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ABSTRACT The spectroscopic properties of the light-harvesting 2 complexes (LH2) from the purple bacterium Rhodopseu-
domonas acidophila (strain 10050) in detergent micelles and reconstituted into lipid membranes have been studied by single-
molecule spectroscopy. When LH2 complexes are solubilized from their host biological membranes by nondenaturing detergents,
such as LDAO, there is a small 2-nm spectral shift of the B850 absorption band in the ensemble spectrum. This is reversed when
the LH2 complexes are put back into phospholipid vesicles, i.e., into a more native-like environment. The spectroscopic properties
on the single-molecule level of the detergent-solubilized LH2 complexes were compared with those reconstituted into the lipid
membranes to see if their detailed spectroscopic behavior was influenced by these small changes in the position of the B850
absorption band. A detailed analysis of the low-temperature single-molecule fluorescence-excitation spectra of the LH2 complexes
in these two different conditions showed no significant differences. In particular, the distribution of the spectral splitting between the
circular k ¼ 61 exciton states of the B850 absorption band and the distribution of the mutual angle between the k ¼ 61 exciton
states are identical in both cases. It can be concluded, therefore, that the LH2 complexes from Rps. acidophila are equally stable
when solubilized in detergent micelles as they are when membrane reconstituted. Moreover, when they are solubilized in a
suitable detergent and spin coated onto a surface for the single-molecule experiments they do not display any more structural
disorder than when in a phospholipid membrane.

INTRODUCTION

Integral membrane proteins play a crucial role in very many

biological processes. In many cases the membrane environ-

ment is important for the assembly, stability, and function of

these proteins (for reviews cf. to, e.g., (1,2)). On the other

hand, many structural and functional studies on membrane

proteins are now carried out on isolated, detergent-solubilized

proteins. One of the most prominent example for these studies

on detergent-solubilized membrane proteins involves photo-

synthetic light-harvesting complexes (3). These complexes

have been extensively studied to investigate the underlying

mechanisms of the earliest primary steps of photosynthesis.

In particular, the isolated light-harvesting complex 2

(LH2) from the photosynthetic purple bacterium Rhodo-
pseudomonas (Rps.) acidophila has attracted considerable

attention as a model protein for structure-function experi-

ments, because its crystal structure was described in 1995

(4). This pigment-protein complex shows a ring-like struc-

ture formed by nine pairs of a- and b-apoprotein helices that
span the membrane. Embedded between the helices are the

carotenoid and bacteriochlorophyll a (BChl a) pigments. The

BChl a pigments are arranged into two rings, called the B800

and B850 pigments, respectively. The nine monomeric B800

pigments are located on the cytoplasmic side of the protein,

whereas 18 tightly coupled B850 pigments are arranged

toward the periplasmic side of the protein. The BChl a
pigments of the B800 and B850 rings give rise to the

characteristic main absorption bands of the complex at 800

and 850 nm (Fig. 1), respectively.

Stimulated by the high-resolution structure of the LH2

complex a great variety of time-resolved and steady-state

spectroscopy experiments has been carried out to try to

unravel the dynamic and spectroscopic properties of the

BChl a pigments as described, e.g., (5–7). The use of single-

molecule spectroscopy, in particular, to study photosynthetic

pigment-protein complexes, such as the LH2 complex from

Rps. acidophila, has proved to be a powerful tool with which
to investigate the details of their spectroscopic properties in

relation to their structure (8–12). The strikingly different

spectroscopic behavior of the B800 and B850 pigments

stands out dramatically when going from ensemble to single-

molecule (SM) spectra (10,13–16). The SM spectra clearly

show that the excitations in the B800 ring are mainly

localized on individual B800 pigments, whereas they are

delocalized in the B850 ring. These delocalized excitations

have successfully been described in terms of the Frenkel

exciton model (17–19). For an undisturbed B850 ring, the

exciton model predicts two nondegenerate and eight pairwise

degenerate exciton states with almost all oscillator strength

concentrated on the low-energy degenerate exciton state pair

k ¼ 61. As soon as deviations from the perfect symmetry

occur, the degeneracy of the k ¼ 61 exciton states is lifted

and there is a redistribution of the oscillator strength, which
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was observed by SM spectroscopy as a spectral splitting and

a change in the intensity ratio of the absorption bands

assigned to the k ¼ 61 exciton states (20,21).

In addition to these studies, the light-harvesting pigment-

protein complexes are now also used in single-molecule

experiments designed to study protein dynamics, using the

spectroscopic properties of their pigments as reporters of

local protein structure (22,23).

Both of these types of experiments as well as many

ensemble studies, however, were performed on detergent-

solubilized complexes and involved placing the individual

antenna complexes onto surfaces, usually either directly onto

a surface such as mica or by spin coating (8,11,23,24). It has

been questioned whether this then deforms the structure of

these antenna complexes and, therefore, introduces, per se,

significant changes in their spectroscopic behavior that

would not be reflected in their native membrane environ-

ment, since it is generally assumed that the LH complexes

are more stable and fully native when housed in their host

biological membrane. This assumption was corroborated by

an SM study on the light-harvesting 1 (LH1) complex of

Rhodospirillum rubrum (25), which showed significant

spectroscopic differences on the single-molecule level be-

tween membrane-reconstituted and detergent-solubilized

complexes. The results of this study were interpreted in

terms of a narrowed statistical distribution of conformational

states for the membrane-reconstituted LH1 complex.

In this study we have set out to investigate this issue,

raised above, by comparing the details of single molecule

fluorescence-excitation spectra of individual LH2 complexes

from Rps. acidophila either solubilized by detergent or

reconstituted in lipid bilayers before be placed on the sub-

strate surface. The detergent-solubilized LH2 complexes

were reconstituted into preformed lipid vesicles of dioleoyl-

phosphatidylcholine (DOPC) by dialysis. This process did

not require any additional chemical agents for detergent

removal (26). The reconstitution process was performed at

a wide range of lipid/protein ratios. For single-molecule ex-

periments a ratio was chosen at which, on average, less than

one LH2 complex per vesicle is expected. It was our hy-

pothesis that by reconstituting the LH2 complexes into lipid

bilayers we would be restoring them to a more stabilizing

environment. This hypothesis has been tested by a detailed

quantitative analysis of the single-molecule fluorescence-ex-

citation spectra of membrane-reconstituted LH2 complexes

in comparison to those maintained in detergent. The single-

molecule results were also compared to the results from en-

semble studies.

MATERIALS AND METHODS

Materials

The phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), which

has a phase transition temperature of Tc ¼ �20�C, was purchased from

Avanti Polar Lipids (Alabaster, AL), tris-hydroxymethyl-aminomethane

(Tris) and lauryldimethylamine N-oxide (LDAO) from Sigma-Aldrich

(St Louis, MO). Slide-A-Lyzer dialysis cassettes (500 ml) with a cutoff of

3500 kDa were purchased from Pierce (Rockford, IL). All other reagents

were of analytical grade. The LH2 complexes were isolated and purified

from membranes of Rps. acidophila (strain 10050) as previously described

(27,28). The complexes were stored at �80�C in 0.1% LDAO, 20 mM Tris/

HCl (pH 8.0) until required.

Reconstitution process

DOPC (5 mg) was dissolved in chloroform and dried under a constant

nitrogen flow. To remove all traces of organic solvent, the lipid film was kept

under vacuum overnight. The lipid films were resuspended in 1 ml 20 mM

Tris/HCl (pH 8.0) and gently vortexed for a few minutes. Unilamellar

vesicles with an average diameter of at most 150 nm were prepared by

freeze-thawing (three cycles) and sonication of the suspension. The sample

was sonicated five times for 2 min each, using a microtip sonicator (Branson

Sonifier CellDisruptor B15, Danbury, CT), until the DOPC suspension was

almost transparent (26). Unilamellarity, size, and size distribution of the

vesicles were checked by dynamic light scattering (DLS) and cryo-transmission

electron microscopy measurements (data not shown).

For single-molecule spectroscopy the purified LH2 complexes from Rps.

acidophila (strain 10050) were diluted to 0.13 mg/ml in 20 mM Tris/HCl

(pH 8.0) 1 0.1% LDAO. The protein solution was added to the lipid

solution at an LH2/DOPC ratio (w/w) of 1:160,000 or 1:200,000,

respectively. The surplus of DOPC guarantees individual LH2 complexes

per DOPC vesicle. For ensemble experiments an LH2/DOPC ratio (w/w) of

1:50 was chosen. After equilibration the mixed solution was transferred to a

dialysis cassette as described in Stamouli et al. (26). Under constant stirring

the solution was dialyzed against 1.5 liters of detergent-free buffer for 3 days

at 4�C in the dark. Thorough removal of LDAO is achieved by exchanging

the buffer twice. After 3 days the sample was extracted from the dialysis

cassette and immediately used for the spectroscopic experiments.

Reconstitution of LH2 into the DOPC liposomes was verified by sucrose

gradient centrifugation. The reconstituted LH2 was loaded onto a sucrose

density gradient (0.4–2 M) and centrifuged at 26,000 rpm for 24 h. The

phospholipid band (containing the reconstituted LH2) could then be

extracted, diluted with buffer, and centrifuged at 42,000 rpm for 1 h to

remove the sucrose. The resulting pellet was resuspended again in buffer and

gently homogenized.

FIGURE 1 Room temperature absorption spectrum of detergent-solubilized

(LDAO) LH2 from Rps. acidophila. (Inset) Room temperature near-infrared

absorption of membrane-reconstituted (dashed line) and detergent-solubilized

(solid line) LH2 from Rps. acidophila depicting the B800 and B850 absorp-

tion bands in detail. For both spectra, the maximum absorption was normalized

to unity.
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Additionally, the integrity of samples with sufficiently high LH2 con-

centrations was checked by ultraviolet-visible absorption spectroscopy using

a Perkin-Elmer spectrophotometer (Perkin Elmer, Wellesley, MA).

Sample preparation for the
low-temperature experiments

The reconstituted LH2 solution (25 ml) was pipetted onto a quartz substrate.

After adsorption for 10 min, the sample was spin coated at 2000 rpm for 60 s.

The sample was then transferred into a helium-bath cryostat. The membrane-

reconstituted samples were either cooled down by directly immersing the

sample into liquid nitrogen within the helium-bath cryostat (by this method

the sample can be frozen within milliseconds) or by cooling down the sam-

ple by slowly adding liquid nitrogen into the cryostat. If not stated otherwise

all experiments have been carried out at T ¼ 1.4 K. Judged by the intensity

ratio of the B850/B800 absorption bands, slowly freezing the sample leads

to more heterogeneous ensemble fluorescence-excitation spectra as com-

pared to the fast frozen samples. On average the intensity ratio of the

B850/B800 absorption bands of the fast frozen sample was 1.4 compared to

1.7 for the slowly frozen sample (data not shown). As a consequence, the

low-temperature experiments described here were performed with the fast

frozen samples.

For experiments with solubilized LH2 complexes 1% (w/w) polyvinyl

alcohol (PVA) was added to LH2 in buffer (20 mM Tris/HCl (pH 8.0) 1
0.1% LDAO) and a drop of the solution was spin coated onto a LiF substrate

if not stated otherwise.

Ensemble and single-molecule fluorescence-
excitation spectroscopy

To perform fluorescence-excitation spectroscopy, the samples were illumi-

nated with a continuous-wave tunable Titanium-Sapphire laser (3900S,

Spectra Physics, Mountain View, CA) pumped by a frequency-doubled

continuous-wave neodynium:yttrium-vanadate (Nd:YVO4) laser (Millennia

Vs, Spectra Physics) using a homebuilt microscope that can be operated

either in wide-field or confocal mode (29). To obtain a well-defined variation

of the wavelength of the titanium:sapphire laser the intracavity birefringent

filter has been rotated with a motorized micrometer screw. For calibration

purposes, a wave meter has been used and accuracy as well as a repro-

ducibility of 1 cm�1 for the laser frequency has been verified.

Fluorescence-excitation spectra of individual light-harvesting complexes

at T ¼ 1.4 K were obtained by two methods. In the first method, which is

described in detail in Ketelaars et al. (20) and van Oijen et al. (30), a 50 3
50 mm2 wide-field image of the sample was taken by exciting the sample at

800 nm and detecting the fluorescence by a back-illuminated CCD camera

(512 SB, Roper Scientific Princeton Instruments, Trenton, NJ) after passing

suitable band-pass filters (Dl � 20 nm), which blocked the residual laser

light. A spatially well-isolated complex was then selected from the wide-field

image and a fluorescence-excitation spectrum of this complex was obtained

by switching to the confocal mode of the setup and detecting the fluorescence

by a single-photon counting avalanche photodiode (APD) (SPCM-AQR-16,

EG&G Optoelectronics, Vaudreuil, Canada) while scanning the laser between

780 and 874 nm. The laser was tuned repetitively through this spectral region

and the recorded traces were stored separately. With a scan speed of the laser

of 3 nm s�1 (�50 cm�1 s�1) and an acquisition time of 10 ms per data point,

this yields a nominal resolution of 0.5 cm�1 ensuring that the spectral

resolution is limited by the spectral bandwidth of the laser (1 cm�1). To

examine the polarization dependence of the spectra, a l/2 plate was put in

the confocal excitation path. It can be rotated in steps of multiples of 0.8�
between two successive scans changing the angle of the polarization of the

excitation light with twice this value.

The second method for obtaining fluorescence-excitation spectra of indi-

vidual LH2 complexes is by illuminating the sample in the wide-field modus

by the titanium:sapphire laser with an excitation intensity of 30 W/cm2

and detecting the fluorescence by an electron-multiplying CCD camera

((EMCCD) DV887, Andor Technology, Belfast, UK) as described in detail

in Hofmann et al. (31). Briefly, the laser is scanned at a speed of 0.2 nm/s

while acquiring 299 frames on the EMCCD at a rate of 0.5 s�1. The frame

number thus corresponds to the excitation wavelength and the fluorescence-

excitation spectrum can therefore be obtained by integrating the total

intensity of the fluorescence image of an individual complex on the EMCCD

as a function of the read-out frame number. Although the bandwidth of the

excitation laser is 0.07 nm (1 cm�1), the nominal spectral resolution is

determined by the mutual relationship of the scan speed of the laser and the

read-out time of the EMCCD. This results in a spectral resolution of 0.1 nm,

which restricts this acquisition scheme to spectral features that are suff-

iciently broad. Therefore, we applied this method only to the B850 absorp-

tion bands and scanned the excitation laser between 843 and 873 nm. For

each imaged sample region a series of 50 laser scans was performed while

the polarization of the incident excitation light was rotated by 14.4� between
two scans, which corresponds to four complete turns of the polarization.

Hence, at the expense of spectral resolution, the high parallelization of this

scheme allows one to register the fluorescence-excitation spectra from 30

to 50 individual complexes simultaneously.

RESULTS AND DISCUSSION

Ensemble absorption spectroscopy

Typically, LH2 complexes from Rps. acidophila solubilized

with the detergent LDAO exhibit a room temperature ab-

sorption spectrum with two major absorption bands in the

near-infrared spectral region at 802 and 858 nm, termed the

B800 and B850 bands, respectively (Fig. 1). These bands are

due to the Qy-transition of the BChl a pigments and are

clearly distinguishable and spectrally separated from the ca-

rotenoid and protein matrix absorption bands, which can be

observed at shorter wavelengths.

Upon reconstitution of LH2 into a more native-like mem-

brane system, such as liposomes of the phospholipid DOPC,

the B850 absorption band is slightly red shifted to 860 nm

(Fig. 1, inset, dashed line). This spectral shift is a useful in-
dicator of whether reconstitution of the LH2 complexes took

place or not. The intensity ratio of the B850/B800 bands in

the absorption spectra taken at room temperature on the other

hand can serve as an indicator for the integrity of the sample

after the reconstitution process. It was 1.5 for the membrane-

reconstituted LH2 and 1.4 for the detergent-solubilized LH2.

From ensemble to single-molecule spectroscopy

When performing single-molecule spectroscopy on mem-

brane-reconstituted LH2 complexes, the complexes need to

be spatially well separated. This can only be achieved when

there is not more than one LH2 complex per lipid vesicle.

Thus, the LH2/DOPC ratio has to be adjusted adequately.

The average number of LH2 complexes within one vesicle as

a function of the LH2/DOPC ratio (w/w) can be estimated

when assuming a vesicle diameter of 250 nm after the re-

constitution, checked by dynamic light scattering, an area per

lipid headgroup of 60 Å2 per DOPC molecule (32), and a

molecular weight of DOPC and LH2 of 786 g/mol and

129,000 g/mol, respectively. For the ensemble studies, we

started out with an LH2/DOPC ratio of 1:50 (w/w), which
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should correspond to an average number of ;77 LH2 com-

plexes per vesicle. Decreasing the LH2/DOPC ratio (w/w)

down to 1:200,000 (i.e., 5 ng LH2 per 1 mg DOPC), the

average number of LH2 complexes per vesicle decreases

to 0.02 and thus results in a very low probability of having

more than one LH2 complex per vesicle.

This is also reflected in Fig. 2, which shows three low-

temperature fluorescence-excitation spectra taken from

samples with decreasing LH2/DOPC ratio (top to bottom).
It can clearly be seen that under ensemble conditions, i.e.,

LH2/DOPC ¼ 1:50 (w/w), the spectrum exhibits the two

broad B800 and B850 absorption bands (Fig. 2 A). When

decreasing the LH2/DOPC ratio, more and more detailed

spectral features appear in the spectra (Fig. 2 B) until at a
ratio that is suitable for the single-molecule studies, the

spectrum exhibits the typical features of an LH2 single-

complex spectrum (Fig. 2 C). This spectrum reveals the

striking difference between the B800 and B850 absorption

bands, which is usually masked due to ensemble averaging

(10). The single-complex spectrum shows very narrow ab-

sorption bands at;800 nm (typical fullwidth half-maximum

(FWHM) 3–7 cm�1) whereas in the B850 spectral region

broad bands are present (FWHM 60–240 cm�1) consistent

with results from ultrafast spectroscopy (5).

Single-molecule spectroscopy

Fig. 3 compares low-temperature fluorescence-excitation spec-

tra from membrane-reconstituted LH2 complexes (left) and
detergent-solubilized LH2 complexes embedded in a PVA

matrix (right), with the latter spectra previously measured by

van Oijen et al. (10). In each pattern the top traces compare

the ensemble fluorescence-excitation spectrum (gray lines)
with a spectrum that results from summation of 36 (left) or 19
(right) individual spectra (black lines), respectively. For both
sample preparations the ensemble and the sum spectra are in

very good agreement each featuring structureless B800 and

B850 absorption bands. This indicates that the chosen

individual complexes were representative for the respective

ensembles.

The lower five traces (spectra B–F) in each pattern display
low-temperature fluorescence-excitation spectra from indi-

vidual LH2 complexes that have been recorded in confocal

mode. Looking at the spectra from individual LH2 com-

plexes reveals a considerable variation in the number of

absorption bands, in the spectral position of the bands, and in

the intensity ratio of the bands from complex to complex.

However, these spectra all have in common that the B800

band consists of several relatively narrow lines whereas

only a few very broad lines can be observed in the B850

absorption band. This spectral pattern is characteristic for

individual LH2 complexes (10). Their narrow B800 absorp-

tion lines can be explained in terms of mainly localized

excitations, i.e., absorptions from individual B800 BChl a
pigments. The broad lines in the B850 band on the other

hand are caused by the strong excitonic coupling of the B850

FIGURE 2 Low-temperature fluorescence-excitation spectra of membrane-

reconstituted LH2 from Rps. acidophila. The spectra were taken of samples

with a protein/lipid-ratio (w/w) of (A) 1:50, (B) 1:40000, and (C) 1:160000.

Decreasing the protein/lipid ratio corresponds to less LH2 complexes per

vesicle and for a ratio of 1:160000 on average less than one complex per

vesicle can be expected. This is reflected in the spectrum (C), which exhibits

typical features of a single-complex spectrum. The spectra were measured in

the confocal mode of the setup. Further details are given in the text.

FIGURE 3 Low-temperature fluorescence-excitation spectra of individual

LH2 complexes from Rps. acidophila (I) reconstituted into DOPC vesicles

and (II) solubilized by the detergent LDAO. (B–F) For comparison also the

ensemble spectra (gray line) and the sum spectra of 36 individual complexes

(black line) of reconstituted LH2 (I) and 19 complexes of detergent-solubilized

LH2 (II) are shown in the top trace (A). All spectra were measured in the

confocal mode of the setup. Further details are given in the text.
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BChl a pigments, which results in a delocalization of the

excitation energy. Most of the oscillator strength is carried by

the exciton states k ¼ 61, whose transition dipole moments

are mutually orthogonal. Any deviation from the perfect

circular symmetry lifts the degeneracy of the k¼61 exciton

states and an energy splitting DEk¼61 between the two states

can be observed. Interestingly, the measured single-complex

spectra for membrane-reconstituted LH2 complexes and

detergent-solubilized LH2 embedded in a PVA matrix show

a very close resemblance to each other. To quantify this

observation the spectra have been analyzed in more detail.

Analysis of the single-molecule spectra

A common method to analyze the LH2 single-molecule

spectra quantitatively is to investigate the spectral behavior

of the B850 absorption lines assigned to the k ¼ 61 circular

exciton states. These can easily be identified as the two red-

most broad absorption lines in the B850 band. For the two

bands, the energetic splitting DEk¼61 as well as the relative

orientation of the transition-dipole moments Da of the two

bands can be determined (20). As previously shown for

detergent-solubilized LH2 (31), the parameters DEk¼61 and

Da are subject to a distribution and a relatively high number

of complexes needs to be studied to obtain distributions for

DEk¼61 and Da with a reasonable statistical significance.

This can be achieved by obtaining the low-temperature

fluorescence-excitation spectra of several individual com-

plexes at the same time in the wide-field modus of the setup

as explained in the ‘‘Materials and Methods’’ section.

The resulting spectra of an individual complex can then be

displayed in a two-dimensional representation (Fig. 4 A)
where the horizontal axis corresponds to the read-out frame

number of the EMCCD, equivalent to the excitation wave-

length, whereas the vertical axis corresponds to the scan

number, equivalent to the polarization of the excitation light,

which is rotated by 14.4� after each scan. The detected fluo-

rescence intensity is represented by a grayscale. In Fig. 4 A
a stack of 50 fluorescence-excitation spectra from an indi-

vidual complex is shown. In this representation the spectral

behavior of the optical transition as a function of the po-

larization angle of the excitation light is easily accessible.

Averaging the whole sequence of the 50 scans results in the

spectrum given in Fig. 4 B, whereas Fig. 4 C displays the

average over three successive scans for mutually orthogonal

polarizations of the excitation light.

In total we analyzed 175 spectra from individual, mem-

brane-reconstituted LH2 complexes and determined the mu-

tual angle Da of the transition-dipole moments of the two

dominating bands in the B850 spectral region that are

associated with the k ¼ 61 exciton states, as well as the

spectral separation DEk¼61 of these bands. The results were

then compared to those of a previous study (31), which

analyzed 146 spectra taken from detergent-solubilized LH2

complexes embedded in a PVA matrix.

The analysis of the spectra of membrane-reconstituted

LH2 complexes, which were identified as single-complex

spectra based on the integrated intensity of the complex in

the wide-field EMCCD image, showed that the distribution

of the spectral splitting DEk¼61 of the k ¼ 61 exciton states

is centered at 126 cm�1 and displays a width of ;100 cm�1

(Fig. 5 A). The distribution of the relative angle between the

transition dipole moments Da of these bands was clearly

centered at 90� and displayed a width of;20� (Fig. 5 B). For
comparison, Fig. 5, C and D, display the distribution of the

FIGURE 4 (A) Two-dimensional representation of 50 low-temperature

fluorescence-excitation spectra of an individual membrane-reconstituted

LH2 complex. The horizontal axis corresponds to the excitation wavelength,

the vertical axis to the polarization of the excitation light, and the detected

fluorescence intensity is given by a grayscale. Between two scans, the

polarization of the excitation light is rotated by 14.4�. (B) The averaged sum
spectrum of all 50 scans depicted in panel A. (C) Average of three successive
scans for mutually orthogonal polarization of the linearly polarized ex-

citation light.
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same parameters for detergent-solubilized LH2 complexes

embedded in a PVA matrix. For these complexes the distri-

butions peak at 126 cm�1 for the energetic splitting DEk¼61

and at 90� for the relative orientation of the transition dipole

moments Da, respectively, and display widths of 101 cm�1

and 19�, respectively, as previously determined by Hofmann

et al. (31).

Structural implications

The structure and stability of proteins is usually influenced

by the immediate protein environment. Changing the protein

environment might therefore lead to changes in the protein

conformation (e.g., (2,33)). Those conformational changes

that affect the immediate environment of chromophores

embedded in the protein or the chromophores itself can be

followed spectroscopically when studying the chromo-

phores, such as the BChl a pigments embedded in the LH2

complex, because the pigments act as sensitive reporters to

changes in their local environment (22).

Upon reconstitution of LH2 complexes from Rps. acid-
ophila we observed a slight spectral shift of 2 nm in the

ensemble absorption spectrum of the B850 BChl a chromo-

phores as shown in Fig. 1. This indicates that the BChl a
pigments sense minor changes in their local environment

upon transferring the LH2 complexes from the detergent-

solubilized to the membrane-reconstituted state. A similar

observation was made for LH2 from Rps. acidophila by

Trissl et al. (34) when comparing the absorption spectra of

detergent-solubilized complexes and complexes embedded

in the native photosynthetic membrane. Experiments by

Clayton and Clayton (35) and Sturgis et al. (36) for LH2

complexes from Rhodobacter (Rb.) sphaeroides showed no

such spectral shift in the ensemble absorption spectra. Also

no changes in the absorption spectrum were observed when

LDAO-solubilized LH2 complexes from Rubrivivax gelat-

inosus were reconstituted into phospholipid vesicles (37).

However, despite the minor differences in the spectra of

detergent-solubilized andmembrane-reconstituted LH2 com-

plexes from different purple bacteria, the ensemble absorp-

tion data indicate that, in general, LH2 complexes do not

undergo significant structural rearrangements when being

solubilized by detergent or reconstituted into membranes that

substantially affect the embedded BChl a chromophores.

This is in clear contrast to the effects observed for light-

harvesting 1 complexes from Rhodospirillum (R.) rubrum.
For these complexes significant spectral changes were ob-

served in the ensemble spectra (38–40), indicating a con-

siderable influence of the protein environment on the LH1

structure. This is, however, in line with the general ob-

servation that LH2 complexes are intrinsically more stable

than LH1 complexes.

More detailed information, however, on the spectro-

scopic behavior of the detergent-solubilized and membrane-

reconstituted LH2 complexes can be obtained from optical

single-molecule spectroscopy. As previously shown, fluo-

rescence-excitation spectra of individual LH2 complexes

reveal details about the electronic structure of the embedded

BChl a pigments, which in turn provides information about

the local protein environment of these chromophores. The

fluorescence-excitation spectra of detergent-solubilized and

membrane-reconstituted LH2 complexes studied here (Figs.

3 and 4) were analyzed as described above, and the resulting

distributions for the energy splitting DEk¼61 and the mutual

orientation of the transition dipole moments Da for the k ¼
61 exciton states have been compared (Fig. 5). The com-

parison between the distributions for the energy splitting

DEk¼61 for the membrane-reconstituted LH2 and the de-

tergent-solubilized LH2 embedded in a PVA matrix (Fig. 5,

A and C) reveals a striking similarity. Both distributions peak

at 126 cm�1 and display a width of 100 cm�1. The same is

true for the distributions of the relative polarization angle Da

FIGURE 5 The statistical analysis of fluorescence-exci-

tation spectra taken of 175 individual membrane-recon-

stituted (top) and 146 detergent-solubilized (bottom) LH2
complexes, respectively. Membrane-reconstituted (DOPC)

LH2. (A) Histogram of the spectral splitting DEk¼61

between the k ¼ 61 exciton states in the B850 band. The

distribution of the spectral splitting DEk¼61 peaks at 126

cm�1 and displays a width of ;100 cm�1 (FWHM). (B)

Histogram of the mutual angle of orientation of the k ¼
61 exciton states transition dipole moments. The distri-

bution displays a pronounced peak at 90� and a width of

;20�. Solubilized (LDAO) LH2. (C) Histogram of the

spectral splitting DEk¼61 between the k¼61 exciton states

in the B850 band. The distribution of the spectral splitting

DEk¼61 peaks at 126 cm�1 and displays a width of 101

cm�1 (FWHM). (D) Histogram of the mutual angle of ori-

entation of the k ¼ 61 exciton state transition dipole mo-

ments. The distribution displays a pronounced peak at 90�
and a width of 19� (data taken from Hofmann et al. (31)).
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of the transition dipole moments of the k¼61 exciton states

(Fig. 5, B and D). In both cases a peak position of 90� and a

width of;20� is found. As shown by numerical simulations

in Hofmann et al. (31), the spectral properties of detergent-

solubilized LH2 complexes studied by single-molecule

spectroscopy could best be described by assuming a random

diagonal disorder for the site energies of the BChl a pigments

in combination with a correlated diagonal disorder. The cor-

related diagonal disorder of the BChl a pigment site energies

might be induced by a slight structural deviation of the LH2

complex structure from a perfect circular symmetry. The ran-

dom diagonal disorder on the other hand is due to stochastic

variations in the local environment of the BChl a pigments.

Choosing a width of D ¼ 250 cm�1 for the Gaussian dis-

tribution of the random diagonal disorder and a modulation

amplitude Emod ¼ 180 cm�1 for the correlated disorder, the

distribution of the energy splitting DEk¼61 and the distribu-

tion of the relative polarization angle Da of the transition

dipole moments of the k ¼61 exciton states were described

in great detail with this model (31). Because the distributions

of DEk¼61 and Da, respectively, for the detergent-solubi-

lized and the membrane-reconstituted LH2 complexes can be

considered identical within the resolution of the experiment,

this model should therefore also hold for the membrane-

reconstituted LH2 complexes. Thus, the same amount of site

energy disorder for the BChl a pigments should be present

for the LH2 complexes in both sample preparations. This,

consequently, implies that the degree of stochastic structural

variation in the local environment of the BChl a pigments

appears to be very similar for the detergent-solubilized and

the membrane-reconstituted LH2 complexes.

This finding is not in contrast to the observed spectral shift

in the ensemble absorption spectrum upon reconstitution of

the LDAO-solubilized LH2 into the DOPC vesicles. The

slight spectral shift of 2 nm in the ensemble absorption

spectrum can be interpreted in terms of a slightly changed

site energy of the B850 BChl a pigments. This site energy

shift could be induced by a minor alteration in the hydrogen

bonding of the C2 acetyl group of the BChl a pigments

(41,42). Although this change of the site energy shifts the

ensemble absorption spectrum, it does not affect the dis-

tribution of the energy splitting DEk¼61 and the distribution

of the relative polarization angle Da of the transition dipole

moments of the k ¼ 61 exciton states. Hence, the experi-

mental data indicate that transferring the LH2 complexes from

the detergent-solubilized to the membrane-reconstituted state

leads to a slightly changed local environment of the BChl a
molecules (reflected in a slightly changed site energy) with-

out altering the degree of structural disorder around the pig-

ments significantly.

Our findings, thus, illustrate that the LH2 structure in the

vicinity of the BChl a pigments is not destabilized when

solubilized with the detergent LDAO and embedded in a

PVA matrix as compared to the membrane-reconstituted

complexes. This implies that the structural variability of the

pigment binding pockets of the LH2 complexes is unaltered

by a change from the membrane to the detergent environment.

This is in stark contrast to the results of a single-molecule

study on LH1 complexes from R. rubrum (25). In this case,

it was shown that the spectra of membrane-reconstituted

LH1 complexes displayed less spectral variation than those

of detergent-solubilized LH1 complexes. It was therefore

concluded that membrane-reconstituted LH1 complexes

display significantly less protein deformation and disorder

than the detergent-solubilized ones, indicating a distinctively

more stable structure of the membrane-reconstituted LH1

complexes.

These differences between the structurally quite similar

LH1 and LH2 complexes suggest that for light-harvesting

complexes a general statement about structural destabili-

zation, which affects the spectroscopic properties of the

embedded pigments, by detergent and embedding the com-

plexes in a PVA matrix, respectively, is hard to justify. Each

protein under study requires a careful analysis to evaluate

this situation. Moreover, external parameters such as the

detergent chosen for solubilization or the lipid(s) selected for

membrane reconstitution may play a critical role in the

maintenance of protein structure and stability and should

always be taken into account (43–45).

CONCLUSIONS

Optical single-molecule experiments were used to compare

the spectroscopic properties of detergent-solubilized and

membrane-reconstituted LH2 complexes from Rps. acid-
ophila. The detailed analysis of the single-molecule spectra

of LH2 in the two environments revealed no significant

difference. From this it can be concluded that no significant

destabilization of LH2 that affects the embedded BChl a
chromophores occurs when the LH2 complexes are solubi-

lized with an appropriate detergent and that these complexes

do not display more structural disorder than the membrane-

reconstituted complexes.
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