied by cell bodies of CA1-4 pyramidal and dentate granule neurons were determined as described in Experimental 
Procedures. Statistical significance was evaluated by Student's t test. 

Significantly different from wild type (p < .05). 
b Different from reduction of CA1-4 volume (p < .01). 

Discussion 

The major i ty of homozygous I g f l  ~ mice die perinatal ly, 
and the survivors have an approx imate ly  75% reduction 
in body weight  when analyzed at 2 months of age. The 
present study establ ished a less severe reduct ion in brain 
weight  (38%) distr ibuted evenly  over all major  brain areas. 
However,  detai led histological analysis revealed region 
and cell t ype -dependen t  effects of the I g f l  gene disrup- 
tion. Most ev ident  was the strong reduct ion in size of the 
two major white matter structures of the forebrain, the an- 
terior commissure and corpus cal losum, which were re- 
duced by approx imate ly  70% compared with wi ld-type lit- 
termates. Also, the fiber bundles of the internal capsule, 
f imbria, and spinal cord whi te matter were strongly af- 
fected. However,  the densit ies of o l igodendrocytes deter- 

mined in anter ior commissure,  corpus cal losum, and the 
f imbria were unal tered in I g f l  - / -  mice. Therefore, the total 
number  of o l igodendrocytes in these white matter struc- 
tures was reduced proport ional ly to their decrease in size. 
The density of myel inated axons within the anter ior com- 
missure and corpus cal losum was decreased by about  
35% in I g f l  - / -  mice, whereas the densit ies of unmyel inated 
and total axons were increased by 4 0 % - 6 1 %  and 28O/o - 
33%,  respect ively (see Figure 7). These f indings amount  

to a net loss of axons, with a strong shift in prevalence 
from myel inated to unmyel inated fibers. Therefore, I g f l  

gene inact ivat ion affects both the number  of axons forming 
whi te matter tracts and their  myel inat ion by ol igodendro- 
cytes. Cell bodies of projection neurons in cerebral  cortex 
layers Ill and V, which send axons through corpus callo- 
sum, were not lost proport ional ly to the decrease in axon 
numbers. This f inding suggests a role for IGF-I in axonal  
growth and/or maturat ion. Such a role has been proposed 
based on the developmenta l  expression patterns of IGF-I, 
the IGF-I receptor, and binding proteins in large project ion 
neurons and surrounding glial cells (Bondy, 1991; Bondy 
et al., 1992; Lee et al., 1992; Bondy and Lee, 1993). In 
addit ion, several studies have shown that IGF-I promotes 
neuri te growth in embryonic  neurons in vi tro (Aizenman 
and De Vellis, 1987; Caroni and Grandes, 1990; Beck et 
al., 1993). Further support  for a role for IGF-I in axon 
growth is based on its function as a mediator  of growth 
hormone act ions during postnatal deve lopment  (Froesch 
et al., 1985; Mathews et al., 1986; Fagin et al., 1989; 
Daughaday,  1989) and the f indings that numbers and 
lengths of CNS axons and dendr i tes are reduced in the 
growth hormone-def ic ien t  Snell dwarf  and little mice (see 
review, Noguchi,  1991). Both mouse mutants also show 
CNS hypomyel inat ion associated with strongly decreased 

Table 4. Neuronal Counts 

Wild Type Ig f l  -I- Reduction (%) 

Parvalbumin positive cells 
Striatum 9,204.3 ± 566.2 4,446.0 ± 302.8 52% a.b 
Hippocampus 

CA1-4 4,402.6 _ 283.6 3,108.3 __. 304.1 32% a 
Dentate gyrus 486.0 _+ 42.4 200.9 _+ 19.9 59% a,b 

Striatal volume (mm 3) 112.9 _+ 8.2 81.3 ± 7.8 28% a 
ChAT positive cells 

Striatum 23,160.4 ± 1,785.3 22,534.0 ± 2,025.2 Not significant 
Basal forebrain 3,332.4 _ 310.6 3,134.0 ± 219.2 Not significant 

TH positive cells 
Ventral mesencephalon 16,302.1 __ 1,801.7 15,251.3 ± 1,609.9 Not significant 

Spinal cord motoneurons (L4-5) 1,103.3 ± 119.4 996.7 ± 89.0 Not significant 

Immunopositive neurons were counted in every sixth of serial sections (40 p.m) from 4 each of wild-type and Ig f l  -~- mice, covering the entire 
anterior-posterior extent of striatum (paravalbumin, CHAT), hippocampus (parvalbumin), basal forebrain (CHAT), and ventral mesencephalon (TH). 
Striatal volume was estimated based on striatal area measurements in serial coronal sections through the entire anterio-posterior extent of caudate 
putamen and globus pallidum, as described in Experimental Procedures. Spinal cord motoneurons were counted in every fifth of serial transverse 
sections (18 p.m) from 3 Ig f l  ~ and 3 wild-type mice. Values are means _ SEM. 
a Different from wild type, p < 0.001. 
b Different from reductions in CA1-4 (p < 0.01; Student's t test). 
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Figure 8. Parvalbumin-Expressing Striatal 
Neurons 
Dorsal striatum of Igfl -/ (B and D) and age- 
matched wild-type mice (A and C) stained with 
parvalbumin antibodies. (C) and (D) show mag- 
nified areas from (A) and (B). Note the reduced 
density of stained neurons in (A) and (C). Bars, 
100 p.m. 

numbers of oligodendrocytes, suggesting an important 
role for IGF-I in myelination (Noguchi et al., 1982a, 1982b, 
1985; Sugisaki et al., 1985; King et al., 1988). 

In mice CNS, myelination occurs during the first 4 post- 
natal weeks, with an initial period of oligodendrocyte prolif- 
eration and a partially overlapping consecutive period of 
myelin synthesis (Morell et al., 1972; Matthieu et al., 1973). 
There is evidence that the number of oligodendrocytes 
is developmentally regulated by axons (Barres and Raft, 
1994). Studies on optic nerve myelination have shown that 
the proliferation of oligodendrocyte precursors is depen- 
dent on the presence of electrically active axons that might 
produce or release an unidentified growth factor (Gyllen- 
sten and Malmfors, 1963; Tauber et al., 1980; Barres and 
Raft, 1993). In addition, the axon number also regulates 
the survival of oligodendrocytes during normally occurring 
developmental cell death (Barres et al., 1993). These find- 
ings suggest that the decrease in the numbers of oligoden- 
drocytes we found in white matter tracts of I g f l  -I- mice is 
secondary to the reduced number of axons. However, 
there is also strong evidence for a direct effect of the I g f l  
gene inactivation on oligodendrocytes. The density of oli- 
godendrocytes in the anterior commissure and corpus cal- 
Iosum is unaltered, but the density of myelinated axons 
is decreased by approximately 35%, with a concomitant 
increase in the density of unmyelinated fibers. Therefore, 
in addition to a function of IGF-I for brain growth and matu- 

ration, our findings demonstrate the importance of IGF-I 
for myelination in vivo and are in line with many studies 
demonstrating that IGF-I stimulates oligodendrocyte sur- 
vival, development, and proliferation in vitro (McMorris et 
al., 1986, 1990; McMorris and Dubois-Dalcq, 1988; Mozell 
and McMorris, 1991; Barres et al., 1992). Oligodendro- 
cytes and their precursors express IGF-I receptors (Mc- 
Morris et al., 1986, 1990). Recently, Carson et al. (1993) 
reported a 130% increase of brain myelin content at post- 
natal day 55 (P55) in a transgenic mouse line overexpress- 
ing IGF-I under a mouse metallothionein promoter. The 
number of oligodendrocytes was unaltered in these mice, 
suggesting that overexpressed IGF-I stimulated the syn- 
thesis of myelin. 

Our findings provide direct evidence for a decrease in 
the number of oligodendrocytes in I g f l  -/- mice, but the 
fact that myelination was not completely abolished in our 
I g f l  -/- mice clearly demonstrates that IGF-I is not abso- 
lutely required for this process. The lack of IGF-I might 
be partially compensated by IGF-II, which is abundantly 
expressed in choroid plexus, meninges, and vascular cells 
from early development to maturity and is released into 
the cerebrospinal fluid (Stylianopoulou et al., 1988; Hynes 
et al., 1988; Bondy et al., 1992). In addition, IGF-II, which 
during prenatal development is secreted by the liver into 
the bloodstream, and insulin can enter the brain (Hodgkin- 
son et al., 1991). The issue of whether IGF-II compensates 
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Figure 9. Cerebral Cortex with Parvalbumin- 
Expressing Neurons 
Parietal cortex of Ig f l  -/- (B, D) and wild-type (A, 
C) mice. Cresyl violet staining (A and B) and 
parvalbumin immunohistochemistry (C and D) 
on adjacent sections. In (A) and (B), the cortical 
layers are labeled. Note the reduced overall 
thickness, the more tight packing of cell bodies 
in Ig f l  -/- cortex, in particular in layers IV and 
VI (B), and the higher density of parvalbumin- 
containing neurons in layer IV. ec, external 
capsule. Bar, 100 ~m. 

for IGF-I in I g f l  -~- mice can be addressed in I g f l - ~ - I l g f 2  -~- 

double mutants (Baker et al., 1993; Liu et al., 1993), but 
a neuropathological characterization of such mutant mice 
has not been reported. 

In vitro lineage studies suggest that oligodendrocytes 
and type 2 astrocytes are both derived from a common 
O-2A progenitor cell (see reviews, Collarini et al., 1991; 
Noble et al., 1991; Noble and Wolswijk, 1992). Treatment 
of O-2A progenitor cells with IGF-I promotes the prolifera- 
tion of oligodendrocytes and oligodendrocyte precursors, 
but does not increase the numbers of type 2 GFAP immu- 
nopositive astrocytes. In vitro, ciliary neurotrophic factor 
induces differentation of O-2A progenitors into type 2 
astrocytes (Hughes et al., 1988). Although the significance 
of these cell culture studies for the in vivo situation is un- 
clear, our finding that the distribution and relative abun- 
dance of GFAP immunopositive astrocytes in I g f l  -~- mice 
is not different from wild type clearly demonstrates that 

the differentiation of astrocytes in vivo can occur in the 
absence of IGF-I. 

Decreases proportional to the 38% loss of brain weight 
in I g f l  - j -  mice were found for the numbers of calbindin- 
and calretinin-containing neurons and for the total volume 
occupied by the striatum and hippocampal CA1-4 cell 
bodies. Numbers of cortical and hippocampal parvalbumin 
immunopositive neurons were also reduced by approxi- 
mately 30%, but in the dorsal striatum, they were de- 
creased by 52%. In contrast, the numbers of TH immuno- 
positive neurons in the ventral mesencephalon, striatal 
and basal forebrain cholinergic neurons, and spinal cord 
motoneurons were unaffected by disruption of the I g f l  

gene. 
The overall decrease in total brain weight and the vol- 

umes occupied by the striatum and hippocampal CA1-4 cell 
bodies in I g f l  -~- mice was exceeded by the 59O/o reduction 
in the volume of the dentate gyrus granule cell body layer. 
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Figure 10. GFAP, Parvalbumin, Calbindin 
D-28k, and Calretinin Expression in the Hippo- 
campus 
Left column of photomicrographs, wild type; 
right column, Igf l  -~- mice. 
Immunohistochemistry for GFAP (A and B), 
parvalbumin (C and D), calbindin D-28k (E and 
F), and calretinin (G and H) shows identical 
distribution, neuron numbers, and staining in- 
tensity in wild-type and Igf l  -I- mice. Note the 
reduced size of the dentate gyrus (dg) in Igfl-;-. 
CAl/3, cornu ammonis regions 1/3; mf, mossy 
fibers. Bar, 100 I~m. 

This finding suggests an involvement of IGF-I in the gener- 
ation of dentate granule neurons. The majority of these 
cells are generated during early postnatal life, whereas 
hippocampal pyramidal neurons, the principal cells in 
CA1-4, are born between embryonic day 16 (E16) and 
E20 (Altman and Bayer, 1990a, 1990b). The expression 
of I g f l  mRNA in the rat brain peaks around late embryonic 
to early postnatal developmental time points (Bondy, 
1991; Lee et al., 1993). Within the developing hippocam- 
pus, IGF-I receptor mRNA is expressed in all neurons, 
whereas I g f l  mRNA is present in a small subset of evenly 
distributed interneurons. IGFBP-5 is expressed postna- 
tally in dentate granule neurons (Bondy and Lee, 1993), 
suggesting that IGF-I, in interaction with IGFBP-5, plays 
an important role in the generation of dentate granule neu- 
rons. The morphology of dentate granule neurons as visu- 
alized by Nissl staining in I g f l  - j -  mice was not different 
from wild type. Calbindin immunostaining pattern and in- 
tensity was unaffected, and calretinin-containing termi- 
nals originating from the hypothalamic supramammillary 
nucleus (Resibois and Rogers, 1992) terminated in the 
same dendritic area. However, the numbers of parval- 
bumin immunopositive neurons in the dentate gyrus were 
relatively spared from the overproportional decrease in 
volume. 

A detailed analysis of developmental growth in mice with 
single or combined null mutations of the IGF-I, IGF-II, and 
IGF-I receptor genes has suggested that before E13.5, 
the IGF-I receptor exclusively mediates the biological ef- 
fects of IGF-II, and later with increasing IGF-I expression, 
interacts with both IGFs (Baker et al., 1993). Therefore, 
IGF-I seems to play a more important role during late em- 
bryonic and postnatal development. To analyze whether 
disruption of the I g f l  gene generally affected CNS struc- 
tures that are generated relatively late during development 
(dentate gyrus, white matter), we studied the morphology 
of the cerebellum. In rats, Purkinje cells, the cerebellar 
projection neurons, are born and have migrated to their 
final locations by E17. At the time of birth, a transient ger- 
minal zone forming the external granular layer is the birth- 
place of granule neurons. These cells proliferate and mi- 
grate until approximately P20. Concomitantly, Pu'rkinje 
neurons mature and form extensive dendritic arbors, 
which receive numerous synaptic contacts from granule 
neurons and the inferior olive. IGF-I receptor mRNA is 
widely expressed in the cerebellar cortex (Bondy et al., 
1992). From P4 to P21, Purkinje neurons express high 
levels of I g f l  mRNA (Bondy, 1991), whereas adjacent 
Bergmann glial cells contain IGFBP-2 mRNA (Lee et al., 
1992), and proliferating cells in the external granular layer 
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express IGFBP-5 mRNA (Bondy and Lee, 1993). IGF-I is 
a potent mitogen for cerebel lar granule cell neuroblasts 
in vitro (Gao et al., 1991). In contrast to these findings, 
which strongly suggest an involvement of IGF-I in cerebel- 
lar development,  the morphology, anatomical organiza- 
tion, and relative abundance of Purkinje and granule neu- 
rons in I g f l  -~- mice was unaffected (data not shown). The 
cerebel lum was decreased in size proport ional to the over- 
all reduction in brain weight and size. 

Our findings of cell t ype-  and region-specific changes 
in I g f l  -~- mice suggest that IG F-I plays a role in the differen- 
tiation of some CNS cells, whereas others are not depen- 
dent on its presence. The numbers of parvalbumin- 
containing neurons in the cortex and the CA1-4 regions 
of the hippocampus were reduced proportionally to the 
general decrease in weight and cell number. In the dentate 
gyrus, the reduction was less than proportional. In con- 
trast, the loss of parvalbumin immunoposit ive neurons in 
the dorsal str iatum was almost twice as much as that seen 
in the other brain areas. The distribution of neurons ex- 
pressing calbindin and calretinin, two other calcium- 
binding proteinsl was unaffected in I g f l  -~- mice in all brain 
areas studied, and their numbers were decreased propor- 
tional to the reduction of brain weight and volume. 

The exact functions of the calcium-binding proteins cal- 
retinin, calbindin, and parvalbumin are still largely un- 
known. It has been suggested that they act as intracellular 
Ca 2÷ buffers and that they are directly involved in Ca 2+ 
signal transduction processes (Mattson et al., 1991 ; Bairn- 
bridge et al., 1992). In the cerebral cortex and the hip- 
pocampus, parvalbumin is expressed by a subset of 
GABAergic neurons that display, at least in the hippocam- 
pus, a rapid firing rate and high metabol ic activity (Cello 
1984, 1990; Bergmann et al., 1991; Solbach and Cello, 
1991). The exact transmitter type of striatal parvalbumin 
immunoreact ive neurons is not known, but they are most 
likely not GABAergic (Cello, 1990). Therefore, the regional 
difference in the loss of parvalbumin-containing neurons 
in I g f l  -~- mice reflects a difference in the dependency of 
distinct cell types on the trophic factor. 

Numbers of basal forebrain cholinergic neurons, mes- 
encephalic dopaminergic neurons, and large spinal cord 
m o t o n e u r o n s i n l g f l  -~ mice were not significantly different 
from those in wild-type mice. These findings are rather 
surprising considering the large amount of data sug- 
gesting an important role for IGF-I in the development of 
these sets of neurons. In cell culture systems, IGF-I pro- 
motes survival of mesencephal ic dopaminergic and fore- 
brain cholinergic neurons and st imulates neurite out- 
growth and survival of spinal cord motoneurons (Kn0sel 
et al., 1990; Ang et al., 1992; Beck et al., 1993; Hughes 
et al., 1993). IGF-I is present in developing muscle fibers 
(Ralphs et al., 1990) and has been shown to induce moto- 
neuron axonal sprouting and regeneration and to protect 
against nerve t ransect ion- induced degenerat ion (Caroni 
and Grandes, 1990; Neff et al., 1993). When administered 
during the period of naturally occurring, developmental ly 
regulated neuronal death, IGF-I rescued a significant num- 
ber of chick motoneurons (Neff et al., 1993). The absence 
of a significant change in spinal cord motoneuron number 

is even more surprising, considering the profound reduc- 
tion in muscle mass in I g f l  -/- mice (PowelI-Braxton et al., 
1993), which suggests that the production of other muscle- 
derived trophic factors like brain-derived neurotrophic fac- 
tor, neurotrophin-3, and neurotrophin-4/5 (Henderson et 
al., 1993) might be decreased. However, muscle fibers 
are most likely not the only source of trophic support for 
developing motoneurons. This function might be shared 
by other CNS/PNS neurons and glial cells that are in close 
contact to motoneurons in vivo, exert ing social control of 
survival (Eagleson et al., 1985; Eagleson and Bennett, 
1986; Raft, 1992; Hughes et al., 1993). Similar compensa- 
tory effects by other trophic factors and mechanisms might 
explain the absence of a change in the numbers of mesen- 
cephalic dopaminergic and basal forebrain cholinergic 
neurons. 

Taken together, at the present level of analysis, our find- 
ings indicate a prominent role of IGF-I in CNS axon growth 
and maturation and in ol igodendrocyte function. In addi- 
tion, normal formation of h ippocampal granule cells and 
striatal parvalbumin-containing cells requires the pres- 
ence of IGF-I. Inactivation of the I g f l  gene did not affect 
the general anatomical organization of all CNS areas ex- 
amined. Our f indings can be interpreted as consequences 
of selective susceptibil i ty of distinct cell types to IGF-I. 

Experimental Procedures 

Generation of I g f l  -I- Mice 
Production and general appearance of the Ig f l  ÷ ,  C57BL/6J-based 
mouse line used in this study has been described elsewhere (Powell- 
Braxton et al., 1993). Homozygous Ig f l  -~- mice were sacrificed at 
2 months of age and compared with age-matched wild-type mice of 
identical strain and sex. 

Histological Methods 
Mice were sacrificed by CO2 asphyxia; the brains were removed and 
immersion fixed for 2 days in 4% paraformaldehyde in 0.1 M phosphate 
buffer at 4°C and then cryoprotected in 30% sucrose. Serial coronal 
floating sections (40 pro) were cut on a sliding microtome and collected 
in 0.1 M phosphate buffer, 0.02% NaN3 (pH 7.4) at 4°C for a maximum 
of 3 days before further processing. 

For histological staining of myelin, sections were mounted on slides, 
stained with an aqueous solution of 0.2% eriochrome cyanine R and 
0.4% FeCI3 in 0.5% H2SO4, and differentiated in 1% aqueous NH4OH 
(Clark, 1981). Measurements of the transection area of the anterior 
commissure and thickness of corpus callosum were done with an im- 
age analysis system (MCID, Imaging Research). 

For electron microscope analysis of axon densities in white matter, 
deeply anesthetized mice were transcardially perfused with 2% para- 
formaldehyde/2.5% glutaraldehyde in 100 mM sodium phosphate 
buffer (pH 7.4). The brains were removed and postfixed in the same 
fixative for 3 days. Tissue blocks (approximately 1 mm 3) containing 
the anterior commissure or the medial part of corpus callosum were 
dissected, treated with 1% osmium tetroxide, dehydrated in ethanol, 
cleared in propylene oxide, and embedded in Eponate-12. Sections 
(60 nm) were cut using a diamond knife; these sections were mounted 
on a 300 mesh grid, stained with uranyl acetate and lead citrate, and 
studied in a Philips CM 12 electron microscope. From each section, 
10 micrographs (10,000 x magnification) were taken by systematically 
sampling the entire white matter area within the respective section. 
Axon density was calculated by counting myelinated and unmyelinated 
axons in each micrograph within a standard counting frame corre- 
sponding to 100 ~m 2. Axons intersecting the borders of the frame were 
included in the count. 

For immunohistochemistry, sections were incubated in 3% hydro- 
gen peroxidein PBS for 30 rain, then blocked/permeabilzed for 1 hr 
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in PBS containing either 0.1% Triton X-100, 10% normal horse serum, 
and 0.02% NaN3 (solution A) or 10/o Triton X-100, 20/0 bovine serum 
albumin, and 0.02% NaN3 (solution B), followed by incubation with 
primary antibodies diluted in the respective blocking solution overnight 
at 4°C. The following antibodies were used: monoclonal antibodies 
against parvalbumin and calbindin D-28k (Swant, Bellinzona, Switzer- 
land), both 1:9000 in solution A, against oligodendrocyte membranes 
(Chemicon, Temecula, CA), 1:500 in solution A, rabbit polyclonal anti- 
bodies against calretinin (Swant, Bellinzona, Switzerland), 1:9000 in 
solution A, against GFAP and TH (Chemicon, Temecula, CA), both 
1:500 in solution B, against carbonic anhydrase II (a gift from Drs. 
Robert Skoff and Said Ghandour) at 1:250 in solution B, and goat 
polyclonal antibodies against ChAT (Chemicon, Temecula, CA), 1:500 
in solution B. The ABC peroxidase method (Vector, Burlingame, CA) 
was used to detect bound antibodies, with 0.005% hydrogen peroxide 
and 0,05% diaminobenzidine as a substrate. Immunohistochemistry 
with these antibodies was done on every sixth serial section covering 
the entire extent of the respective region of interest. The total number 
of immunopositive neurons was estimated by multiplying the sum of 
the numbers of stained neurons on both sides with the correction fac- 
tor six. 

Every sixth serial coronal section through the hippocampus was 
stained with 0.1% cresyl violet and used to estimate the volumes of 
cell body layers of the dentate gyrus and CA1-4. Areas occupied by 
neuronal cell bodies in the two regions were measured with an image 
analysis system (MCID, Imaging Research). The volume was esti- 
mated by multiplying the total measured area of all analyzed sections 
by 40 lim (section thickness) and by the correction factor six. For 
estimates of the total striatal volume, the striatal area was measured 
in cresyl violet-stained serial sections. 

Spinal cords were removed from bodies after immersion-fixation for 
2 days, cryoprotected in sucrose, and then embedded in Tissue-Tek. 
Serial sections were cut at 18 I~m thickness and stained with 0.1% 
cresyl violet and eriochrome cyanine R. The number of ventral horn 
motoneurons was estimated by counting clearly visible nucleoli in large 
cells with big nuclei and darkly stained cytoplasm in every fifth section 
from the fourth to the sixth cervical segment and multiplying the result 
by five. No correction was made for split nucleoli. Counts were per- 
formed in the fourth and fifth lumbar segment. 
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