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Macroscopic pre-existing flaws play an important role in evaluating the strength and the failure modes of
a heterogeneous rock mass. Crack initiation, propagation and coalescence from macroscopic pre-existing
flaws are considered in a 3-D numerical model (RFPA3D) to investigate their effects on the underlying
failure modes of rock. A feature of the code RFPA3D is that it can numerically simulate the evolution
of cracks in three-dimensional space, as well as the heterogeneity of the rock mass. Three types of flaw
geometries were evaluated numerically against experimental results: Type A for intact specimen, and
Types B and C for flawed cylindrical specimens with different macroscopic pre-existing flaws, respec-
tively. The effect of confining pressure on the fracture evolution was also considered. Numerical results
showed that both the ligament angle and the flaw angle of two pre-existing cracks can affect the uniaxial
compressive strength of the specimen and the mechanism of fracture evolution. In addition, both the
uniaxial compressive strength and the accumulated acoustic emission increase with increasing
heterogeneity.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Rock is a heterogeneous geo-material, with many pre-existing
fractures varying from microscopic cracks to macroscopic joints
and even to continental faults. When rock mass is subjected to
different types of loading, fractures can initiate and propagate from
these pre-existing cracks or pores, and then coalescence into
macro-failure of rock. Usually, in uniaxial compression, three basic
kinds of failure modes of rock can be observed. They are splitting,
spalling, and oblique failure (Germanovich et al., 1994). Splitting
and spalling are actually tensile failure, whereas oblique failure
appears like shear failure. Certainly, all these failure modes can
be observed at the macro scale. However, at the micro scale, the
three macro failure modes are the results of interaction between
micro-cracks (Griffith, 1924). Micro-cracks can be tensile cracks
or shear cracks, depending on the local stress distribution within
the rock specimen. In addition, for biaxial loading, the confining
pressure can hamper the growth of tensile cracks and thus cause
the growth of smaller and more densely distributed pre-existing
cracks. This can result in localization and shear fractures in the
brittle regime. The interaction of these localised shear fractures
can initiate macro-failure of the rock specimen. Healy et al.
(2006a, 2006b) provided a micromechanical model to explain
how brittle shear fractures can form obliquely to all three remote
principal stresses.

Many researchers have studied the mechanism of two-
dimensional fracture evolution from pre-existing flaw(s) (Brace
and Bombolakis, 1963; Hoek and Bieniawski, 1965; Horii and
Nemat-Nasser, 1985, 1986; Ashby and Hallam, 1986; Bobet,
1997, 2000; Bobet and Einstein, 1998; Zhu et al., 1998; Wong
and Chau, 1998; Vasarhelyi and Bobet, 2000). Basically, two sec-
ondary tensile cracks initiate from both ends of the inclined
flaw(s), and propagate in a stable manner towards the major axis
of compression. Wong et al. (2001) studied the mechanism of crack
interaction in specimens with three parallel flaws, and results
showed that the arrangement of the flaws played an important role
in the coalescence of cracks. However, most studies on mecha-
nisms of brittle rock fracturing in compression have been limited
to cracks in two dimensions. For three-dimensional specimens,
tensile cracks or shear cracks occur on 3-D faces, makes the evolu-
tion mechanism much more complicated (Yang et al., 2012a,b).

Huang and Wong (2007) carried out a series of uniaxial
compressive tests on polymethly methacrylate (PMMA) with
pre-existing 3D flaws. Their experimental results showed that
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Fig. 1. Numerical model with two pre-existing 3D flaws.
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interaction of distinct cracks could either promote or restrain the
evolution of cracks in 3D space. Yang et al. (2008) conducted a
series of experimental tests on cylindrical marble specimens with
two macroscopic pre-existing flaws. They observed three failure
types: a tensile mode, a shear mode, and a mixed mode (which is
a combination of the tensile and shear modes). These failure modes
depend on the heterogeneity of the marble, the arrangement of
macroscopic pre-existing flaws, and the confining pressure.
Usually, the confining pressure can restrain the development of
shear cracks. However, for laboratory tests, it is difficult to deter-
mine the heterogeneity of intact rock in specimens. Due to this
inherent heterogeneity and the end-boundary conditions, the
resulting stresses within a cylindrical sample are inevitably non-
uniform on the micro-scale. As it is difficult to know the stress
distribution within a specimen during the loading process, it is
not possible to predict the orientation of the initiation of cracks a
priori.

Numerical models can be used to determine the stress distribu-
tion within laboratory specimens, and hence predict and simulate
the evolution of cracks. Based on experimental creep tests, a phe-
nomenological model was presented by Kaiser and Morgenstern
(1981) to investigate the time-dependent deformation and failure
mechanisms of rock masses. Schlangen and Van Mier (1992) were
the first to apply lattice models for simulating progressive failure
in concrete. Place and Mora (1999) developed a particle-based
lattice model to study the physics of rocks and the nonlinear
dynamics of earthquake. Shen and Stephansson (1993) developed
the displacement discontinuity method, using a modified G-crite-
rion, to numerically simulate the crack propagation and coales-
cence between two open/closed macroscopic pre-existing flaws.
Fanella and Krajcinovic (1988) proposed a micromechanical
damage model for concrete subject to compression. The overall
non-linear response of the material is attributed solely to the
growth of the randomly oriented microcracks which are located
on the aggregate-cement paste interfaces. The results generated
from this model were in good agreement with the experimentally
observed trends, even though a few assumptions were introduced
to make the calculation less complex. Blair and Cook (1998) devel-
oped a statistical model, which is called non-linear rule-based
model, and coupled it with the boundary element method. The ef-
fect of microscale heterogeneity on macroscopic deformation was
researched using the model. Vasarhelyi and Bobet (2000) reported
the displacement discontinuity method, FROCK, and numerically
simulated the initiation, propagation and coalescence of cracks be-
tween two macroscopic pre-existing flaws under uniaxial com-
pression. Their numerical predictions were in good agreement
with their experimental results.

In addition, the discrete fibre-bundle model was provided by
Turcotte et al. (2003) to study the brittle failure of a solid. This dis-
crete, microscopic fibre-bundle model can give exactly the same
solution for material failure by continuum, macroscopic damage
model. A pore crack model was developed by Sammis and Ashby
(1986) to investigate the interaction of growing cracks with a
spherical pore. This approach to crack-pore interaction is in agree-
ment with observations. Feng et al. (2006) simulated the failure
process of heterogeneous rocks successfully by using elastoplastic
cellular automata. Based on static fatigue laws, Amitrano and
Helmstetter (2006) proposed a numerical model to study the
time-dependent damage and deformation of rocks under creep.
Using a different approach, RFPA2D was developed to investigate
the failure process of rock mass (Tang, 1997; Tang and Kou,
1998; Tang et al., 2001; Wang et al., 2006, 2009, 2011a,b,
2012a,b; Xu et al., 2012; Li et al., 2012a,b,c). In this code, the
Weibull distribution function was introduced to describe the het-
erogeneity of rock mass. This code can be used to simulate the
non-linear deformation, stress distribution, initiation and growth
of cracks and fractures in heterogeneous materials (Tang and
Kou, 1998; Tang et al., 2001; Wang et al., 2012a). Brantut et al.
(2013) provided a good review and summary of existing typical
models for time-dependent cracking and brittle creep in crustal
rocks in details. However, most of these numerical models were
limited to 2-D situations and the evolution of cracks in the speci-
men was not well captured.

In this study, the code RFPA3D, which is an extension of
RFPA2D, is applied to investigate the 3D fracturing processes of
cylindrical rock specimens with two macroscopic pre-existing
flaws. First, the numerical method, RFPA3D, is introduced briefly.
Three types of flaw geometries, i.e. Type A for an intact specimen,
and Types B and C for flawed cylindrical specimens with different
macroscopic pre-existing flaws, are simulated numerically and the
results are evaluated against experimental observations. The study
also investigates the effect of the confining pressure on the fracture
evolution, as well as the effects of both the ligament angle and the
flaw angle of pre-existing cracks on the uniaxial compressive
strength of a specimen. Finally, the influence of both the heteroge-
neity index (m) on the uniaxial compressive strength, and the
accumulated acoustic emission (AE) on the crack evolution pat-
terns, are considered.
2. Brief description of RFPA3D

In RFPA3D, it is assumed that the domain consists of elements
with the same shape and size and that there is no geometric
priority in any orientation (Tang, 1997; Wang et al., 2006). The
statistical distribution of the elemental mechanical parameters is
described by the Weibull distribution function (Weibull, 1951).
These elemental mechanical parameters include the uniaxial
compressive strength, the elastic modulus and Poisson’s ratio.
The Weibull distribution function is as follows (Weibull, 1951):

WðxÞ ¼ m
x0

x
x0

� �m�1

exp � x
x0

� �m� �
ð1Þ

where x is a given mechanical property (such as the strength or elas-
tic modulus); x0 is a scale parameter; and m is a parameter that de-
fines the shape of the distribution function. In the present study, the
parameter m defines the degree of material homogeneity and is thus
referred to as the homogeneity index (Tang, 1997). As the homoge-
neity index increases, the material becomes more homogeneous.



Fig. 2. 3D mesh distribution in the numerical model.
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Each of the element material properties is different and is specified
according to the Weibull distribution. In fact, m accounts for flaws
on the microscale (cracks and pores), i.e. the heterogeneity of mate-
rial in microscale.
Table 1
Pre-existing crack geometries of flawed specimens (Yang et al., 2008) (Case I).

Homogeneity index (m) Flaw geometry Flaw angle (a/�) Ligament an

2 Type A N/A N/A
N/A N/A

1.5 Type B 30 38
Type C 45 61

Table 2
Pre-existing crack geometries of flawed specimens with three different ligament angles (b

Homogeneity index (m) Flaw angle (a/�) Ligament angle (b/�)

2 30 45
30 60
30 75

Table 3
Pre-existing crack geometries of flawed specimens with three different flaw angle (a) (Ca

Homogeneity index (m) Flaw angle (a/�) Ligament angle (b/�)

2 30 75
45 75
60 75

Table 4
Pre-existing crack geometries of flawed specimens with seven different homogeneity inde

Homogeneous index (m) Flaw angle (a/�) Ligament angle (b/�)

0.6 30 75
1.1
1.5
2.0
3.0
4.0
5.0
In addition, the approach of damage mechanics is employed to
model the mechanical behaviour of meso-scale elements. For each
element, the material is assumed to be linear elastic, isotropic and
damage-free before loading, with its elastic properties defined by
the elastic modulus and Poisson’s ratio. After the initiation of dam-
age, the elastic modulus of an element is supposed to degrade
monotonically as the damage evolves according to the relation
(Tang et al., 2007; Wang et al., 2011a):

E ¼ ð1� DÞE0 ð2Þ

where D represents the damage variable; and E and E0 are the
elastic modulus of the damaged and the undamaged material,
respectively.

The constitutive relationship of a mesoscopic element under
uniaxial tension is expressed as (Zhu and Tang, 2006):

D ¼
0 e < et0

1� ftr
E0e

et0 6 e 6 etu

1 e > etu

8><
>: ð3Þ

where ftr is the residual tensile strength, which is given as
ftr ¼ kft0 ¼ kE0et0; ft0 and k are the uniaxial tensile strength and
residual strength coefficients, respectively; et0 is the strain at the
elastic limit, which can be called the threshold strain; and etu is
the ultimate tensile strain at which the element would be
completely damaged. The ultimate tensile strain is defined as
etu = get0, where g is the ultimate strain coefficient. Eq. (3) can also
be expressed as (Zhu and Tang, 2006; Wang et al., 2011a):
gle (b/�) Flaw length (2a/mm) Ligament length (2b/mm) r3/MPa

N/A N/A 0
N/A N/A 5
24 33 0
24 33 0

) (Case II).

Flaw length (2a/mm) Ligament length (2b/mm) r3/MPa

24 33 0
24 33 0
24 33 0

se II).

Flaw length (2a/mm) Ligament length (2b/mm) r3/MPa

24 33 0
24 33 0
24 33 0

xes (m) (Case III).

Flaw length (2a/mm) Ligament length (2b/mm) r3/MPa

24 33 0



(a) Experimental setup (Yang et al. 2008) 

(b) 3D numerical model setup

Type A Type B Type C 

Type A Type B Type C 

Fig. 3. Three types of geometries of flaws for (a) experimental samples and (b) numerical models. Type A is an intact specimen; Types B and C are flawed specimens with
different pre-existing flaws.
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Fig. 4. 3D numerical predictions for sample at peak stress of stress–strain curve in Fig. 5, compared with experimental results (Type A) (m = 2). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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3D numerical prediction (uniaxial displacement control) (Type A).
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D ¼

0 e < et0

1� ket0
e et0 6 e 6 etu

1 e > etu

8>>><
>>>:

ð4Þ

In addition, it is assumed that the damage of mesoscopic elements
under multiaxial stress conditions is also isotropic and elastic (Tang,
1997). Under multiaxial stress states, the element can still be dam-
aged in the tensile mode when the equivalent major tensile strain �e
exceeds the threshold strain et0. The equivalent principal strain �e is
defined as (Zhu and Tang, 2006):

�e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he1i2 þ he2i2 þ he3i2

q
ð5Þ
Fig. 6. Simulated horizontal sections of the spec
where e1, e2 and e3 are the principal strains and h i denotes Macau-
lay’s function:

hxi ¼
x x P 0
0 x < 0

�
ð6Þ

The constitutive law for an element subjected to multiaxial stresses
can be obtained by substituting the equivalent strain �e for the strain
e in Eqs. (3) and (4). The damage variable then becomes (Wang et al.,
2012a,b):

D ¼

0 �e < et0

1� ket0
�e et0 6 �e 6 etu

1 �e > etu

8>>><
>>>:

ð7Þ

In shear failure mode, the damage variable D can be described as
follows (Zhu and Tang, 2006):

D ¼
0 �e < ec0

1� rrc
E0�e

�e P ec0

(
ð8Þ

where rrc is the peak strength of the element subjected to uniaxial
compression and rc0 is the compressive stress at the point of shear
failure.

It is noted that, when considering the effect of the intermediate
principal stress, the traditional Mohr–Coulomb strength criterion
is not valid (Mogi, 1967). Therefore, in the current study, a simpli-
fied unified strength criterion, which is referred to as the twin
shear failure criterion, is adopted (Yu, 2004):

F ¼ r1 � a
2 ðr2 þ r3Þ ¼ rt r2 6

r1þar3
1þa

F ¼ 1
2 ðr2 þ r3Þ � ar3 ¼ rt r2 >

r1þar3
1þa

ð9Þ

where r1, r2 and r3 are the major, intermediate and minor princi-
pal stresses, respectively, and a is the influence coefficient of the
intermediate principal stress.
imen at 95% peak stress (Point B in Fig. 5).



Fig. 7. Simulated vertical sections of the specimen at 95% peak stress (Point B in Fig. 5).
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principal stress 

(b) Acoustic 
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(c) Vertical 
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2008)

Fig. 8. 3D numerical results for sample (Type A) with confining pressure of 5 MPa and m = 2. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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In RFPA3D, the failure (or damage) in every element is assumed
to be the source of an acoustic event because the failed element
must release its elastic energy stored during the deformation.
Therefore, by recording the number of damaged elements and
the associated amount of energy release, RFPA3D is capable of sim-
ulating acoustic emission (AE) activities, including the AE event
rate, magnitude and location. The accumulative damage, D can
be calculated by the following equation:

D ¼ 1
N

Xs

i¼1

ni ð10Þ

where s is the number of calculation steps, ni is the damaged
elements in the ith step and N is the total number of elements in
the model. In addition, when the element fails, the energy released
is calculated using the relation (Tang et al., 2007).

Wi ¼
1

2E
ðr2

1 þ r2
3 � 2mr1r3ÞV ð11Þ

where i is the element number, Wi is the released elastic strain en-
ergy, E is the elastic modulus, r1 and r3 are the major and minor
principle stresses respectively, m is Poisson’s ratio, and V is the ele-
ment volume (Tang et al., 2007). AE activity indicates the extent of
the local damage in the medium, which is directly associated with
the evolution and propagation of fractures. By recording the counts
of all failed elements and released energies when failure occurs, the
AE phenomena associated with the progressive failure process can
be simulated.
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In RFPA3D, the specified displacement (or load) is applied to the
specimen incrementally. If some elements are damaged in a partic-
ular step, their reduced elastic modulus at each stress or strain le-
vel is calculated using the above damage variable D as well as Eq.
(2). The calculation is then restarted under the current boundary
and loading conditions to redistribute the stresses in the specimen
until no new damage occurs. Finally the external load (or displace-
ment) is increased and is used as input for the next step of the
analysis. Therefore, the progressive failure process of a brittle
material subjected to gradually increasing static loading can be
simulated. A user-friendly pre- and post-processor is integrated
in RFPA3D to prepare the input data and display the numerical
results.

3. Setup of numerical model

Fig. 1 shows the setup of the numerical model. In the numerical
model the size of the specimen and the alignment of the two 3-D
macroscopic pre-existing flaws are designed to match those in
the experimental tests of Yang et al. (2008). Both the uniaxial
and conventional triaxial compression experiments for intact and
flawed marble samples are simulated numerically. The diameter
and height of the specimen is 50 and 100 mm, respectively. In
Fig. 1, Fig. 2a is the flaw length; 2b is the distance between the tips
(a) Maximum 
principal stress 

(b) Acoustic 
Emission

Fig. 10. 3D numerical results for rock specimen (Type B) subjected to uniaxial compre
references to color in this figure legend, the reader is referred to the web version of thi
of the two internal flaws, which is defined as the ligament length; a
is the flaw angle; and b is the ligament angle. To simulate open
flaws in rocks, the surfaces of the macroscopic pre-existing flaws
are not allowed to overlap. It is further assumed that there is no
friction between the two surfaces. Elements within the macro-
scopic pre-existing flaws are not removed, but replaced by very
weak elements with very low elastic moduli (i.e. 10�5 MPa) that
can be effectively ignored (Liang et al., 2012). The specimens were
meshed into 3.14 � 702 � 140 = 2,160,900 finite elements. Fig. 2
shows the 3-D hexahedral element distribution in the numerical
model. The uniaxial compression strength and elastic modulus of
each hexahedral element is assumed to follow the Weibull distri-
bution. A displacement control of 0.002 mm per step was applied
axially on the top and bottom of the specimen in order to obtain
the total stress–strain response.

In total, three cases are considered. In Case I, in order to evalu-
ate the numerical model against experimental results, three types
of flaw geometries are considered. Type A is the case of intact mar-
ble without macroscopic pre-existing flaws, whereas Types B and C
represent are pre-cracked samples with different flaw geometries.
Table 1 describes the pre-existing crack geometries of the flawed
specimens. The flaw angles, ligament angles, flaw lengths and lig-
ament lengths are the same as those in the experimental samples
tested by Yang et al. (2008). In order to simulate the coarse and
(c) Vertical 
deformation

(d) Experimental 
result (Yang et al. 

2008)

ssion with m = 1.5, compared with experimental result. (For interpretation of the
s article.)
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Fig. 12. Numerically simulated crack evolution in middle vertical slice in Type B specimen.
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Fig. 13. Numerically simulated failure modes of specimens with different 2b (Type B).
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medium marble in the experimental tests, the homogeneity index
(m) is chosen as 1.5 and 2 to describe the coarse and medium mar-
ble, respectively. A detailed discussion on the effect of the homoge-
neous index (m) on the failure modes of the rock specimens will be
given in Case III. The initial mean values of the uniaxial compres-
sive strength, elastic modulus and Poisson’s ratio for coarse marble
were set as 69.83 MPa, 45.54 GPa and 0.25, respectively; and for
the medium marble as 119.3 MPa, 49.9 GPa and 0.25, respectively
(Yang et al., 2008). The material properties are from this uniaxial
compressive simulation and experimental results (Yang et al.,
2008). Both the failure pattern and the strength of the numerical
specimens and marble specimens used in experiments are more
or less the same. Thus, these strength parameters are used in
numerical model. It is noted that it is not safe to directly use the
macroscopic experimental values as the elemental values in the
numerical model. The relationship between them can be seen in
Liang et al. (2012).

In Case II, the effect of different ligament angles on the failure
modes of the specimen and the total stress–strain response was
studied by numerical simulations. In this case, the flaw angle
was kept at 30�, while the ligament angles varied as 45�, 60� and
75� (see Table 2). As a comparison, the ligament angle was also
kept constant while the flaw angle was changed from 30� to 60�
(see Table 3), so as to study the influence of the latter. In Case III,
seven different homogeneous indexes (m) are considered. They
are 0.6, 1.1, 1.5, 2.0, 3.0, 4.0, 5.0 (see Table 4). According to the
Weibull distribution function given in Eq. (1), the higher m values
correspond to more homogeneous specimens.
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4. Numerical results and discussions

4.1. Experimental evaluation of numerical model (Case I)

In order to validate RFPA3D, the experimental results of Yang
et al. (2008) obtained from cylindrical marble samples described
in Table 1 are used. Fig. 3 shows the three types of geometries of
the (a) experimental samples and (b) numerical models. Type A
is an intact specimen, whereas Types B and C contain different
macroscopic pre-existing flaws.
4.1.1. Numerical results for rock specimen (Case I-Type A)
Fig. 4 shows the 3-D numerical results of the specimen obtained

at the peak stress of the stress–strain curve shown in Fig. 5.
Fig. 4(a)–(d) show the maximum principal stress distribution, AE
distribution, vertical deformation and the final failure mode of
the experimental specimen (Yang et al., 2008), respectively.
Comparing Fig. 4(a), (c) and (d), the numerical failure predictions
agree well with the experimental results. In particular, the final
macro-failure mode is one of shear failure. Fig. 4(b) shows many
small red or blue spheres with different diameters. The red spheres
represent an AE event due to micro shear damage; the blue ones
represent an AE event due to tensile damage; and the diameter
of the spheres is proportional to the AE energy released. This plot
(a) Maximum 
principal stress 

(b) Acoustic 
Emission

Fig. 15. 3D numerically simulated results of sample (Type C) subjected to uniaxial comp
references to color in this figure legend, the reader is referred to the web version of thi
indicates that, under uniaxial compression, both tensile and shear
damage occurs, but the latter is dominant in the overall failure pro-
cess of the specimen.

Fig. 5 compares the numerical and experimental stress–strain
curves. The two curves almost overlap before reaching the yield
point (Point C). After the yield point, the experimental curve is a
little higher than the numerical curve, but the peak stress is almost
the same. After the peak point, the numerical curve drops more
dramatically than the experimental result. This can be explained
by the fact that the homogeneity index (m) of 2 does not com-
pletely represent the heterogeneity of the marble in the experi-
mental tests, though the peak stress of the two curves is almost
the same. This is also one reason why the predicted final failure
mode is not identical to that observed in the experimental tests,
though the failure modes are qualitatively the same. As for the ef-
fect of m value on the failure modes and the uniaxial compression
strength of specimens will be discussed in Section 4.3.

Fig. 4 also shows that, due to the heterogeneity of the rock spec-
imen, the failure modes are not axi-symmetric in either the exper-
imental or numerical results. Experimental tracking of the 3D crack
evolution can be obtained using X-ray computer-tomography (CT)
(Bésuelle et al., 2000). However, the cost of X-ray CT is still very
high. On the other hand, it is straightforward to use the RFPA3D
model to estimate the internal micro-damage distribution of the
specimen. For example, the horizontal sections of the specimen
shown in Fig. 6, and the vertical sections in Fig. 7, indicate the
(c) Vertical 
deformation

(d) Experimental 
result (Yang et al. 

2008)

ression with m = 1.5, comparing with experimental result. (For interpretation of the
s article.)
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Fig. 17. Numerically simulated axial stress–strain curve and the corresponding acoustic emission (AE) counts for Type C specimen.
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Fig. 18. Numerically simulated fracture evolution in middle vertical slice in Type C specimen.
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internal micro-damage distributions at 95% peak stress level (Point
B in Fig. 5). The micro-damage distribution in Fig. 6 is not axi-sym-
metric from top to bottom, due to the shear failure mode. Likewise,
in Fig. 7, the micro-damage distribution is not axi-symmetric from
front to back, due to the heterogeneity of the rock specimen.

Fig. 8 presents the numerical failure modes of the specimen
with a confining pressure of 5 MPa. Due to the effect of the latter,
the macro-shear failure mode is more pronounced, though another
less distinct shear crack is oriented about 80–90� (normal) to the
main shear crack (see Fig. 8(a) and (c)). Although the secondary
shear crack was not observed from the surface of the marble in
the experimental tests (Fig. 8(d)), the dominant macro-shear crack
is quantitatively the same as the numerically simulated one.
Fig. 8(b) shows the AE distribution. This plot indicates that the
shear damage (marked by red spheres) again dominates, because
the confining pressure restrains the growth of the tensile damage.
The numerical and experimental stress–strain curves, shown in
Fig. 9, almost overlap before the peak stress is reached. The post-
peak curves for this case show a pronounced softening, unlike
the brittle behaviour for the uniaxial compression sample in
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Fig. 5. This phenomenon from brittle to ductile transition was dis-
cussed by Rutter (1986) in details. As expected, due to the confin-
ing pressure, the peak stress in Fig. 9 is much higher than that for
the case of uniaxial compression (Fig. 5). It is noted that the
numerically simulated post-peak stress softening so rapidly as
compared to the experimental values is likely due to the input
residual strength coefficients (k) in Eq. (3). As there are no corre-
sponding residual strength coefficients in Yang et al. (2008), the
current input value of k is 0.3, which is likely lower than the real
residual strength coefficient. In addition, the softening of post-peak
stress is also affected by the confining pressure and the heteroge-
neity of material, which can be seen in Wang et al. (2012b).

4.1.2. Numerical results for rock specimen (Case I-Type B)
For Type B, the flaw length (2a) and ligament length (2b) are 24

and 33 mm, respectively. The flaw angle (a) and ligament angle (b)
are 30� and 38�, respectively. Fig. 10(a)–(c) show the numerical
(α=30ο β=4

(α=30ο β=

(α=30ο β=7

90% Pre-80% Pre-peak stress ssertskaep-erP%07

90% Pre80% Pre-peak stress ssertskaep-erP%07

90% Pre-p80% Pre-peak stress ssertskaep-erP%07

Fig. 19. Numerically simulated the effect of ligament angle (b) on the f
results for the rock specimen with macroscopic pre-existing flaws
(Type B). Fig. 10(d) is the corresponding experimental result.
Fig. 10(c) shows that the wing (tensile) cracks grow almost nor-
mally to the macroscopic pre-existing flaws. From the surface of
the specimen, it appears that the shear cracks between the two
macroscopic pre-existing flaws do not occur. Accordingly, it seems
no macroscopic crack coalescence is observed during the whole
failure process. Fig. 10(b) shows the AE distribution, where the
shear damage (represented by red spheres) dominates with only
a modest amount of tensile damage (small blue spheres) along
the macroscopic pre-existing flaws. In Fig. 11, the numerical
stress–strain curve is very similar to the experimental one. It is
noted that from these two curves, two slightly different peak stres-
ses are observed.

Fig. 12 shows the simulated internal crack evolution in the mid-
dle cross-section of the specimen. The selected figures are related
to the points indicated in the stress–strain curve in Fig. 11. From
5ο) 

60ο) 

5ο)

100% peak stress peak ssertskaeptsoP%08

100% peak stress -peak ssertskaeptsoP%7

100% peak stress eak ssertskaeptsoP%7

ractures evolutions from two pre-existing flaws (uniaxial loading).
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Fig. 20. Numerically simulated axial stress–strain curves of specimens with the
same flaw angle but different ligament angles (uniaxial loading).
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Fig. 12, with the increase in uniaxial loading, some damaged ele-
ments are observed near the macroscopic pre-existing flaws when
the stress level is about 70% of the peak stress. When the stress
reaches 75% of its peak value, the wing cracks grow from the inter-
nal ends of the two macroscopic pre-existing flaws. Subsequently,
the two wing cracks continue to propagate when the stress level is
at the peak stress (Point E in Fig. 11). After the peak stress is
reached, there is a distinct stress drop to 85% of the post peak
stress (Point F). At this time, new cracks initiate from the two ends
of the two macroscopic pre-existing flaws, and propagate to the
other flaw and coalesce when the stress level reaches the 90% of
the post peak stress (Point H). In Fig. 11, the stress–strain curve in-
creases again to Point H. Comparing Fig. 10c and Fig. 12, the actual
internal crack evolution in the latter is very different to the surface
cracking observed in the former, where no crack interaction can be
observed.

In order to evaluate whether the ligament length (2b) affects
the coalescence of the cracks from the two internal ends of the
macroscopic pre-existing flaws, four numerical tests for the speci-
mens with different ligament lengths (2b) of 16, 26, 36, and 46 mm
were performed. The numerically simulated failure modes for the
specimens, shown in Fig. 13, indicate that with a decrease in the
ligament length (2b) the coalescence of the surface cracks can be
observed clearly. When 2b is set to 16 mm, the growth of the wing
(tensile) cracks is restrained, but the shear cracks between the
macroscopic pre-existing flaws propagate and then coalescence.
The axial stress–strain curves of the four numerical tests, shown
in Fig. 14, indicate that the first peak stresses for the four cases
are almost the same. However, with the ligament length is de-
creased, the second peak stresses also decrease. Indeed, when 2b
is 26 mm there is not obvious second peak stress, whereas when
2b is 16 mm there is no peak stress at all. As discussed in Fig. 12,
the second peak stress actually represents the further loading
needed to cause the cracks between the macroscopic pre-existing
flaws to coalesce. For the case of 2b equal to 16 mm, the short lig-
ament length enables the cracks to coalesce easily from the two
ends of the macroscopic pre-existing flaws.

4.1.3. Numerical results for rock specimen (Case I-Type C)
For the Type C tests, the flaw length (2a) and ligament length

(2b) is 24 and 33, respectively, while the flaw angle (a) and the lig-
ament angle (b) is fixed at 45� and 61�. Compared with the Type B
cases, the flaw length and the ligament length are the same, but the
flaw angle and ligament angle are different. From Fig. 15(a) and (c),
the numerically simulated shear failure mode is in good agreement
with the experimental observations give in Fig. 15(d). In this case,
almost no wing cracks are observed; only shear cracks grow from
the two ends of the macroscopic pre-existing flaws and then coa-
lescence. However, from the AE distribution of Fig. 15b, both shear
damage (red spheres) and tensile damage (blue spheres) are ob-
served. This indicates that macro-shear failure can be formed by
both micro-tensile and shear damage, but the latter dominates.
In addition, Fig. 16 shows that the numerically simulated axial
stress–strain curve is in agreement with the experimental results
of Yang et al. (2008).

Fig. 17 shows the numerically simulated axial stress–strain
curve, as well as the corresponding AE and accumulated AE counts.
Fig. 18 shows the numerically simulated evolution of the internal
cracks in the middle slice of the specimen. The selected figures
are related to the points in the stress–strain curve of the numerical
simulations in Fig. 17. From this Figure, with an increase in the ap-
plied uniaxial loading, the stress increases almost linearly with the
axial strain prior to reaching the peak stress at point E. Simulta-
neously, the AE counts increase gradually up to the peak stress
point, where a distinct stress drop occurs and there is sudden surge
in the AE counts. From Fig. 18, it is evident that the internal cracks
in the middle slice of the specimen firstly grow along the axis of
the vertical compression stress, from Point A to Point B. When
the stress level reaches 90% of the peak value (Point C), shear
cracks start to grow and damage a rock bridge (Wong and Chau,
1998) in stages D and E. In stage F, the shear cracks coalescence.

4.2. Numerical simulations of the effect of the flaw angle and ligament
angle on the failure modes and uniaxial compression strength (Case II)

In the experimental tests conducted by Yang et al. (2008), the
effect of the flaw angle and the ligament angle on the final failure
mode and the uniaxial compression strength was not considered.
These issues will now be investigated numerically using RFPA3D.

Fig. 19 shows the numerically simulated crack evolutions from
the macroscopic pre-existing flaws with the same flaw angle but
different ligament angle. When a is 30� and b is 45�, cracks initiate
as wing cracks and propagate gradually along the direction of the
vertical compression stress. After the peak stress is passed, some
shear cracks grow and coalesce. When the ligament angle (b)
increases to 60�, no wing cracks are observed, but the shear cracks
grow from the two ends of the macroscopic pre-existing flaws and
coalescence finally at the peak stress. For a further increase of the
ligament angle to 75�, the macroscopic pre-existing flaws are in the
same line and the shear cracks initiate, propagate and coalescence.
Thus the two macroscopic pre-existing flaws are connected by
shear cracks between them. Fig. 20 illustrates the three numeri-
cally-simulated axial stress–strain curves. The peak stress shows
a moderate increase as the ligament angle increases from 45� to
75�. This indicates that wing tensile cracks dominate for a ligament
angle of 45�, and lower the uniaxial compression strength. As a
comparison, the ligament angles of 60� and 75� cause a failure
mode which is dominated by shear cracks, resulting in higher
uniaxial compression strengths.

Fig. 20 shows the numerically simulated crack evolutions from
the macroscopic pre-existing flaws with the same ligament angle
but different flaw angles. Fig. 21 suggest that when the ligament
angle (b) is 75� and the flaw angle (a) is 30� or 45�, wing cracks
do not occur, but shear cracks grow from the two ends of the
macroscopic pre-existing flaws and eventually coalescence. For
the case of a flaw angle of 60�, the cracks do not initiate the ends
of the flaw, but from the middle, and then propagate to the flaw
below. Finally, a shear band forms and connects the macroscopic
pre-existing flaws. The numerically simulated axial stress–strain
curves, plotted in Fig. 22, show that the peak stress is the lowest
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for a flaw angle of 45� and highest for a flaw angle of 60�. These
numerical results are in broad agreement with the other experi-
mental and numerical findings (Tien et al., 2006; Wang et al.,
2012b).

4.3. Numerical simulations of the effect of heterogeneity on the failure
modes and uniaxial compression strength (Case III)

As indicated previously, it is difficult to control the heterogene-
ity of a cylindrical marble specimen in laboratory testing, with only
the simple description of ‘‘coarse’’ and ‘‘medium’’ being adopted
(see Fig. 23). In this section, to study the effect of the heterogeneity
on the failure mechanism, different homogeneity indexes of 0.6,
1.1, 1.5, 2.0, 3.0, 4.0 and 5.0 were selected. For each of these cases,
the final stage of failure of the specimen (Fig. 24), plots of the axial
stress–strain response (Fig. 27), and the corresponding
AE/Accumulated AE counts (Fig. 28) are examined under uniaxial
compression.
(α=30ο β=7

(α=45ο β=7

(α=60ο β=

90% Pre-pea80% Pre-peak stress ssertskaep-erP%07

90% Pre-80% Pre-peak stress ssertskaep-erP%07

90% Pre80% Pre-peak stress 70% Pre-peak stress 

Fig. 21. Numerically simulated the effect of flaw angle (a) o
In Fig. 24, for the heterogeneous rock (e.g. m = 0.6 or 1.1), many
micro-cracks are distributed around the main cracks. Fig. 25 shows
the crack evolutions and corresponding AE distribution for the mid-
dle slice of the rock specimen. From this Figure, it appears that mi-
cro-cracks occur not only near the macroscopic pre-existing flaws,
but also randomly throughout the whole specimen prior to reaching
60% of the peak stress level. As the uniaxial compression is in-
creased, the micro-cracks start to cluster around the main shear
cracks between the two macroscopic pre-existing flaws. When the
stress level reaches its peak, the main shear cracks coalescence to
form a shear band connecting the macroscopic pre-existing flaws.
It appears that both tensile cracks (red spheres) and shear cracks
(blue spheres) contribute to the final failure of the rock specimen,
and are observed in the AE distribution plots. For the stress–strain
plots with m = 0.6 and 1.1, shown in Fig. 27, the yield points occur
at a relatively low stress level, and the post-peak curves show obvi-
ous plastic behaviour. However, for the relatively homogeneous
rock (e.g. m = 1.5 and 2.0), the number of micro-cracks around the
5ο)

5ο)

75ο)

100% peak stress k stress ssertskaeptsoP%7

100% peak stress peak ssertskaeptsoP%6

100% peak stress -peak 9% Post peak stress 

n the fractures evolutions from two pre-existing flaws.



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

5

10

15

20

25

30

35

40

45  Flaw angle=30o and Ligament angle=75o

 Flaw angle=45o and Ligament angle=75o

 Flaw angle=60o and Ligament angle=75o

M
ax

 p
rin

ci
pa

l s
tre

ss
 - 

M
in

 p
rin

ci
pa

l s
tre

ss
 (M

Pa
)

Axial strain (10-3)

Fig. 22. Numerically simulated axial stress–strain curves of specimens with the
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Fig. 23. Experimental results of failure of medium a
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Fig. 24. Numerically simulated failure mode of specimens with different homogene
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main shear cracks between the macroscopic pre-existing flaws is re-
duced (see Fig. 24). Comparing with the cases which have lower m
values of 0.6 and 1.1, the yield point rises, but the post-peak curves
show a distinct brittle behaviour. Indeed, the stress–strain plots dis-
play a sharp drop after passing the peak stress.

For the highly homogeneous rock (e.g. m = 3, 4 and 5), the num-
ber of micro-cracks developed is much lower and more concen-
trated. For example, Fig. 26 shows the crack evolutions and the
corresponding AE distribution for the middle slice of the rock spec-
imen. At a stress level equal to 85% of the peak value, only a few
micro-cracks are concentrated the macroscopic pre-existing flaws,
which is indicated by the fewer and smaller red/blue spheres in the
corresponding AE distribution plot. When the stress levels reaches
90% of the peak stress, the main shear cracks initiate and propagate
from the two ends of the macroscopic pre-existing flaws. No mi-
cro-cracks around the main shear cracks are observed, which is
very different from the cases with lower m values of 0.6 and 1.1.
This also can be confirmed from the corresponding AE distribution
plot, where no red/blue spheres are found around the shear band.
Coarse marble 

nd coarse marble specimens (Yang et al., 2008).

m=1.5 m=2.0

m=5.00

ous index (m) of 0.6, 1.1, 1.5, 2.0, 3.0, 4.0 and 5.0, respectively (a = 30� b = 75�).
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Fig. 25. Numerically simulated fractures evolution and the corresponding AE distribution from two pre-existing flaws in a cylindrical specimen (m = 0.6) (a = 30� b = 75�).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

100% peak stress 95% Pre-peak stress 90% Pre-peak stress 85% Pre-peak stress 3% Post peak stress 
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Fig. 26. Numerically simulated fractures evolution and the corresponding AE distribution from two pre-existing flaws in a cylindrical specimen (m = 5.0) (a = 30� b = 75�).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 27. Numerically simulated axial stress–strain curves of specimens with
different homogeneity index (m) of 0.6, 1.1, 1.5, 2.0, 3.0, 4.0 and 5.0, respectively
(a = 30� b = 75�).
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Various numerically-simulated axial stress–strain curves are
shown in Fig. 27. These show that the relatively heterogeneous
rocks (e.g. m = 0.6 or 1.1) have a gentler post-peak behaviour. For
increasingly homogeneous rocks with higher m (e.g. m = 1.5, 2, 3,
4, or 5), the behaviour becomes increasingly brittle and the peak
stress (or strength) of the specimens increases. As a result, the
curve becomes more linear and the post-peak loss in strength is
also more precipitous. Clearly, the axial stress–strain curves de-
pend strongly on the heterogeneity of the specimens. This can be
explained by noting that, with an increase in m, the Weibull distri-
bution (Eq. (1)) dictates that the Young’s modulus and uniaxial
compression strengths of more of the elements will be clustered
around x0. Thus, more elements with a high Young’s modulus
and uniaxial compression strength will be distributed in the rock
mass, and higher applied loads will be needed to cause damage
to such elements. This is the reason why the peak stress increases
dramatically with m in Fig. 27.

Finally, Fig. 28 shows the cumulative number of AE events
when the homogeneity index (m) increases from 0.6 to 5. Accord-
ing to the Weibull distribution in Eq. (1), a larger value of m implies
a more homogeneous material and vice versa. Under the same
loading and boundary conditions, fewer damaged elements will oc-
cur in the more homogeneous material. This is confirmed in Fig. 28,
where the cumulative number of AE events decreases as m in-
creases. For instance, when m = 0.6 and 1.1, the final cumulative
number of AE events is 142,109 and 128,703, respectively. When
m is 3, 4 and 5, the final cumulative number of AE events is
68216, 61161 and 60405, respectively.
5. Conclusions and discussions

A three-dimensional numerical model (RFPA3D) was intro-
duced to investigate the failure process and uniaxial compression
strength of cylindrical rock specimens with two macroscopic
pre-existing flaws. The main feature of RFPA3D is that it can sim-
ulate the evolution of cracks in three-dimensional space, which is
much more complex than the two-dimensional crack regimes that
commonly studied. Tensile or shear cracks were simulated when
certain local stress conditions were exceeded. Another unique
feature of this model is that no priori assumptions are necessary
about where and how cracks occur. Moreover, the model is able
to capture the heterogeneity of rock specimens using a probabilis-
tic variation of its mechanical properties.

Numerical results show that, for an intact specimen under
uniaxial compression, both tensile and shear damage occurs. In
general, shear damage dominates the failure process because the
confining pressure restrains the growth of tensile damage. The
simulated failure mode and uniaxial compression strength are in
agreement with the experimental results reported by Yang et al.
(2008). The numerical simulations are able to model the evolution
of internal cracks inside the rock specimen. Due to the effects of
heterogeneity, the micro-damage distributions are not axi-sym-
metric from top-to-bottom and from front-to-back.

For specimens with macroscopic pre-existing flaws, the simu-
lated surface failure modes and uniaxial compression strength also
agree with the experimental results. Moreover, the internal crack
evolution process was simulated successfully. Although the coales-
cence of the cracks between macroscopic pre-existing flaws cannot
be easily observed in laboratory testing, they can be predicted by
numerical modelling. The effect of the ligament length on the
coalescence of cracks was investigated numerically, and the pre-
dictions agreed well with experimental tests of Yang et al. (2008).

In addition, the numerical results show that both the flaw angle
and the ligament length can affect the final failure modes and the
uniaxial compression strength of the rock specimen. The uniaxial
compression strength increases slightly with increasing ligament
angle. The uniaxial compression strength is the lowest when the
flaw angle equals 45�. These numerical results are in agreement
with the corresponding experimental results reported by Tien
et al. (2006) and Wang et al. (2012b).

The numerical results also show that the higher the homogene-
ity index (m), the higher the strength of the specimen is. As m
increases, the stress–strain curve becomes more linear and the
post-peak loss strength is also more precipitous. During the failure
process of specimens, the cumulative number of acoustic emission
events increases with increasing m values.

It is noted that the initiation and propagation of flaws in 3D
space are affected by many factors, such as flaw orientation, flaw
thickness, flaw depth, the friction and sliding on slip surfaces of
the flaws, the heterogeneity of material and loading style. The
numerically simulated failure modes do not appear always to com-
pare very convincingly with the experimental depiction of these as
presented in the paper. Therefore, this numerical model needs fur-
ther experimental and theoretical analysis. For example, the input
homogeneous index (m) in the numerical model will be further
validated quantitatively by experimental tests. Furthermore, in
the RFPA simulation, the mesh dependency is unavoidable, which
has been detailed in previous publications. However, if the rock
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specimen is simulated with the relatively small element size, the
mesh dependency is ignorable to some degree. Under this small
size of elements, the mesh dependency may affect the quantity
of the numerical results. We just use an optimal element size here
to address the crack issues here, while the numerical issues related
with element size and its effects will be addressed in an alternative
paper. Nevertheless, the numerical results demonstrate many phe-
nomena that have already been shown in laboratory experiments.
This study highlights some interesting phenomena for improving
the understanding of the mechanism of 3D rock fracturing.
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