Criteria for Permutability to Be Transitive in Finite Groups

James C. Beidleman

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506
E-mail: clark@ms.uky.edu

Ben Brewster

Department of Mathematics, Binghamton University, P.O. Box 6000, Binghamton, New York 13902-6000
E-mail: ben@math.binghamton.edu

and

Derek J. S. Robinson

Department of Mathematics, University of Illinois in Urbana–Champaign, 1409 West Green Street, Urbana, Illinois 61801
E-mail: robinson@math.uiuc.edu

Communicated by Walter Feit

Received February 10, 1999

A group G is a PT-group if, for subgroups H and K with H permutable in K and K permutable in G, it is always the case that H is permutable in G. It is shown that a finite group is a soluble PT-group if and only if each subgroup of a Sylow subgroup is permutable in the Sylow normalizer. © 1999 Academic Press

1. INTRODUCTION

A subgroup H of a group G is said to be permutable (or quasinormal) if $HK = KH$ for all subgroups K of G. Thus permutability is a weak form of normality. Now permutability, like normality, is not a transitive relation. Our interest here lies in groups in which permutability is transitive, that is,
groups G such that H permutable in K and K permutable in G imply that H is permutable in G. Such groups are called PT-groups. It is understood that all groups in this article are finite.

According to a well-known theorem of Ore [5] a permutable subgroup is subnormal. Therefore, PT-groups are precisely the groups in which each subnormal subgroup is permutable. Consequently PT-groups include all groups in which normality is transitive, the so-called T-groups, which have been widely studied (see for example, [1, 7, 8]).

The structure of soluble PT-groups was determined by Zacher [10] in 1964. He showed that these are exactly the groups with an abelian normal Hall subgroup L of odd order such that G/L is a nilpotent modular group and the elements of G induce power automorphisms in L. The corresponding theorem for soluble T-groups is due to Gaschütz [1]; here one has to replace “nilpotent modular” in Zacher’s theorem by “Dedekind.” These results provide evidence that PT-groups are quite close to T-groups, although they are much harder to work with. It is an easy consequence of these theorems that the classes of soluble PT-groups and soluble T-groups are subgroup closed.

Our main object here is to provide necessary and sufficient conditions on the Sylow structure for a group to be a soluble PT-group. For this purpose we introduce the condition

$$X_p.$$

Here a group G satisfies X_p if and only if each subgroup of a Sylow p-subgroup P of G is permutable in the normalizer $N_G(P)$. Since subgroups of soluble PT-groups are PT-groups, it is clear that a soluble PT-group must satisfy X_p for all primes p. The interesting question is whether the converse is valid. Our main result confirms that this is true.

Theorem A. A group G is a soluble PT-group if and only if it satisfies X_p for all primes p.

To prove this result we need to study intensively the property X_p and its consequences for the group structure. Some of these are quite surprising and indicate that X_p “nearly” implies p-nilpotence.

Theorem B. A group G satisfies X_p if and only if either G is p-nilpotent or a Sylow p-subgroup P of G is abelian and every subgroup of P is normal in $N_G(P)$.

For the smallest prime divisor of the group order one has a stronger result.

Theorem C. Let p be the smallest prime divisor of the order of G. Then G has X_p if and only if G is p-nilpotent and Sylow p-subgroups of G are modular.
The above theorems are to be compared with several results about soluble T-groups obtained by the third author [7] some 30 years ago. In these results the role of X_p is played by a stronger property C_p: every subgroup of a Sylow p-subgroup is normal in the Sylow normalizer. For example, it is shown in [7] that a group G is a soluble T-group if and only if it satisfies C_p for all primes p.

Finally, a connection between X_p and pronormality is established. Recall that a subgroup H is pronormal in a group G if, for any element g in G, the subgroups H and H^g are conjugate in $\langle H, H^g \rangle$.

Peng [6] and the third author [7] proved that a group G is a soluble T-group if and only if each subgroup of prime power order is pronormal in G. Thus one might ask whether the condition X_p is related to the pronormality of certain p-subgroups of G. This question is answered in Theorem D.

Theorem D. A group G satisfies X_p if and only if a Sylow p-subgroup P of G is modular and every normal subgroup of P is pronormal in G.

This result has the virtue of showing that X_p is a subgroup closed property, a fact that is not evident from the definition.

All four theorems depend on the classification of modular p-groups given by Iwasawa [3] (see also 2.3.1 of [9]). These are either Dedekind groups or else p-groups of the form

$$G = \langle x, A \rangle$$

where A is an abelian group and $a^r = a^{1 + r}$ with $r \geq 1$ (and $r \geq 2$ if $p = 2$) for all $a \in A$.

The organization of the paper is as follows. In Section 2 we give a succinct proof of Zacher's theorem with some consequences. Section 3 contains results indicating how close the classes of soluble PT-groups and soluble T-groups are. The proofs of the main theorems appear in Sections 4 and 5.

2. A PROOF OF ZACHER'S THEOREM

Theorem 1 (Zacher [10]). A soluble group G is a PT-group if and only if it has an abelian normal Hall subgroup L of odd order such that G/L is a nilpotent modular group and elements of G induce power automorphisms in L.

Proof. Let G be a PT-group.

(1) If N is a normal p-subgroup of G and p is a prime, then the p'-elements of G induce power automorphisms in N.

For let $a \in N$ and let x be a p'-element of G. Then $a^{(x)} = a^{(x)} \cap \langle a \rangle \langle x \rangle = \langle a \rangle$ since $a^{(x)} \cap \langle x \rangle \subseteq N \cap \langle x \rangle = 1$.
(2) \(G \) is supersoluble.

Let \(A \) be a minimal normal subgroup of \(G \), with \(A \) an elementary abelian \(p \)-group, say. Put \(\overline{G} = G/C_{G}(A) \). By (1) we have that \(\overline{D} = O_{p}(\overline{G}) \) is abelian and \(\overline{G}/\overline{D} \) is a \(p \)-group. Thus \(\overline{G} = \overline{D}\overline{P} \) where \(\overline{P} \) is a Sylow \(p \)-subgroup of \(\overline{G} \). Then \(C_{A}(\overline{P}) \neq 1 \) and \(C_{A}(\overline{P}) \) is \(D \)-invariant since the \(p' \)-elements of \(G \) induce power automorphisms in \(A \). Hence \(C_{A}(\overline{P}) \) is normal in \(G \) and so \(C_{A}(\overline{P}) = A \) and \(\overline{P} = 1 \). Therefore \(|A| = p \) by (1) and so \(G \) is supersoluble by induction on \(|G| \).

(3) The hypercommutator \(L = \gamma_{s}(G) \) (i.e., the limit of the lower central series) is an abelian Hall subgroup of \(G \).

The proof is by induction on \(|G| \). Let \(p \) be the largest prime divisor of \(|G| \) and let \(P \) be a Sylow \(p \)-subgroup of \(G \). By (2) \(P \) is normal in \(G \) and by induction \(LP/P \) is an abelian Hall subgroup of \(G/P \). Notice that either \(G = PC_{G}(P) \) or else \(G/C_{G}(P) \) contains non-trivial \(p' \)-elements.

Assume first that \(G = PC_{G}(P) \). Then \(P \leq Z_{s}(G) \), the hypercenter of \(G \). Hence \(G = P \times Q \) where \(Q \) is a Hall \(p' \)-subgroup of \(G \). It follows that \(L = \gamma_{s}(Q) \), \(LP/P \cong L \), and \(L \) is an abelian Hall subgroup of \(G \).

Now assume that \(G/C_{G}(P) \) contains non-trivial \(p' \)-elements; then \(p > 2 \). By (1) \(P = [P, G] \leq L \) and \(G/PC_{G}(P) \) is abelian. Hence \(G' \leq PC_{G}(P) \) and \([P, G'] \leq [P, PC_{G}(P)] \leq P' \). This implies that \(L \) acts trivially in \(P/P' \).

Therefore, \(L \) induces \(p \)-automorphisms in \(P \) and \(P \leq Z_{s}(L) \). From this we conclude that \(L = P \times Q \) where \(Q \) is a Hall \(p' \)-subgroup of \(L \). Assume that \(Q \neq 1 \). By induction \(L/Q \) and \(L/P \) are abelian Hall subgroups of \(G/Q \) and \(G/P \), and hence \(L \) is an abelian Hall subgroup of \(G \).

Therefore, assume that \(Q = 1 \) and \(L = P \). Suppose that \(L \) is non-abelian. Note that \(L \) is modular, so we can write \(L = \langle x \rangle A \) where \(A \) is a normal abelian subgroup of \(L \) and \(x \) induces a power automorphism in \(A \). By (1) every subgroup of \(A \) is invariant under the \(p' \)-elements of \(G \) and hence is normal in \(G \). Thus all elements of \(G \) induce power automorphisms in \(A \), which shows that \([A, [L, G]] = 1 \). Hence \([A, L] = 1 \) and \(L \) is abelian.

(4) \(L \) has odd order.

By (1) elements of \(G \) induce automorphisms in \(L_{2} \) with 2-power order. Thus \(L_{2} \leq Z_{s}(G) \), and if \(L_{2} \neq 1 \), then \(L \neq [L, G] \), a contradiction.

(5) All the subgroups of \(L \) are normal in \(G \).

This follows from (1) and (3).

The sufficiency clause of Theorem 1 follows from the next more general result, which is needed later in this work.

Lemma 1. Let \(N \) be a normal Hall subgroup of a group \(G \) and assume that the following hold:

1. \(G/N \) is a \(PT \)-group;
2. every subnormal subgroup of \(N \) is normal in \(G \).

Then \(G \) is a \(PT \)-group.
Proof. Let H be a subnormal subgroup of G. We show that H is permutable. By (2) $H \cap N$ is normal in G and $G/H \cap N$ satisfies (1) and (2). By induction on $|G|$ we can assume that $H \cap N = 1$. By the Schur-Zassenhaus theorem N has a complement M in G and all complements are conjugate to M. Since $\langle |H|, |N| \rangle = 1$ and H is subnormal, $H \leq M$. Also note that $[H, N] = 1$.

It is enough to show that H permutes with any subgroup T of G of order p^n where p is a prime and n is a positive integer. If p divides $|N|$, then $T \leq N$ and $HT = TH$. Assume that $p, |N| = 1$. Then T is contained in some conjugate of M, say M^x, where $x \in G$. By (1) M^x is a PT-group and $H \leq M^x$, so that $TH = HT$ and the result follows.

Corollary 1. Let G be a finite soluble PT-group. Then the following hold:

1. G is metabelian.
2. $\text{Fit}(G)$, the Fitting subgroup of G, equals $\gamma_s(G) \times Z_s(G)$ where $\gamma_s(G)$ is the hypercommutator of G and $Z_s(G)$ is the hypercenter of G.
3. If H is a subgroup of G, then H is a PT-group.
4. If $G' \cap Z(G) = 1$, then G is a T-group. In particular, if $Z(G) = 1$, then G is a T-group.

Proof. Put $L = \gamma_s(G)$. By Theorem 1 L is an abelian Hall subgroup of G and hence it has a complement, say B, in G. Then $G' = LB'$ and $G'' = [L, B'] = 1$ since B induces power automorphisms in L. This establishes (1).

Let $\pi = \pi(G/L)$ and note that L is a Hall π'-subgroup of $\text{Fit}(G)$. Hence $F = \text{Fit}(G) = L \times F_{\pi}$. Now $[F_{\pi, G}] \leq F_{\pi} \cap L = 1$, for some i, which means that $F_{\pi} \leq Z_s(G)$. Also note that $\gamma_s(G) \cap Z_s(G) = 1$, and so $F_{\pi} = Z_s(G)$ and (2) follows. Statement (3) follows from Theorem 1 and Lemma 1.

Finally, assume that $G' \cap Z(G) = 1$. By (1) and (2) $L \leq G' \leq L \times Z_s(G)$, so $G' = L$ and G/L is abelian. Hence G is a T-group by 13.4.5 of [8]. Thus (4) holds.

We remark that (4) of Corollary 1 is not true for insoluble PT-groups.

Example 1. There exists an insoluble PT-group G with trivial center which is not a T-group.

Let $D = PSL_3(25)$. Then D has a diagonal automorphism σ of order 8, and a field automorphism α of order 2. Put $Q = \langle \sigma, \alpha \rangle$, and note that $\sigma^a = \sigma^5 = \sigma^{14}$. Hence Q is a modular 2-group of order 16.

Let G be the semidirect product of D by Q. Then G is semisimple. Let H be a nontrivial subnormal subgroup of G. Then $D \leq H$, so that H is permutable in G since G/D is a PT-group. Thus G is a PT-group, but it is not a T-group since Q is not. Also note that $Z(G) = 1$.
3. SOLUBLE T GROUPS AND SOLUBLE PT GROUPS

As has been observed, every \(T \)-group is also a \(PT \)-group. Moreover the theorems of Zacher and Gaschütz show that the structures of soluble \(PT \)-groups and \(T \)-groups are quite similar, the only difference being that in the \(T \) case \(G/L \) is a Dedekind group.

The following theorem shows that the difference between \(T \)-groups and \(PT \)-groups occurs in the abelian factors.

Theorem 2. Let \(G \) be a \(PT \)-group. Then \(G \) is a \(T \)-group if and only if for each elementary abelian subnormal factor \(H/K \) of order \(p^2 \), with \(p \) a prime, \(N_G(H/K)/C_G(H/K) \) is a \(p' \)-group.

Proof. Assume that \(G \) is a \(T \)-group and let \(H/K \) be a subnormal factor as stated. Then \(H \) and \(K \) are normal in \(G \) and each \(p \)-element of \(G \) acts trivially on \(H/K \) since this is elementary abelian \(p \).

Conversely, assume that the condition holds in \(G \), but \(G \) is not a \(T \)-group. Further, let \(G \) be a counterexample of minimal order. By hypothesis there is a non-normal subnormal subgroup \(H \) of \(G \) with least order. The minimality of \(|G| \) shows that the core of \(H \) in \(G \) is 1. Hence, since \(H \) is permutable, \(H \leq Z_s(G) \) by the Maier–Schmid theorem [4] (see also Theorem 5.2.3 of [9]). Once again using the minimality of \(|H| \), we see that \(H \) is a cyclic \(p \)-group, say \(H = \langle u \rangle \). Since \(H \) is core-free, \(|H| = p \). Now the \(p' \)-elements of \(G \) normalize, and hence centralize, \(H \) since \(H \leq Z_s(G) \). Hence there is a \(p \)-element \(x \) such that \(v = [u, x] \neq 1 \). Also \(Z(G) \neq 1 \), so that \(HZ(G)/Z(G) \) is \(G \)-central. Hence \(v \in Z(G) \). Since \(v^p = [u^p, x] = 1 \), we have \(\langle u, v \rangle = \langle u \rangle \times \langle v \rangle \). Also \(x \) acts non-trivially on \(\langle u \rangle \times \langle v \rangle \). Note that \(\langle u, v \rangle \leq Z_s(G) \), so \(\langle u \rangle \times \langle v \rangle \) is subnormal in \(G \) with order \(p^2 \). This contradicts the hypothesis.

In the next result we show that a soluble \(PT \)-group can be embedded in the direct product of a nilpotent modular group and a \(T \)-group.

Theorem 3. The group \(G \) is a soluble \(PT \)-group if and only if there is a nilpotent modular group \(M \) and a soluble \(T \)-group \(W \) such that:

1. \((|M|, \gamma_s(W)) = 1 \);
2. there is a monomorphism \(\alpha: G \to M \times W \) with \(G^\alpha \) subdirect in \(M \times W \) and \(\gamma_s(W) \leq G^\alpha \);
3. if \(p \) is a prime divisor of \((|M|, |W|) \), then a Sylow \(p \)-subgroup of \(G \) is isomorphic to a Sylow \(p \)-subgroup of \(M \).

Proof. Assume that \(G \) is a soluble \(PT \)-group and put \(L = \gamma_s(G) \). By Theorem 1 \(L \) is an abelian Hall subgroup of \(G \), \(G/L \) is a nilpotent modular group and the elements of \(G \) act by conjugation on \(L \) as power au-
tomorphisms. Moreover, by Corollary 1, \(\text{Fit}(G) = L \times K \) where \(K \) is the hypercenter of \(G \).

Put \(M = G/L \) and \(W = G/K \). Then \(W \) is a \(T \)-group since \(Z(W) = 1 \) by part (4) of Corollary 1. Now \(\gamma_*(W) = LK/K \cong L \) and so \((|\gamma_*(W)|, |M|) = 1 \). Hence (1) holds. The assignment \(g \mapsto (gL, gK) \) is a subdirect embedding \(\alpha \) of \(G \) into \(M \times W \). Moreover, \(\gamma_*(W) = \{(1, gK) | g \in L\} = \{(gL, gK) | g \in L\} \leq G^* \), so that (2) follows. Finally, let \(p \) be a prime divisor of \((|M|, |W|) \). Then \((p, |L|) = 1 \), and thus (3) is established.

Conversely, assume that (1), (2), and (3) hold in \(G \) with \(G \leq M \times W \). Then \(G \) is soluble. By Gaschütz's theorem we see that \(L = \gamma_*(W) = [W', W] \) is a normal abelian Hall subgroup of \(W \) with odd order. Also the elements of \(W \), and hence of \(M \times W \), induce power automorphisms in \(L \). From (1), (2), and (3) it follows that \(L \) is a normal Hall subgroup of \(G \) on which \(G \) acts as power automorphisms. Since \(G/L \) is nilpotent, it is enough by Lemma 1 to show that \(G/L \) is a modular group. Let \(P \) be a Sylow \(p \)-subgroup of \(G/L \). If \(p \) divides \((|M|, |W|) \), then \(P \) is modular by (3). If \(p \) does not divide \((|M|, |W|) \), then \(P \) is isomorphic to a Sylow \(p \)-subgroup subgroup of \(W \) or \(M \). In either case it is modular. Since a direct product of modular \(p \)-groups is modular, \(G/L \) is a nilpotent modular group.

Example 2. The group \(M \times W \) in Theorem 3 need not be a \(PT \)-group. Let \(W \) be a nonabelian group of order 21 and \(M \) an extraspecial 3-group of order 27 and exponent 3. Then \(M \) is a modular group. There are epimorphisms \(\alpha: W \to C_3 \), \(\beta: M \to C_3 \) and \(G = \{(x, y) \in M \times W | x^3 = y^3 \} \) is a subdirect subgroup of \(M \times W \). By Zacher's theorem \(G \) is a soluble \(PT \)-group, but \(M \times W \) is not. Also note that \(G \) is not a \(T \)-group.

4. Proof of Theorems A and C

We begin with three elementary results which are useful in the proofs of Theorems A and C.

Lemma 2. A group \(G \) satisfies \(X_p \) if and only if a Sylow \(p \)-subgroup \(P \) of \(G \) is modular and the \(p \)-elements of \(N_G(P) \) induce power automorphisms in \(P \).

Proof. Assume that \(G \) satisfies \(X_p \). Then a Sylow \(p \)-subgroup \(P \) of \(G \) is clearly modular. Let \(a \in P \) and let \(x \) be a \(p \)-element of \(N_G(P) \). Then \(a^{(x)} = a^{(x)} \cap (a \langle x \rangle) = \langle a \rangle \) since \(P \cap \langle x \rangle = 1 \). Thus \(x \) induces a power automorphism in \(P \). Conversely, these conditions clearly imply that \(G \) satisfies \(X_p \).
Corollary 2. Let G be a group satisfying X_p and let P be a Sylow p-subgroup of G. If either p is the smallest prime divisor of $|G|$ or P is nonabelian, then $N_G(P) = P \times O_{p'}(N_G(P))$.

Proof. Assume that p is the smallest prime divisor of $|G|$. By Lemma 2 $O_{p'}(N_G(P))$ centralizes P and the result follows. Now assume that P is nonabelian. By Hilfssatz 5 of [2] the group of power automorphisms of P is a p-group. Again the result follows.

The next lemma can be established using a simple induction on r.

Lemma 3. Let p be a prime and let $l \geq 1$, $r \geq 0$ be integers, with $l \geq 2$ if $p = 2$. If a is an integer such that $a \equiv 1 \pmod{p}$, then

$$(1 + p^l a)^{p^r} = 1 + p^{r + l} d$$

where $d \equiv 1 \pmod{p}$.

Proof of Theorem C. Assume that G is p-nilpotent and a Sylow p-subgroup P of G is modular. Then $G = PO_{p'}(G)$, and hence $N_G(P) = P \times O_{p'}(N_G(P))$ and G satisfies X_p by Lemma 2.

Conversely, let G be a group satisfying X_p with least order subject to not being p-nilpotent. Here p is the smallest prime divisor of $|G|$. Let P be a Sylow p-subgroup of G. Then by Lemma 2 the p'-elements of $N_G(P)$ centralize P. Hence by Burnside’s criterion (see 10.1.8 of [8]) P is nonabelian and $P \cap G' \neq 1$.

Put $O_{p'}(G/G') = L/G'$. Then $P \cap L = P \cap G'$ is a Sylow p-subgroup of L and P is a Sylow p-subgroup of $N_G(P \cap G')$. Hence $N_G(P \cap G')$ inherits the condition X_p. If $N_G(P \cap G') = G$, then $P \cap G'$ is normal in G. On the other hand, if $N_G(P \cap G') \neq G$, then $N_G(P \cap G')$ is p-nilpotent, and so is $N_L(P \cap L)$. This means that L satisfies X_p, by the first paragraph. If $L \neq G$, then L is p-nilpotent, whence so is G. Thus $L = G$ and $P \leq G'$.

Therefore, there are two cases to consider: (1) $1 \neq P \cap G' \trianglelefteq G$ and (2) $P \leq G'$.

Case 1. $1 \neq P \cap G' \trianglelefteq G$.

Choose N minimal normal in G with $N \leq P \cap G'$. Notice that G/N satisfies X_p and so it is p-nilpotent. Note also that N is the unique minimal normal subgroup of G contained in $P \cap G'$. Moreover $O_{p'}(G) = 1$. Otherwise $G/O_{p'}(G)$, which inherits X_p, is p-nilpotent and hence so is G.

Let $O_{p'}(G/N) = Q_0/N$; then $Q_0 = QN$ where Q is a p'-group and $Q \cap N = 1$. Next let $C = C_Q(N)$. Then $C \trianglelefteq CN \trianglelefteq QN = Q_0 \trianglelefteq G$, so C is subnormal in G. Hence $C \leq O_{p'}(G)$ and $C_Q(N) = 1$.

We next show that G splits over N. Indeed by the Schur–Zassenhaus theorem $Q_0 = QN$ splits conjugately over N. Hence it suffices to show that $C_N(Q) = 1$. Since $[N, Q] \neq 1$, it will follow that $C_N(Q) = 1$ if we can show
that $C_N(Q)$ is normal in $G = PQ$. Let $a \in C_N(Q)$, $b \in P$, and $x \in Q$. Then
$[a^b, x] = [a, x] = b^{-1} \in [a, QN] = 1$ and hence $C_N(Q)$ is normal.

It now follows that P splits over N. Write $P = XN$ with $X \cap N = 1$. Let $a \in N$ and $x \in X$. Since
P is modular, $a^{(x)} = a^{(x)} \cap \langle a \rangle \langle x \rangle = \langle a \rangle(a^{(x)} \cap \langle x \rangle) = \langle a \rangle$. This means that x induces a power automorphism of p-power order in the elementary abelian p-group N. Hence $[N, \langle x \rangle] = 1$ and $N \leq Z(P)$.

Next note that $[N, [P, Q]] = 1$ since $[N, P] = 1$. But $C_N(N) = 1$ and consequently $[P, Q] \leq N$. Therefore $[P', Q] \leq [P, Q, P] \leq [N, P] = 1$. It follows that $P' \triangleleft PQ = G$, so that $N \leq P'$ since $P' \neq 1$ and N is the unique minimal normal subgroup of G contained in $P \cap G'$. Hence $[N, Q] \leq [P', Q] = 1$, a contradiction.

Case 2. $P \leq G'$.

Apply Grün’s First Theorem (see 10.2.1 of [8]) to obtain

$$P = \langle P \cap (N_G(P))^l, P \cap (P')^l | g \in G \rangle.$$

Since p is the smallest prime divisor of $|G|$, we have $N_G(P) = P \times O_p(N_G(P))$, so $P \cap (N_G(P)) = P'$. Hence $P = \langle P \cap (P')^l | g \in G \rangle$. If P is Dedekind, then $|P'| = 2$, so P is generated by elements of order 2, which is false. Since P is modular, Iwasawa’s theorem gives $P = \langle x \rangle A$ where A is a normal abelian subgroup of P and $a^x = a^{l+p'}$ for all $a \in A$, with $l \geq 1$ and $l \geq 2$ if $p = 2$.

Let exp(A), the exponent of A, equal p^k. Then $l < k$ since P is non-
abelian. Now $P' = [A, x] = A^{p'}$, so that exp(P') = p^{k-1}. Thus P can be
generated by elements of order $\leq p^{k-1}$. In several steps we show that this is impossible.

(a) $|P : A| = p^{k-1}$

Let $|P : A| = p'$. Then P/A is cyclic and can be generated by elements of order $\leq p^{k-1}$; therefore $r \leq k - l$. Now $x^{p'} \in A$, and so $[A, x^{p'}] = 1$. Hence, $A((1+p')^{p'-1}) = 1$ and p^k divides $(1+p')^{p'-1} - 1$. By Lemma 3 p^k
divides p^{r+l}, whence $r \geq k - l$.

(b) We can assume A is cyclic of order p^k.

Since exp(A) = p^k, there is an element $a \in A$ whose order is p^k. Hence
$A = \langle a \rangle \times B$ where $B \leq A$. Now B is normal in P and P/B is generated by
elements of order $\leq p^{k-1}$, while A/B is cyclic of order p^k. Hence we can assume $B = 1$.

(c) P splits over $A = \langle a \rangle$.

Let \bar{x} denote the endomorphism $a \mapsto a^x = a^{l+p'}$. Then $H^2(P/A, A) \cong \text{Ker}(1-\bar{x})/\text{Im}(1+\bar{x}+\cdots+\bar{x}^{p'-1})$. Clearly Ker$(1-\bar{x}) = \langle a^{p^{k-1}} \rangle = \langle a^{p} \rangle$.

Also
$$a^{(1+\bar{x}+\cdots+\bar{x}^{p'-1})} = a^l.$$
where \(t = 1 + (1 + p') + \cdots + (1 + p')^{p' - 1} = [(1 + p')^{p'} - 1] / p' \). By Lemma 3 we have \(t = p'd \) where \(d \equiv 1 \pmod{p} \). It follows that \(\text{Im}(1 + \tilde{x} + \cdots + \tilde{x}^{p'} - 1) = A^{p'} = \langle a^{p'} \rangle \) and consequently \(H^2(P/A, A) = 0 \). This means that \(P \) splits over \(A \).

We can now assume that \(P = \langle x \rangle A, \langle x \rangle \cap A = 1, A = \langle a \rangle \), and \(a^t = a^{1+p'} \).

(d) Final step.

Let \(a_0 \in A \) and let \(i, m \) be integers with \(i \geq 0 \) and \(m \geq 0 \). We claim that \((x^{p'} a_0)^{p^m} = x^{p^{i+m}} a_0^{p^m e_m} \) where \(e_m \equiv 1 \pmod{p} \). This holds for \(m = 0 \) with \(e_0 = 1 \). Assume that it holds for \(m \). Then we have
\[
(x^{p'} a_0)^{p^{m+1}} = ((x^{p'} a_0)^{p^m})^p = (x^{p^{i+m} a_0^{p^m e_m}})^p = x^{p^{i+m+1}} (a_0^{p^m e_m})^p.
\]

Here
\[
t = 1 + (1 + p')^{p^{i+m}} + \cdots + ((1 + p')^{p^{i+m}})^{p-1}
= \frac{(1 + p')^{p^{i+m+1}} - 1}{(1 + p')^{p^{i+m}} - 1}
= \frac{p^{i+m+1} d}{p^{i+m} d'}
= pd / d'
\]
where \(d, d' \equiv 1 \pmod{p} \) by Lemma 3. Consequently,
\[
(x^{p'} a_0)^{p^{m+1}} = x^{p^{i+m+1}} a_0^{p^{m+1} e_{m+1}}
\]
where \(e_{m+1} = e_m (d / d') \equiv 1 \pmod{p} \). Hence our claim is established.

It now follows that \((x^{p'} a_0)^{p^m} = 1 \) implies \(a_0^{p^m} = 1 \) since \(\langle x \rangle \cap \langle a \rangle = 1 \). Therefore, every element of \(P \) of order \(p^{k-1} \) belongs to \(\langle x \rangle \langle a^{p'} \rangle \). But \(P \neq \langle x \rangle \langle a^{p'} \rangle \) since \(A \neq \langle a^{p'} \rangle \). This contradiction completes the proof.

Proof of Theorem A. A soluble \(PT \)-group satisfies \(X_p \) for all primes \(p \) by (3) of Corollary 1. Conversely, assume that \(G \) satisfies \(X_p \) for all primes \(p \), and \(G \) is of least order subject to not being a soluble \(PT \)-group.

Let \(p \) be the smallest prime divisor of \(|G| \). By Theorem C \(G \) is \(p \)-nilpotent and \(O_p(G) \neq G \). Put \(K = O_p(G) \), let \(q \) be a prime divisor of \(|K| \), and let \(Q \) be a Sylow \(q \)-subgroup of \(G \). Then Lemma 2 shows that \(Q \) is modular and the \(q \)-elements of \(N_K(Q) \) induce power automorphisms in \(Q \). Applying Lemma 2 again, we see that \(K \) satisfies \(X_p \). It follows from the minimality of \(G \) that \(K \) is a soluble \(PT \)-group, and so \(G \) is certainly soluble.
Let $L = \gamma_s(K)$. By Theorem 1 L is an abelian normal Hall subgroup of K in which K induces power automorphisms. Let r be a prime divisor of $|L|$ and let R be a Sylow r-subgroup of L. Then R is a normal Sylow r-subgroup of G. By X, the r'-elements of G induce power automorphisms in R. Hence all the elements of G induce power automorphisms in L. Suppose that $L \neq 1$. Then G/L inherits the hypotheses of the theorem and so G/L is a soluble PT-group. By Lemma 1 G is a PT-group, a contradiction. Hence $L = 1$ and so K is nilpotent.

Finally, let T be a Sylow subgroup of K. Then T is also a Sylow subgroup of G. As in the previous paragraph, if $T \neq 1$, then G/T is a PT-group and G induces a group of power automorphisms in T. Again G is a PT-group by Lemma 1. This means that $K = 1$ so that G is a modular p-group, a final contradiction.

5. PROOF OF THEOREMS B AND D

We are now able to prove these theorems using Theorem C.

Proof of Theorem B. Only the necessity of the conditions is in doubt. Let G be a counterexample of least order. Then Theorem C shows that $p > 2$. Also a Sylow p-subgroup P of G is nonabelian and G is not p-nilpotent. Let $J(P)$ be the Thompson subgroup of P (see [8, p. 298]). Then $P \leq N_G(J(P))$ and $P \leq N_G(Z(P))$. By a result of Thompson ([8, 10.4.1]) $N_G(J(P))$ and $N_G(Z(P))$ cannot both be p-nilpotent. Since both of these subgroups satisfy X_p, one of them must be G. It follows that P contains a minimal normal subgroup N of G. Note that G/N satisfies X_p, and so either P/N is abelian or G/N is p-nilpotent. Suppose that P/N is abelian. Then, since by Corollary 2 $N_G(P) = P \times O_p(N_G(P))$, the Sylow p-subgroup P/N lies in the center of its normalizer in G/N. Hence G/N is p-nilpotent by Burnside's criterion. If P/N is nonabelian, then G/N is p-nilpotent by the minimality of $|G|$. Now follow the argument of Case 1 in the proof of Theorem C to obtain a contradiction.

Proof of Theorem D. Assume that G satisfies X_p. By Theorem B either a Sylow p-subgroup P of G is abelian or else G is p-nilpotent. Assume that P is nonabelian. Then $G = PO_p(G)$. Let P_0 be a normal subgroup of P and let $g \in O_p(G)$. Then $P_0O_p(G) = P_0^gO_p(G)$ and P_0, P_0^g are Sylow p-subgroups of $J = \langle P_0, P_0^g \rangle$. Hence they are conjugate in J, and P_0 is pronormal in G.

Now assume that P is abelian, let $P_0 \leq P$ and let $J = \langle P_0, P_0^x \rangle$ where $g \in G$. Let P_1 be a Sylow p-subgroup of J containing P_0. Then $P_0^{x^{-1}} \leq P_1$ for some $x \in J$. Let Q be a Sylow p-subgroup of G containing P_1. Since
Q is abelian, $P_0 \triangleleft Q$ and $P_0 \triangleleft Q^{xg^{-1}}$. Hence Q and $Q^{xg^{-1}}$ are conjugate in $N_G(P_0)$, that is, $Q = Q^{xg^{-1}}n$ where $n \in N_G(P_0)$. Thus $xg^{-1}n \in N_G(Q)$. Since G satisfies X_p, P_0 is normal in $N_G(Q)$ by Lemma 2. Hence $P_0^n = P_0^x$, so that P_0 is pronormal in G.

Conversely, assume that G satisfies the condition of Theorem D. Let P be a Sylow p-subgroup of G. Then P is modular. By Lemma 2 it is enough to show that the p'-elements of $N_G(P)$ induce power automorphisms in P. Let $P_0 \leq P$. If P_0 is normal in P, then P_0 is pronormal in G, and this is easily seen to imply P_0 is normal in $N_G(P)$. Thus if P is abelian, the result follows.

Now assume that P is nonabelian. Then $P = \langle x \rangle A$ where A is abelian and $a^i = a^{1+p^i}$ for all $a \in A$, $i > 0$. If $N \triangleleft P$, then by hypothesis N is pronormal in G and so $N \triangleleft N_G(P)$. Let g be a p'-element of $N_G(P)$. Then g induces a power automorphism in P/P' and in A. If $P = P'[P, g]$, then $[P, A] \leq [A, [x, g]] = 1$ since power automorphisms commute; this gives the contradiction $P' = 1$. Hence $P \neq P'[P, g]$. Since g is a p'-element, it follows that g centralizes P/P' and hence $[P, g] = 1$. This shows that G has X_p.

Corollary 3. The property X_p is inherited by subgroups.

Proof. Let H be a subgroup of a group of G with X_p. If G has nonabelian Sylow p-subgroups, then it is p-nilpotent by Theorem B. Clearly H has X_p in this case. Assume that G has abelian Sylow p-subgroups. Let Q be a Sylow p-subgroup of H and let $Q_0 \leq Q \leq P$ where P is a Sylow p-subgroup of G. Then Q_0 is normal in P, so it is pronormal in G and therefore in H. Hence H has X_p by Theorem D.

REFERENCES