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Background: Hippocampal sharp-wave ripples (SWRs) arising from synchronous bursting in CA3 pyra-
midal cells and propagating to CA1 are thought to facilitate memory consolidation. Stimulation of the
CA3 axon collaterals comprising the hippocampal commissure in rats interrupts sharp-wave ripples and
leads to memory impairment. In primates, however, these commissural collaterals are limited. Other hip-
pocampal fiber pathways, like the fornix, may be potential targets for modulating ongoing hippocampal
activity, with the short latencies necessary to interrupt ripples.
Objective: The aim of this study is to determine the efficacy of closed-loop stimulation adjacent to the
fornix for interrupting hippocampal ripples.
Method: Stimulating electrodes were implanted bilaterally alongside the fornix in the macaque, togeth-
er with microelectrodes targeting the hippocampus for recording SWRs. We first verified that fornix
stimulation reliably and selectively evoked a response in the hippocampus. We then implemented online
detection and stimulation as hippocampal ripples occurred.
Results: The closed-loop interruption method was effective in interrupting ripples as well as the asso-
ciated hippocampal multi-unit activity, demonstrating the feasibility of ripple interruption using fornix
stimulation in primates.
Conclusion: Analogous to murine research, such an approach will likely be useful in understanding the
role of SWRs in memory formation in macaques and other primates sharing these pathways, such as
humans. More generally, closed-loop stimulation of the fornix may prove effective in interrogating
hippocampal-dependent memory processes. Finally, this rapid, contingent-DBS approach may be a means
for modifying pathological high-frequency events within the hippocampus, and potentially throughout
the extended hippocampal circuit.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Sharp wave ripples (SWRs) are hippocampal oscillations that are
associated with widespread activation of neocortex, and as a con-
sequence of this co-activation, SWRs are believed to underlie memory
consolidation [1]. SWRs are produced by synchronous activity of CA3
pyramidal cells, which in turn excite CA1 pyramidal cells [2-4]. The
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ventral hippocampal commissure in rodents contains CA3 pyrami-
dal cell collaterals, making it possible to interrupt ripples through
online detection and stimulation of this pathway. Interruption using
this method suppresses the synchronous spiking typical of SWRs
and impairs performance on memory tasks, supporting a role for
SWRs in memory consolidation and/or retrieval [5-8]. Sharp wave
ripples are also seen in humans [9-11] and macaques [12,13]; but
because ripples have not been experimentally manipulated in pri-
mates, their role in memory less clear. Unlike rodents, primates have
a weak, sparsely connected ventral hippocampal commissure
[14-16], making the murine approach to ripple interruption
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untenable in primate brains. The fimbria-fornix fiber tract, however,
is robust and well-conserved [17-19] and its integrity is impor-
tant for memory formation in primates [20-29]. Furthermore,
preliminary and case studies using fornix stimulation in humans
has been linked to memory improvements and changes in hippo-
campal structure and function [30-34]. The fornix contains
projections from within the hippocampus proper and connected su-
bicular complex, and from extra-hippocampal structures known to
modulate ripples in rodents [35-39], suggesting the potential to in-
terrupt ripples. The effect of fornix stimulation on hippocampal
ripples, however, is unknown.

In this study, we sought to 1) detect ripples in real time in the
primate brain and 2) measure hippocampal ripple-band and unit
responses to fornix stimulation. We show that fornix stimulation
evoked responses in hippocampus, that ripples were detected in real
time, and that the closed-loop fornix stimulation interrupted ripples
and suppressed ripple-associated hippocampal multi-unit activity.

Materials and methods
Subject and surgical implantation

All procedures were approved by the local ethics and animal care
authorities. The 10 kg adult female macaque (Macaca mulatta) un-
derwent electrode implantation surgeries conducted under sterile
conditions and with the animal maintained under approximately
2% isoflurane anesthesia. The animal was implanted bilaterally with
a 4-lead NuMed mini-DBS electrode alongside and anterior to the
post-commissural fornix of each hemisphere, just caudal to the an-
terior commissure (Fig. 1A). The leads had contacts of 0.5 mm
separated by 1.5 mm (model FTML4E, NuMed, Inc., Hopkinton, New
York). Implantation of the stimulating electrodes was guided by pre-
operative MR images, aligned to fiducial markers, using the Brainsight
system (Rogue Research Inc., Montreal, Quebec, Canada). Over the
right hippocampus, we implanted an indwelling array of two elec-
trode bundles, each containing 4 independently depth-adjustable
platinum/tungsten multicore tetrodes (96 micron outer diameter;
Thomas Recordings, Giessen, Germany; Neuralynx, Bozeman,
Montana). Post-operatively, tetrodes were lowered into the CA1/2
(bundle 1) and CA3/DG region (bundle 2) of the right hippocam-
pus (Fig. 1B), verified through MR/CT coregistration and functional
characterization of brain structures during lowering, including the
appearance of SWRs. SWRs were observed in limited ranges of depths
across tetrodes, and were associated with unit activity. Once the elec-
trodes had been lowered into the layer, ripple-band activity was
stable across sessions. One electrode was placed outside of the hip-
pocampal formation, to measure non-ripple activity such as muscle
activity, and to determine the selectivity of responses evoked by the
stimulating electrodes (‘control’ electrode). All sessions took place
while the animal was sitting quietly in a darkened booth. SWRs from
this animal prior to stimulating electrode implantation were re-
ported previously [13].

Electrophysiological recordings

Local field potentials were referenced to the titanium tetrode-
array recording chamber and sampled at 32 kHz using a unity-
gain HS36 head stage (Neuralynx, Inc., Bozeman, Montana, USA).
The headstage was connected directly to the electrode interface board
on the animal head, and powered by the acquisition system. As seen
in Fig. 2A, digitized channels were processed in two ways - first,
through the Cheetah 32 system (Neuralynx, Inc., Bozeman, Montana,
USA). Second, the signal was split and sent to the High Perfor-
mance Processing unit (‘HPP’, Neuralynx, Inc., Bozeman, Montana,
USA). This processing unit is equipped with a Field-Programmable

Gate Array (FPGA - ARM Cortex-A9 processor, Xilinx Inc., Cam-
bridge, UK) capable of carrying all digital processing required for
ripple detection and triggering the stimulator in real time. Ripples
are neural events with band-limited, high-frequency (80-150 Hz)
power compared to background levels of power in that band, there-
fore ripples can be detected when the band power or envelope
exceeds a threshold [9,12,13,41]. Selecting the electrode channel with
the highest-amplitude ripple activity, the threshold level should be
optimized to maximize the number of true positives by user in-
spection, while minimizing false detection rate on this channel. That
is, low thresholds will produce more false positives while high
threshold values may have lower detection rate. The optimal thresh-
old value is well above the baseline activity because band-limited
activity of the ripples is considerably higher than the instanta-
neous activity [13]. In this study, we set the threshold to 6-sd of
the band activity, a value similar to rodent interruption studies [5-8].
The 6-sd threshold was estimated based on the average and vari-
ance of the ripple band from earlier recordings which were consistent
over days in these experiments (9.5 + 0.1 uV mean+SEM).

The ripple detection algorithm was implemented on the high per-
formance processing unit in three steps. First, the signals were
bandpass filtered using a custom-designed finite impulse re-
sponse (FIR) filter with 512 taps (16 ms delay, which is about one
cycle of ripple activity). Activities slower than 80 Hz or faster than
150 Hz are suppressed more than 20 dB (Fig. 2B). Next, ampli-
tudes were compared to the threshold across the target channel and
‘control’ electrodes that were not observed to record true ripples.
These control electrodes were used to reject artifacts such as elec-
tromyography (EMG) or other transients that might have otherwise
crossed threshold on the target channel, thereby preventing the tar-
get’s threshold-crossing from generating an output pulse to the
stimulator described below.

Artifact rejection and false detection reduction

EMG artifacts and other transients can show broadband signals
with considerable power at the ripple band. As such, they can be
mislabeled as ripples if a single electrode channel is used for ripple
detection. Thus, a simple method to identify the muscle and other
common artifacts in real-time was to measure excessive ripple-
band activity at other locations, such as the control electrode that
had been placed outside the hippocampus. When activity of this
control electrode exceeded threshold, crossings on the ripple-
detecting electrodes were ignored as a false positive, and the
stimulator was not triggered.

Electrical stimulation

Stimulating electrodes were connected to an STG4002 stimula-
tor (Multichannel Systems, Reutlingen, DE). Bipolar stimulation was
applied across pairs of contacts using a 100 us biphasic pulse width
of 2 mA. The proximal 2 contacts in both of the stimulating elec-
trodes yielded the strongest responses (i.e. the dorsal most pair of
leads, Fig. 1A), and were therefore used to measure hippocampal
evoked responses. To measure the hippocampal response to fornix
stimulation, the fornix was stimulated for 3 minutes at 1.75 Hz in-
tervals varying by current and number of pulses. The parameter space
was single, 4, or 8 pulses and 1, 2, or 3 mA stimulation current. Each
stimulation session was epoched using the stimulation triggers such
that the last pulses were aligned at t = 0. Then the hippocampal re-
sponse to each stimulation protocol was measured by averaging the
epochs obtained during the stimulation session.

For the ripple interruption experiments, we used bipolar stim-
ulation across the adjacent, proximal 2 leads of each electrode,
delivered bilaterally at 2 mA, in short bursts of 4 or 8 pulses at 2 ms
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Figure 1. Verification of electrode placement and hippocampal activation. A) Coregistered and overlaid MRI and CT images in the axial plane of the right hemisphere. The
location of the stimulating electrode in the CT scan is marked with a red circle. The left hemisphere is from the Saleem and Logothetis atlas [40], with the cross-section of
the fornix tract colored in navy. Rostral/anterior is at the top of the image. The lower panel shows a magnified section containing the electrode location seen just anterior
to the location of the fornix. B) As in A, but from a ventral slice that reveals the hippocampal recording electrode sites. Two electrode bundles are seen in the figure; the
electrode used for ripple detection is circled in red, corresponding to CA3/DG subfields. CA3, CA1, and DG are colored in purple, green and orange, respectively. C) Averaged
coronal CT images showing the location of stimulating and recording microelectrodes. Stimulating electrodes are seen close to the midline, whereas hippocampal record-
ing electrode bundles are seen together in the right hemisphere. The horizontal crosshairs (A and B) indicate the axial sections shown in panels A and B of this figure. D)
Example broadband hippocampal recording during 4 example stimulation trains (vertical lines). Evoked responses can be seen following each pulse train. E) Average evoked
response in hippocampus following 300 stimulation trains. The responses increased from 4 to 8 pulses and 2 to 3 mA, with minimal response at the low, 1 mA level, at all
conditions. Effective fornix stimulation evoked hippocampal responses with three peaks 20 ms, 42 ms, and ~100 ms, and two troughs at 33 ms and 53 ms after stimulation
onset.

intervals. Thus, when signal amplitude exceeded the threshold on
the target channel, and threshold crossing was not identified on the
control channel (as an artifact), the HPP triggered bipolar stimula-
tion consisting of 4 biphasic pulses of 100 us at 2 ms intervals on
both of the stimulating electrodes, similar to the stimulation du-
rations of 10 ms reported previously [6].

Data analysis

Online ripple detection and interruption were verified and quan-
tified after each daily session, as follows. Four features were evaluated
for each ripple event: total ripple duration, ripple duration after de-
tection, ripple fundamental frequency, and multi-unit activity. Ripple
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Figure 2. A) Schematic of the system used for ripple detection and fornix stimulation. First, neural recordings are digitized. Then, the HPP signal processing unit bandpass
filters the signals from 80-150 Hz and compares their amplitude with threshold values. When the amplitude of signals crosses the threshold, a TTL trigger is sent to the
stimulator to generate the pulses bilaterally. B) Frequency response of the filter used to filter the signals. The filter passed the activities between 80-150 Hz and attenuated
slower or faster oscillations for over 20 dB. In addition, channels outside the hippocampus must not have crossed threshold, for the HPP to send a trigger.

duration after detection was the time interval between detection
and the next minimum below 2-sd, which is approximately the
average amplitude of the signal. Similarly, total ripple duration was
quantified as the entire interval before and after the threshold de-
tection until the ripple-band dropped below 2-sd. Ripple peak
frequency (or fundamental frequency) was obtained from the
maximum spectral density calculated between —100 ms and 100 ms
of detection using FFT of the signal with 1 Hz resolution. Multi-
unit activity was measured as the envelope of high frequency (750-
1300 Hz) activity [42,43]. To assess the efficacy of our setup for
interruption of hippocampal ripple activity, these four dependent
variables were compared as a function of ripple status: fornix stim-
ulation on (‘Stimulated’) or stimulation off (‘Sham’).

Results
Hippocampal evoked response to fornix stimulation

Electrodes that recorded hippocampal SWRs [13] also re-
corded evoked responses during bilateral fornix stimulation. A single
time series shows responses following each 8-pulse burst of fornix
stimulation, repeated at 1.75 Hz intervals (Fig. 1D). The average of
over 300 evoked responses to single/4/8 pulses and 1/2/3 mA fornix
stimulation varied with respect to stimulation parameters (Fig. 1E).
Whereas single pulse stimulation does not evoke any response in
hippocampus with any stimulation intensity, the 4 and 8 pulse stim-
ulation protocols showed a current-dependent response. Specifically,
the responses increased from 4 to 8 pulses and 2 to 3 mA, with
minimal response at the low, 1 mA level, at all conditions. Effec-
tive fornix stimulation evoked hippocampal responses with three
peaks 20 ms, 42 ms, and ~100 ms, and two troughs at 33 ms and
53 ms after stimulation onset. Hippocampal responses to stimula-
tion of the ipsilateral fornix were smaller, and fornix stimulation
was less effective per stimulation parameter. We therefore se-
lected the most conservative effective protocol of 4 pulse trains
bilaterally delivered at 2 mA which is expected to influence hip-
pocampal activity within 20 ms of stimulation onset.

Effect of ripple-triggered stimulation on local field potentials and
multi-unit activity

Recordings were collected over a total of 95 daily sessions, with
each session typically lasting 50 minutes. In non-human primates,
the sharp-wave ripples can occur over various levels of vigilance,

i.e. activity, quiescence, or sleep states [13]. In our study, the ripples
occurred under all states and occupancy over the state was roughly
proportionate, 4 out 5 ripples were during sleep periods. Peak (fun-
damental) frequencies of ripples were similar in the Stim and Sham
conditions (Stim: 125+ 14 Hz, mean + SD, n= 1048 Sham:
125 + 16 Hz, mean + SD, n =4286; p = 0.97, Ranksum test), suggest-
ing that stimulation did not alter the underlying mechanisms for
ripple generation. An example of an interrupted and a Sham-
condition ripple along with their ripple-band envelopes reveals a
truncation of the interrupted ripple following stimulation (Fig. 3A-D).
It is noted that evoked response to stimulation may not be visible
in presence of sharp waves, (see the example shown in Fig. 3C);
however, hippocampal evoked responses are recognizable when in-
terrupted ripples are averaged (Fig. 3E). These results are consistent
with the population average amplitudes of ripple-band LFP (Fig. 4A).
Whereas the amplitude of both stimulation groups was similar prior
to detection/delivery of fornix stimulation, the ripple amplitude was
effectively eliminated after stimulation. In contrast, stimulation had
no effect on a simultaneously-recorded electrode from the same
implant bundle as the hippocampal recording electrodes, but lowered
to a position outside the hippocampus (Fig. 4, gray lines).

It is conceivable that in previous interruption studies and in the
present study, only the tail of the ripple is interrupted, after much
of the information-rich spiking sequences contained in ripples have
passed. To estimate how much of a ripple’s lifecycle has been trun-
cated, we measured total ripple duration defined as 2-sd to 2-sd
crossing (pre- to post-detection). Ripple durations were shorter fol-
lowing stimulation pulses, whether measured as total duration
(p=2x 107, Ranksum test) or duration from stimulation offset
(p=8x107% Ranksum test) (Fig. 4C and 4D). Interruption was man-
ifest as a sharp truncation of the ripple, with a median duration of
25 ms and where over 90% of ripples reached baseline activity by
40 ms after stimulation onset (Fig. 4C). Moreover, the earliest effects
of interruption on the ripple-band envelope compared to Sham-
condition ripples emerged at 20 ms following stimulation, at about
the time of the first evoked potential dip (Fig. 4C, 4D, 1F).

As described in the literature [12,13,44], multi-unit activity during
spontaneous ripples is enhanced several fold and returns to pre-
ripple levels within 100 ms of detection (Fig. 4B). In contrast, MUA
was completely disrupted by fornix stimulation (Fig. 4B, red trace).
At control electrode sites, no change in MUA is seen, suggesting the
stimulation-induced suppression of MUA is at least partly local to
the hippocampal layer, consistent with ripple interruption, and
thereby capable of interfering with the spiking contents of ripples.
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Figure 3. Examples of interrupted and uninterrupted ripples. The detection point is marked by blue vertical lines. A-C) Broadband traces during interrupted and uninter-
rupted ripple activity showing 200 ms pre- and post-detection. Stimulation pulses are seen after the detection point only for the interrupted ripple (C). Broadband traces
were bandpass filtered between 80 Hz and 150 Hz (shown on top). The envelopes and corresponding z-values are shown in red. The ripple-band activity of the uninter-
rupted Sham ripple is present over 50 ms after the threshold crossing, whereas the ripple-band activity of the stimulation-interrupted ripple returns to the baseline within
20 ms after the detection. B-D) Broadband traces of control electrode during interrupted and uninterrupted ripples shown in A and C. Ripple activity (80-150 Hz) is not
observed on this contact. Stimulation pulses are seen after the detection point only for the interrupted ripple (D). E) Average of traces, aligned to the detection point, are
shown for Stimulated (red, N = 1048) and Sham (blue, N = 4286) ripples. Hippocampal response to stimulation is identified by a peak 40 ms after the first stimulation pulse.
F) Example of muscle artifact is shown on hippocampal and control electrodes. The ripple band activity exceeds the threshold on both channels simultaneously.

Ripples false detection rate

Precise measures of false-positive rates are not possible over the
Interruption sessions due to the effect of stimulation on hippocam-
pal activity; however, we estimated the false-positive rate using the
Sham sessions when the ripples were detected without simulta-
neous stimulation of the fornix. Ripples have been characterized as
events with excessive band activity and durations longer than 32 ms
(4 cycles at 125 Hz). With this definition, the false-detection rate
is estimated to be 12% (Fig. 4D).

Discussion

We developed and tested a system to detect and interrupt hip-
pocampal ripples in primates through stimulation of the fornix. Local
field potentials and multi-unit activity from the CA3/DG layer of hip-
pocampus illustrated the efficacy of this method to curtail ripples
and suppress the ripple-related increase in spiking activity, respec-
tively. This closed-loop system demonstrates the feasibility to
selectively disrupt ripples in primates, a paradigm that had previ-
ously only been applied to rodent models.

The interruption studies in rats targeted the ventral hippocam-
pal commissural fibers that interconnect the hippocampi in rodents
through the axon collaterals of CA3 pyramidal cells [5-8]. Excit-
atory input from these cells, together with a subset of connected
CA3 interneurons, are necessary for ripple initiation in CA3, and the
consequent excitatory volley from CA3 that leads to ripples in CA1
[2-4]. Unfortunately, the CA3 commissural projections that proved

instrumental for ripple disruption in rats are substantially weaker
in human and non-human primates [14-16]. Interruption of ripples
in primates may therefore require stimulation of an alternate tract.

The fornix of the macaque carries an estimated 500,000 fibers
[17] with notable reciprocal projections in the basal forebrain cho-
linergic nuclei and subicular complex, projections from CA3,
supramammillary nucleus, and monoaminergic nuclei; and projec-
tions targeting anterior thalamic nuclei, mammillary bodies, and
nucleus accumbens [19,45,46]. As described in several reviews
[47-49], these connections are associated with recollection, object-
in-place memory, and/or rapid conditional learning in rats [50-52],
monkeys [22,24,53-56] and humans [23,57,58]. Furthermore, fornix
stimulation has been used to modulate hippocampal activity
[30,32,34,59-61].

In the present study, fornix stimulation could have disrupted
ripple activity through direct or indirect pathways. Direct projec-
tions may have been recruited from posterior hypothalamic regions
to CA fields, such as supramammillary fibers [62-65]. These pro-
jections can pace hippocampal oscillations [66-68] and are important
for spatial learning and memory (for review, see [69]). Alterna-
tively, antidromic activation could arise from CA3 or subicular-
complex pyramidal cells [19], though projections from CA3 through
this specific part of the fornix have not been isolated. The subicu-
lar complex may stand as a feasible relay, due to extensive reciprocal
fornix connections [70], in addition to GABAergic projections to CA3
cells, that can inhibit and entrain CA3 neurons [71]. Given the mul-
tiple possible routes of action, additional research is required to
determine the underlying mechanisms of interruption to fornix
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Figure 4. Population averages during ripples in hippocampal and control-site electrodes. Shaded areas represent SEMs. The hippocampal electrode was localized to CA3/
DG and was used for ripple detection; the control electrode is located outside of the hippocampal formation. Traces of interrupted ripples are removed during the stimulation
pulses to avoid stimulation artifacts. A) Average ripple-band envelope recorded during Stimulated (red, N =1048) and Sham (blue, N = 4286) ripples on the hippocampal
electrode, and on the control electrode (gray). Stimulated and Sham-stimulated ripples are similar prior to the detection (6-sd crossing) point, whereas stimulated ripples
show suppressed ripple-band activity after stimulation. Black line at the bottom of the graph marks a period when envelops are significantly different (Ranksum test). Si-
multaneously recorded control electrode activity does not change during ripples (gray lines), elevated band activity seen over the stimulation sessions is caused by stimulation
artifact. B) Changes in average multi-unit activity (MUA) for interrupted and normal ripples with respect to its baseline activity, taken from -250 to - 150 ms before ripple
onset. MUA of interrupted ripples was reduced to below its baseline level following stimulation of the fornix, and slowly recovered to pre-ripple levels. MUA of normal
ripples was elevated for 100 ms, consistent with the LFP response. Black line at the bottom of the graph marks a period when MUAs are significantly different (Ranksum
test). Stimulation artifact is observed on both hippocampal and control electrodes between 0 and 10 ms. C) Cumulative distributions and probability densities (inset) of
ripple durations after the detection point, for normal (Sham, N =4286) and interrupted (Stim, N = 1048) ripples. D) Total duration of ripples (2-sd to 2-sd crossings). Con-

ventions as in C.

stimulation. The utility of the method, however, is immediately rel-
evant to studies of ripple function in behaving animals.

In rats, ripple occurrences after a task include activity patterns
reflecting past events and that are thought to be important for com-
munication between hippocampus and neocortex [1]. Ripples during
learning and exploratory tasks have been shown to reflect trial
outcome [13,72] and future success [73]. Ripple rate of occur-
rence increases after a new or unexpected experience ([74,75], but
see [76]) and the goal-related place cell firing during SWRs is as-
sociated with later memory for goal locations [73]. Critical tests of
ripple function, however, require causal manipulations. Disrup-
tion of ripples impairs memory performance, even after controlling
for nonspecific effects from the ripple-disrupting stimulation, (i.e.
when ripples and stimulation pulses are decoupled, allowing both
to unfold [5,6,8]). It is noted that memory impairment was caused
by truncating the ripples with electrical stimulation and not pre-
venting the ripples, e.g. with pharmacological manipulations. Studies
of the effects of ripple interruption on behavior have not been con-
ducted in primates. This is of special interest, given the reduction
in ripple rate in humans [77], and the observation of ripples during

active exploration in macaques [13], not only in offline states or
pauses in exploration.

Closed-loop detection of ongoing hippocampal activity to deliver
responsive stimulation has implications beyond disrupting ripples.
For example, some types of seizure activity bear similarities to ripples
in the LFP under some circumstances, and may be good candi-
dates for rapid detection using the methods described in the present
study (see [78]). To date, no closed-loop hippocampal stimulation
has been reported for this purpose, though the relevance is high-
lighted by a report of bilateral hippocampus stimulation in idiopathic
epilepsy in a macaque [79]. There, direct stimulation to hippocam-
pus altered LFP activity under anesthesia, but the stimulation was
thus far ineffective at reducing seizures under the direct, local, and
‘open-loop’ stimulation protocols used.

In humans, open loop high frequency stimulation of the homol-
ogous regions of the fornix evoked memories of past events [30],
occasional alleviation of memory decline in patients with Alzheim-
er’s disease [31], and hippocampal activation [80]. Other targets for
altering hippocampal-related memory function in the humans have
been explored, again, in open-loop rather than responsive or
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contingent approaches [61,81,82]. The effectiveness of closed-loop
approaches for modulating other neural circuits and associated dis-
eases, suggest that this may be an important improvement to open-
loop designs [83-85]. Finally, as stimulation of human hippocampus
continues to be explored, our results suggest that one possible effect
of stimulation is the alteration of SWRs. Inasmuch as they facilitate
memory formation and drive widespread cortical activation, the en-
hancement or suppression of SWRs by these emerging stimulation
approaches in humans should be of particular interest moving
forward.
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