\mathbb{Z}_{2}-graded cocharacters for superalgebras of triangular matrices ${ }^{\text {th }}$

Onofrio M. Di Vincenzo ${ }^{\text {a,* }}$, Vincenzo Nardozza ${ }^{\text {b }}$
${ }^{a}$ Dipartimento di Matematica, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy
${ }^{\mathrm{b}}$ Dipartimento di Matematica, Università degli Studi Della Basilicata, Campus Macchia Romana, 85100 Potenza, Italy

Received 24 July 2003; received in revised form 28 February 2004
Communicated by C.A. Weibel

Abstract

Let \mathbb{K} be a field of characteristic zero, let A, B be \mathbb{K}-algebras with polynomial identity and let M be a free (A, B)-bimodule. The algebra $R=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$ can be endowed with a natural \mathbb{Z}_{2}-grading. In this paper, we compute the graded cocharacter sequence, the graded codimension sequence and the superexponent of R. As a consequence of these results, we also study the above PI-invariants in the setting of upper triangular matrices. In particular, we completely classify the algebra of 3×3 upper triangular matrices endowed with all possible \mathbb{Z}_{2}-gradings. (c) 2004 Published by Elsevier B.V.

MSC: Primary: 16R50; secondary: 16W55

1. Introduction

In the theory of algebras with polynomial identity a prominent role is played by the superalgebras and their identities. In fact, within the results of Kemer about the structure of varieties of associative algebras, the superalgebras come into play in a very natural way (see the monograph [17]). For instance, in case char $\mathbb{K}=0$, any variety \mathfrak{V} of algebras is generated by the Grassmann envelope $G(B)$ of a suitable finite dimensional superalgebra B. In terms of T-ideals of the free algebra, this means that given any PI-algebra $A, T(A)=T(G(B))$ (see [16]), that is, A satisfies the same polynomial

[^0]identities as the Grassmann envelope $G(B)$ of some finite dimensional superalgebra B. At the light of this, it seems an interesting problem to investigate the graded polynomial identities of a superalgebra and more generally, of a G-graded algebra, in case G is an arbitrary group ([2,6,12]).

In this context the matrix algebras with their gradings and their graded polynomial identities are a central object of study ([1]). For instance, the description of all \mathbb{Z}_{2}-gradings on matrix algebras is an important step in the study of verbally prime varieties, which are the building blocks of Kemer's theory.

As a natural extension of matrix algebras, one can consider the so-called blocktriangular matrices. These algebras play an exceptional role in the investigation on the codimension growth of varieties (see [13-15]). The simplest block-triangular matrix algebras are the full matrix algebras $M_{n}(\mathbb{K})$ and the upper-triangular matrix algebras $U T_{n}(\mathbb{K})$. In [3] the authors classified all possible gradings on the algebra $M_{n}(\mathbb{K})$ when \mathbb{K} is algebraically closed, and in [20] the authors described all possible gradings of upper-triangular matrix algebras when the group is finite abelian and the field is algebraically closed.
Some of the block-triangular matrix algebras are of type $\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$ where A, B are PI-algebras and M is a free (A, B)-bimodule. In [9] the authors described a generating set for the \mathbb{Z}_{2}-graded polynomial identities for these block-triangular matrices endowed with the natural grading

$$
\left(\begin{array}{cc}
A & M \\
0 & B
\end{array}\right)=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) \oplus\left(\begin{array}{cc}
0 & M \\
0 & 0
\end{array}\right),
$$

in terms of the ordinary polynomial identities of A and B. They obtained also a description of the relatively free superalgebra generated by $\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$ in the spirit of a result of Lewin ([19]).

In this paper, we describe the graded cocharacter sequence, the graded codimension sequence and we determine the so-called superexponent of these superalgebras, in terms of the ordinary polynomial identities of A and B. From these results, we derive a description of these PI-invariants for upper-triangular matrix superalgebras, in case the \mathbb{Z}_{2}-grading is of type $(0, \ldots, 0,1, \ldots, 1)$.

Of course, not all possible \mathbb{Z}_{2}-gradings on $U T_{n}(\mathbb{K})$ are of this kind for $n \geqslant 3$. In the last section of this paper we determine explicitly the sequence of graded cocharacters of $U T_{3}(\mathbb{K})$ endowed with all possible non-equivalent gradings and from this we derive the superexponent and the sequence of graded codimensions of the superalgebra.

2. General notions and tools

Let \mathbb{K} be a field of characteristic zero. A unitary associative \mathbb{K}-algebra A is a superalgebra, or a \mathbb{Z}_{2}-graded algebra, if it is the direct sum of two vector subspaces A_{0}, A_{1} satisfying the property $A_{i} A_{j} \subseteq A_{i+j}$ where $i, j \in \mathbb{Z}_{2}$. A classical (and very important) example of superalgebra is the so called Grassmann algebra of an infinite dimensional vector space.

When studying superalgebras, one is interested in homomorphisms preserving the superalgebra structure. Namely, if $A=A_{0} \oplus A_{1}$ and $B=B_{1} \oplus B_{2}$ are superalgebras, the chosen homomorphisms are the algebra homomorphisms $\varphi: A \rightarrow B$ such that $\varphi\left(A_{i}\right) \subseteq$ B_{i} for $i=0,1$.

One defines a free object in the class of superalgebras by considering the free \mathbb{K}-algebra over the disjoint union of two countable sets of variables, Y and Z, whose elements are regarded as even (i.e. with \mathbb{Z}_{2}-degree 0) and odd (their \mathbb{Z}_{2}-degree is 1) respectively. We shall denote this free superalgebra by $\mathbb{K}\langle Y, Z\rangle$. Its even part is the space spanned by those monomials in which the elements of Z occur in even number. The remaining monomials span the odd component of $\mathbb{K}\langle Y, Z\rangle$.

A polynomial $f\left(y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{m}\right)$ in $\mathbb{K}\langle Y, Z\rangle$ is called a \mathbb{Z}_{2}-graded polynomial identity for a superalgebra A if it is in the kernel of all \mathbb{Z}_{2}-graded homomorphisms $\varphi: \mathbb{K}\langle Y, Z\rangle \rightarrow A$. In other words, f is a graded polynomial identity for A if it vanishes under all possible substitutions of the variables by elements of A with the same parity: the y_{i} 's are replaced by $a_{i} \in A_{0}$ and the z_{i} 's by $b_{i} \in A_{1}$. One often calls these substitutions admissible (or graded) substitutions. If \mathscr{E} is an admissible substitution, the evaluation of f at \mathscr{E} will be denoted by $\left.f\right|_{\mathscr{E}}$.

The set $T_{2}(A)$ of all graded polynomial identities of A is an ideal of the free superalgebra invariant under all graded endomorphisms of $\mathbb{K}\langle Y, Z\rangle$. It is called the T_{2}-ideal of (the graded polynomial identities of) A. The factor algebra $\mathbb{K}\langle Y, Z\rangle / T_{2}(A)$ inherits the superalgebra structure of the free superalgebra, and is a free object for the class of the superalgebras B such that $T_{2}(A) \subseteq T_{2}(B)$. This factor algebra is called the relatively free superalgebra associated to A.

The T_{2}-ideal of a superalgebra is very large in general, and it is more convenient to study the \mathbb{Z}_{2}-graded multilinear polynomials lying in it. A natural way of defining \mathbb{Z}_{2}-graded multilinear polynomials is the following:

Definition 2.1. For $n \in \mathbb{N}$, the vector space

$$
V_{n}^{\mathbb{Z}_{2}}:=\operatorname{span}\left\langle x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(n)} \mid \sigma \in S_{n}, x_{i} \in\left\{y_{i}, z_{i}\right\}\right\rangle
$$

is called the space of \mathbb{Z}_{2}-graded multilinear polynomials.
Since the characteristic of the ground field \mathbb{K} is zero, a standard process of multilinearization shows that $T_{2}(A)$ is generated, as a T_{2}-ideal, by the subspaces $V_{n}^{\mathbb{Z}_{2}} \cap T_{2}(A)$. Actually, it is more efficient to study the factor space

$$
V_{n}^{\mathbb{Z}_{2}}(A):=\frac{V_{n}^{\mathbb{Z}_{2}}}{V_{n}^{\mathbb{Z}_{2}} \cap T_{2}(A)}
$$

An effective tool to this end is provided by the representation theory of the symmetric group.

Indeed, one can notice that $V_{n}^{\mathbb{Z}_{2}}$ is an S_{n}-module with respect to the natural left action, and $V_{n}^{\mathbb{Z}_{2}} \cap T_{2}(A)$ is an S_{n}-submodule, hence the factor space $V_{n}^{\mathbb{Z}_{2}}(A)$ is an S_{n}-module, as well. We shall denote by $\chi_{n}^{\mathbb{Z}_{2}}(A)$ its character (the nth \mathbb{Z}_{2}-graded cocharacter of A) and by $c_{n}^{\mathbb{Z}_{2}}(A)$ its dimension (the nth \mathbb{Z}_{2}-graded codimension of A).

Actually, the study of the structure of $V_{n}^{\mathbb{Z}_{2}}(A)$ can be furthermore simplified by considering "smaller" spaces of multilinear polynomials. To be more precise, for fixed h, k, set

$$
\left.V_{h, k}:=\operatorname{span}\left\langle m \text { monomials of } V_{h+k}^{\mathbb{Z}_{2}}\right| y_{1}, \ldots, y_{h}, z_{h+1}, \ldots, z_{h+k} \text { occur in } m\right\rangle .
$$

Setting $n:=h+k$, and $\mathscr{H}_{h, k}:=\operatorname{Sym}(\{1, \ldots, h\}) \times \operatorname{Sym}(\{h+1, \ldots, n\}) \leqslant S_{n}$, the space $V_{h, k}$ is an $\mathscr{H}_{h, k}$-module, and the subspace $V_{h, k} \cap T_{2}(A)$ is a submodule. Therefore one can form the factor $\mathscr{H}_{h, k}$-module

$$
V_{h, k}(A):=\frac{V_{h, k}}{V_{h, k} \cap T_{2}(A)} .
$$

We shall denote by $\chi_{h, k}(A)$ its $\mathscr{H}_{h, k}$-character, and by $c_{h, k}(A)$ its dimension.
We briefly recall that if H is a subgroup of a group G and M is an H-module, we can turn M into a G-module by considering the induced G-module structure. In other words, one sets $M^{G}:=\mathbb{K} G \bigotimes_{\mathbb{K} H} M$. This is the so-called G-module induced by M. The relation between the S_{n}-structure of $V_{n}^{\mathbb{Z}_{2}}(A)$ and the $\mathscr{H}_{h, k}$-structure of $V_{h, k}(A)$ is then displayed by the following result (see $[4,7]$):

Theorem 2.2. Let A be a superalgebra. Then for all $n \in \mathbb{N}$

$$
V_{n}^{\mathbb{Z}_{2}}(A) \cong \sum_{k=0}^{n}\left(V_{n-k, k}(A)\right)^{S_{n}}
$$

as S_{n}-modules. In particular,

$$
c_{n}^{\mathbb{Z}_{2}}(A)=\sum_{k=0}^{n}\binom{n}{k} c_{n-k, k}(A) .
$$

In this way the study of the S_{n}-structure of $V_{n}^{\mathbb{Z}_{2}}(A)$ is reduced to the study of the modules $V_{n-k, k}(A)$.

We give a small account on the representation theory of the groups $\mathscr{H}_{h, k}=S_{h} \times S_{k}$ $(h+k:=n)$. The irreducible $\mathscr{H}_{h, k}$-characters are in one-to-one correspondence with the pairs of partitions (λ, μ) where $\lambda \vdash h$ and $\mu \vdash k$. More precisely, if χ_{v} denotes the irreducible $S_{|v|}$-character associated to the partition v, then the irreducible $\mathscr{H}_{h, k}$-character associated to (λ, μ) is $\chi_{\lambda \mu}=\chi_{\lambda} \otimes \chi_{\mu}$.

In order to simplify the notation, we shall often identify the irreducible character χ_{v} of the symmetric group with the corresponding partition $v=\left(v_{1}, \ldots, v_{r}\right)$. So, for instance, we shall write

$$
\chi_{n-k, k}(A)=\sum_{\substack{\lambda \vdash n-k \\ \mu \vdash k}} m_{\lambda \mu} \lambda \otimes \mu
$$

for some multiplicities $m_{\lambda \mu}=m_{\lambda \mu}(A) \geqslant 0$.
There is another useful approach, involving the notion of Y-proper polynomials. If R is an associative algebra, the commutator of $a, b \in R$ is the Lie product

$$
[a, b]:=a b-b a .
$$

One defines inductively higher (left-normed) commutators by setting

$$
\left[a_{1}, \ldots, a_{n}\right]:=\left[\left[a_{1}, \ldots, a_{n-1}\right], a_{n}\right] .
$$

By the Poincarè-Birkhoff-Witt theorem $\mathbb{K}\langle Y, Z\rangle$ has a basis

$$
\left\{y_{1}^{s_{1}} \cdots y_{p}^{s_{p}} z_{1}^{t_{1}} \cdots z_{q}^{t_{q}} u_{1}^{r_{1}} \cdots u_{n}^{r_{1}} \mid s_{h}, t_{i}, r_{j} \geqslant 0, \quad p, q, n \in \mathbb{N}\right\}
$$

where u_{1}, u_{2}, \ldots are higher commutators.
We denote by B the vector subspace of $\mathbb{K}\langle Y, Z\rangle$ spanned by all products

$$
\left\{z_{1}^{r_{1}} \ldots z_{m}^{r_{m}} u_{1}^{s_{1}} \ldots u_{n}^{s_{1}} \mid r_{i}, s_{j} \geqslant 0, \quad m, n \in \mathbb{N}\right\} .
$$

The Y-proper polynomials are the elements of $B . B^{(n)}$ denotes its homogeneous component of degree n.

An alternative definition of Y-proper polynomials is the following: f is Y-proper if all formal partial derivatives $\partial f / \partial y_{i}$, defined by $\partial y_{j} / \partial y_{i}:=\delta_{i, j}$ (Kronecker delta), are zero for all $i=1, \ldots, m$.

It is well known (see, for instance, Lemma 1, Section 2 in [10]) that all graded polynomial identities of a superalgebra A follow from the Y-proper ones. This means that the set $T_{2}(A) \cap B$ generates the whole $T_{2}(A)$ as a T_{2}-ideal. Let us denote $B(A):=$ $B /\left(T_{2}(A) \cap B\right)$.

We shall denote $\Gamma_{h, k}$ the set of multilinear polynomials of $V_{h, k}$ which are Y-proper. It is not difficult to see that $\Gamma_{h, k}$ is a left $\mathscr{H}_{h, k}$-submodule of $V_{h, k}$ and the same holds for $\Gamma_{h, k} \cap T_{2}(A)$. Hence the factor module

$$
\Gamma_{h, k}(A):=\frac{\Gamma_{h, k}}{\Gamma_{h, k} \cap T_{2}(A)}
$$

is an $\mathscr{H}_{h, k}$-submodule of $V_{h, k}(A)$. We shall denote by $\xi_{h, k}$ its character (a \mathbb{Z}_{2}-graded proper cocharacter of A) and by $\gamma_{h, k}(A)$ its dimension.

The following result relates the structure of $V_{h, k}(A)$ with the structure of $\Gamma_{h, k}(A)$ (see [10] Proposition 1, Section 2):

Proposition 2.3. Let A be a unitary superalgebra, and let $\xi_{i, k}(A)=\sum m_{\lambda, \mu} \lambda \otimes \mu$ be the sequence of proper cocharacters of A, Then

$$
\chi_{h, k}(A)=\sum_{\mu \vdash k}\left(\sum_{i=0}^{h} \sum_{\lambda \vdash-i} m_{\lambda, \mu}\left(\chi_{(h-i)} \otimes \chi_{\lambda}\right)^{S_{h}}\right) \otimes \chi_{\mu},
$$

where $\chi_{(h-i)}$ is the S_{h-i}-irreducible character associated to the partition ($h-i$). Moreover,

$$
c_{h, k}(A)=\sum_{i=0}^{h}\binom{h}{i} \gamma_{i, k}(A) .
$$

Since in the sequel also ordinary PI-algebras occur, we recall that with obvious meaning one can consider the ordinary S_{n}-modules $V_{n}(A)$, for a PI-algebra A. We shall
denote by $\chi_{n}(A)$ its character, and by $c_{n}(A)$ its dimension. In this ordinary case, it has been proved that the limit

$$
\lim _{n} \sqrt[n]{c_{n}(A)}
$$

does exist for any nontrivial PI-algebra (see [13] and [14]) and it is a non-negative integer, called the PI-exponent of A, and denoted by $\exp (A)$. This PI-invariant can be used in order to classify the varieties of PI-algebras, as suggested by the mentioned papers. In the case of superalgebras, one can define a "superexponent" by setting

$$
\exp ^{\mathbb{Z}_{2}}(A):=\lim _{n} \sqrt[n]{c_{n}^{\mathbb{Z}_{2}}(A)}
$$

if this limit does exist.

3. The main result

The main result is the following.
Theorem 3.1. Let A, B be PI-algebras, and let M be a free (A, B)-bimodule. Let the matrix algebra $R:=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$ be endowed with the following \mathbb{Z}_{2}-grading

$$
R_{0}:=\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right) \quad R_{1}:=\left(\begin{array}{cc}
0 & M \\
0 & 0
\end{array}\right)
$$

Then the \mathbb{Z}_{2}-graded cocharacter sequence for R is the following

$$
\begin{aligned}
& \chi_{n, 0}(R)=\chi_{n}(A \oplus B) \\
& \chi_{n, 1}(R)=\sum_{p=0}^{n}\left(\chi_{p}(A) \otimes \chi_{n-p}(B)\right)^{S_{n}} \otimes \chi_{(1)}, \\
& \chi_{n, k}(R)=0 \quad \text { for } k \geqslant 2 \\
& \quad(n \in \mathbb{N})
\end{aligned}
$$

As a Corollary, we shall obtain that $\exp ^{\mathbb{Z}_{2}}(R)=\exp (A)+\exp (B)$.
In order to prove Theorem 3.1, let us decompose $V_{n, 1}^{\mathbb{Z}_{2}}$ into the sum of linear subspaces in the following way.

Definition 3.2. For every $J \subseteq \hat{n}:=\{1, \ldots, n\}$ let us denote by $V_{n, J}$ the subspace of $V_{n, 1}$

$$
V_{n, J}:=\operatorname{span}\left\langle y_{i_{1}} \ldots y_{i_{p}} z y_{j_{1}} \ldots y_{j_{q}} \mid\left\{i_{1}, \ldots, i_{p}\right\}=J,\left\{j_{1}, \ldots, j_{q}\right\}=\hat{n} \backslash J\right\rangle .
$$

Remark 3.3. Clearly, $V_{n, 1}=\bigoplus_{J \subseteq \hat{n}} V_{n, J}$.
For a generic element of $V_{n, 1}$ the following holds.

Lemma 3.4. Let $f=\sum_{J \subseteq \hat{n}} f_{J} \in V_{n, 1}\left(f_{J} \in V_{n, J}\right)$. Then

$$
f \in T_{2}(R) \text { if and only if } f_{J} \in T_{2}(R) \text { for all } J \subseteq \hat{n} .
$$

Proof. If all the components of f are in $T_{2}(R)$, it is clear that $f \in T_{2}(R)$ as well. So assume that $f \in T_{2}(R)$ and let J be a subset of \hat{n}. If $|J|=p$ we may assume without loss of generality that $J=\{1, \ldots, p\}$. We want to prove that f_{J} is zero under all graded substitutions \mathscr{E} of the variables y_{1}, \ldots, y_{n}, z. Actually, since f_{J} is multilinear, what needs to be checked is just that f_{J} vanishes under all substitutions \mathscr{E} of type $z \mapsto m \mathbf{e}_{12}$ and $y \mapsto a \mathbf{e}_{11}$ or $y \mapsto b \mathbf{e}_{22}$, where $m \in M, a \in A$ and $b \in B$.

It is easy to see that f_{J} vanishes under the substitution \mathscr{E} in case $y_{i} \mapsto b_{i} \mathbf{e}_{22}$ for some $i \leqslant p$. The same happens if $y_{i} \mapsto a_{i} \mathbf{e}_{11}$ for some $i>p$. So just the substitutions \mathscr{E} of type

$$
y_{i} \mapsto\left\{\begin{array}{ll}
a_{i} \mathbf{e}_{11} & i \leqslant p \\
b_{i} \mathbf{e}_{22} & i>p
\end{array} \quad z \mapsto m \mathbf{e}_{12}\right.
$$

for $a \in A, b \in B$ and $m \in M$ need to be checked.
On the other hand, for each such substitution, the remaining components f_{T}, for $T \neq J$, of f vanish. Hence

$$
0=\left.f\right|_{\mathscr{E}}=\left.\sum_{T \subseteq \hat{n}} f_{T}\right|_{\mathscr{E}}=\left.f_{J}\right|_{\mathscr{E}}
$$

and f_{J} vanishes under these substitutions, as well. Therefore, f_{J} vanishes under all possible substitutions, that is $f_{J} \in T_{2}(R)$.

By the previous argument, we obtain

$$
V_{n, 1} \cap T_{2}(R)=\underset{J \subseteq \hat{n}}{\oplus}\left(V_{n, J} \cap T_{2}(R)\right)
$$

We may notice that $V_{n, J} \cap T_{2}(R)$ is not an S_{n}-module. However, for all $p \leqslant n$ the sum

$$
W_{n, p}:=\bigoplus_{\substack{J \subseteq \hat{n} \\|J|=p}} V_{n, J}
$$

is an S_{n}-module, and we are going to show that the following decomposition of S_{n}-modules holds:

$$
\begin{equation*}
\frac{V_{n, 1}}{V_{n, 1} \cap T_{2}(R)} \cong \bigoplus_{p=0}^{n} \frac{W_{n, p}}{W_{n, p} \cap T_{2}(R)} \tag{1}
\end{equation*}
$$

It should be clear that this is a vector space isomorphism, under a canonical isomorphism φ. Since the induced action of S_{n} over the summands $\frac{W_{n, p}}{W_{n, p} \cap T_{2}(R)}$ is

$$
\sigma\left(f_{p}+\left(W_{n, p} \cap T_{2}(R)\right)\right)=\sigma\left(f_{p}\right)+\left(W_{n, p} \cap T_{2}(R)\right)
$$

and this action commutes with the isomorphism φ, the latter is an isomorphism between S_{n}-modules, as well.

Let us denote the factor module $\frac{W_{n, p}}{W_{n, p} \cap T_{2}(R)}$ by $W_{n, p}(R)$. By Eq. (1), we are led to study the S_{n}-module structure of the $W_{n, p}(R)$ in order to obtain the structure of $V_{n, 1}(R)$.

Remark 3.5. Notice that if $J, I \subseteq \hat{n}$ have the same cardinality, then the factor vector spaces $V_{n, J} /\left(V_{n, J} \cap T_{2}(R)\right)$ and $V_{n, I} /\left(V_{n, I} \cap T_{2}(R)\right)$ are isomorphic. In particular, all the vector spaces decomposing $W_{n, p}(R)$ have the same dimension, which we shall denote by $d_{n, p}(R)$. From this it follows that

$$
\operatorname{dim}_{\Downarrow} W_{n, p}(R)=\binom{n}{p} d_{n, p}(R) .
$$

Furthermore, let $p \leqslant n, J:=\{1, \ldots, p\}$, and denote by S_{n-p} the group $\operatorname{Sym}\{\hat{n} \backslash J\}$. Notice that there is a canonical $S_{p} \times S_{n-p}$-action on $V_{n, J} /\left(V_{n, J} \cap T_{2}(R)\right)$.

Lemma 3.6. The following isomorphism of S_{n}-module holds:

$$
W_{n, p}(R) \cong \mathbb{K} S_{n} \bigotimes_{\mathbb{K}\left(S_{p} \times S_{n-p}\right)} \frac{V_{n, J}}{V_{n, J} \cap T_{2}(R)} .
$$

Proof. As a first remark, let us notice that the vector spaces in the statement have the same dimension over \mathbb{K}, as a consequence of general results about induced representations (cf. [5], 12.27).

Now we are going to build up an S_{n}-module isomorphism between them. Let us define

$$
\zeta: \mathbb{K} S_{n} \times \frac{V_{n, J}}{V_{n, J} \cap T_{2}(R)} \rightarrow \bigoplus_{\substack{I \subset \hat{n} \\|I|=p}} \frac{V_{n, I}}{V_{n, I} \cap T_{2}(R)}
$$

by

$$
(\sigma, \bar{f}) \mapsto \overline{\sigma(f)}
$$

for all $\sigma \in S_{n}$ and $\bar{f} \in V_{n, J} /\left(V_{n, J} \cap T_{2}(R)\right)$. It is clear that ζ is well-defined. Moreover, it is clearly \mathbb{K}-linear.

In order to show that ζ is $S_{p} \times S_{n-p}$-balanced, it is enough to consider the monomials in place of the whole f. This is clearly true, as well, i.e. for all $\lambda \mu \in S_{p} \times S_{q},(q:=$ $n-p), \sigma \in S_{n}$ and monomials $\overline{y_{i_{1}} \ldots y_{i_{p}} z y_{j_{1}} \ldots y_{j_{q}}}$

$$
\begin{aligned}
\zeta\left(\sigma(\lambda \mu), \overline{y_{i_{1}} \ldots y_{i_{p}} z y_{j_{1}} \ldots y_{j_{q}}}\right) & =\overline{y_{\sigma \lambda\left(i_{1}\right)} \ldots y_{\sigma \lambda\left(i_{p}\right.} z y_{\sigma \mu\left(j_{1}\right)} \ldots y_{\sigma \mu\left(j_{q}\right)}} \\
& =\zeta\left(\sigma,(\lambda \mu)\left(\overline{y_{i_{1}} \ldots y_{i_{p}} z y_{j_{1}} \ldots y_{j_{q}}}\right)\right) .
\end{aligned}
$$

Therefore ζ induces a homomorphism

$$
\bar{\zeta}: \mathbb{K} S_{n} \bigotimes_{\mathbb{K}\left(S_{p} \times S_{n-p}\right)} \frac{V_{n, J}}{V_{n, J} \cap T_{2}(R)} \rightarrow \bigoplus_{\substack{I \subseteq \hat{n} \\|I|=p}} \frac{V_{n, I}}{V_{n, I} \cap T_{2}(R)}
$$

Since the dimensions of the vector spaces are equal, it is sufficient to prove that $\bar{\zeta}$ is surjective. Indeed if $\overline{y_{i_{1}} \ldots y_{i_{p}} z y_{j_{1}} \ldots y_{j_{q}}}$ is a monomial in $\bigoplus_{|I| \hat{n}}^{|I|=p} \left\lvert\, \frac{V_{n, I}}{V_{n, I} \cap T_{2}(R)}\right.$, it is the image of ($\sigma, \overline{y_{1} \ldots y_{p} z y_{p+1} \ldots y_{n}}$) via $\bar{\zeta}$ where

$$
\sigma=\left(\begin{array}{cccccc}
1 & \cdots & p & p+1 & \cdots & n \\
i_{1} & \cdots & i_{p} & j_{1} & \cdots & j_{q}
\end{array}\right) .
$$

Finally, this linear isomorphism clearly commutes with the S_{n}-action, hence it is an isomorphism of S_{n}-modules.

Remark 3.7. Although we wrote the S_{n}-module $\mathbb{K} S_{n} \otimes_{\mathbb{K}\left(S_{p} \times S_{n-p}\right)} \frac{V_{n, J}}{V_{n, J} \cap T_{2}(R)}$ explicitly, in the standard notation adopted in the representation theory of groups it should be denoted shortly as $\left(\frac{V_{n, J}}{V_{n, J}, T_{2}(R)}\right)^{S_{n}}$. In other words, it is the S_{n}-module induced by the $\left(S_{p} \times S_{n-p}\right)$-module $\frac{V_{n, J}}{V_{n, J} \cap T_{2}(R)}$. Therefore, we may rewrite the statement of the previous Lemma as

$$
W_{n, p}(R) \cong_{S_{n}}\left(\frac{V_{n, J}}{V_{n, J} \cap T_{2}(R)}\right)^{S_{n}} .
$$

The next step is therefore to study, for all $p \leqslant n$, the structure of the ($S_{p} \times S_{n-p}$)-module

$$
V_{n, J}(R):=\frac{V_{n, J}}{V_{n, J} \cap T_{2}(R)},
$$

where $J:=\{1, \ldots, p\}$.
Remark 3.8. With the same notation, notice that if $f\left(x_{1}, \ldots, x_{n}\right) \in T(A)$ and $g\left(x_{1}, \ldots, x_{m}\right) \in T(B)$ then $f\left(y_{1}, \ldots, y_{n}\right) z \in T_{2}(R)$ and $z g\left(y_{1}, \ldots, y_{m}\right) \in T_{2}(R)$.

Lemma 3.9. Let $p \leqslant n \in \mathbb{N}$. The following isomorphism of ($S_{p} \times S_{n-p}$)-modules holds

$$
V_{n, J}(R) \cong \frac{V_{p}}{V_{p} \cap T(A)} \otimes \frac{V_{n-p}}{V_{n-p} \cap T(B)} .
$$

Proof. Let us start by defining

$$
\zeta: V_{p}(A) \times V_{n-p}(B) \rightarrow V_{n, J}(R)
$$

mapping $(f+T(A), g+T(B)) \mapsto\left(f z g+\left(V_{n, J} \cap T_{2}(R)\right)\right)$. This map is well defined by Remark 3.8.

Actually, the map ζ is \mathbb{K}-linear hence induces an homomorphism of linear spaces $\bar{\zeta}: V_{p}(A) \otimes V_{n-p}(B) \rightarrow V_{n, J}(R)$ which commutes with the ($S_{p} \times S_{n-p}$)-action.

Now we have to show that $\bar{\zeta}$ is bijective. To this aim we shall exhibit an inverse for $\bar{\zeta}$.

Let $\psi: V_{n, J} \rightarrow V_{p}(A) \otimes V_{n-p}(B)$ the map defined by

$$
m_{p} z m_{n-p} \mapsto \overline{m_{p}} \otimes \overline{m_{n-p}},
$$

where m_{p} is a multilinear monomial in the variables $\left\{y_{1}, \ldots, y_{p}\right\}, m_{n-p}$ a multilinear monomial in the remaining variables, and by $\overline{m_{p}}, \overline{m_{n-p}}$ we denote $m_{p}+\left(V_{p} \cap T(A)\right)$, $m_{n-p}+\left(V_{n-p} \cap T(B)\right)$.

In order to induce a $\left(S_{p} \times S_{n-p}\right)$-module homomorphism from $V_{n, J}(R)$, we need to check that $\operatorname{ker} \psi \supseteq\left(V_{n, J} \cap T_{2}(R)\right)$. Actually, if this inclusion is not true, then there should be a polynomial $f \in\left(V_{n, J} \cap T_{2}(R)\right)$ with $\psi(f) \neq 0$. Let us choose $f=\sum_{i=1}^{k} f_{i} z g_{i}$ for a minimal k.

We may assume that the g_{i} are \mathbb{K}-linearly independent modulo $T(B)$. Indeed, if $g_{1}=\sum_{i \geqslant 2}^{k} \alpha_{i} g_{i}$, then $f=\sum_{i=2}^{k}\left(\alpha_{i} f_{1}+f_{i}\right) z g_{i}$, contradicting the minimality of k.

Moreover, we may assume that $f_{i} \notin T(A)$ for all $i=1, \ldots, k$. Indeed, let f^{\prime} be the sum of the $f_{i} z g_{i}$ such that $f_{i} \in T(A)$ (if any) and let $f^{\prime \prime}$ be the sum of the remaining ones. Then $f=f^{\prime}+f^{\prime \prime}$. We may notice that $f_{i} \in T(A)$ implies that $f_{i} z \in T_{2}(R)$ (by Remark 3.8) and therefore $f^{\prime} \in T_{2}(R)$. On the other hand, since the f_{i} occurring in f^{\prime} are in $T(A)$ we get $\psi\left(f^{\prime}\right)=0$. Therefore $f^{\prime \prime}=f-f^{\prime}$ satisfies $f^{\prime \prime} \in V_{n, J} \cap T_{2}(R)$ and $\psi\left(f^{\prime \prime}\right)=\psi(f) \neq 0$. Hence, if $f^{\prime} \neq 0$, we obtain a contradiction to the minimality of k once again.

Finally, these conditions on f, the g_{i} 's and the f_{i} 's imply that the polynomial f cannot be in $T_{2}(R)$, as showed in the proof of Theorem 1, p. 731 in [9], which is a contradiction. Therefore ker $\psi \supseteq V_{n, J} \cap T_{2}(R)$, and we get an induced $S_{p} \times S_{n-p}$-module homomorphism $\bar{\psi}: V_{n, J}(R) \rightarrow V_{p}(A) \otimes V_{n-p}(B)$ which inverts $\bar{\zeta}$.

Now the proof of Theorem 3.1 follows easily by collecting the obtained S_{n}-module isomorphisms.

Proof of Theorem 3.1. The first statement of Theorem 3.1 is trivial: $V_{n, 0} \cap T_{2}(R)=V_{n} \cap$ $(T(A) \cap T(B))=V_{n} \cap T(A \oplus B)$.

In order to prove the second statement, one writes the $S_{n} \times S_{1}$-module isomorphisms

$$
\begin{aligned}
V_{n, 1}(R) & \cong\left(\bigoplus_{p=0}^{n} W_{n, p}(R)\right) \otimes \mathbb{K} \\
& \cong\left(\bigoplus_{p=0}^{n}\left(V_{n,\{1, \ldots, p\}}(R)\right)^{S_{n}}\right) \otimes \mathbb{K} \\
& \cong\left(\bigoplus_{p=0}^{n}\left(V_{p}(A) \otimes V_{n-p}(B)\right)^{S_{n}}\right) \otimes \mathbb{K}
\end{aligned}
$$

by Lemmas 3.4, 3.6 and 3.9.

Corollary 3.10. The graded codimension sequence of R is related to the ordinary codimension sequences of A, B and $A \oplus B$ by the following formula:

$$
\begin{equation*}
c_{n}^{\mathbb{Z}_{2}}(R)=c_{n}(A \oplus B)+n \sum_{p+q=n-1}\binom{n-1}{p} c_{p}(A) c_{q}(B) . \tag{2}
\end{equation*}
$$

Proof. By Theorem 2.2 one has

$$
c_{n}^{\mathbb{Z}_{2}}(R)=\sum_{i=0}^{n}\binom{n}{i} c_{n-i, i}(R) .
$$

By [9], Theorem 1, it follows that $c_{n-i, i}(R)=0$ if $i \geqslant 2$, hence

$$
c_{n}^{\mathbb{Z}_{2}}(R)=c_{n, 0}(R)+n c_{n-1,1}(R)
$$

The explicit formula follows then as a consequence of Theorem 3.1.
Corollary 3.11. The \mathbb{Z}_{2}-graded PI-exponent of R is

$$
\exp ^{\mathbb{Z}_{2}}(R):=\lim _{n} \sqrt[n]{c_{n}^{\mathbb{Z}_{2}}(R)}=\exp (A)+\exp (B)
$$

Proof. By the results of Giambruno and Zaicev [13,14], the exponent of the algebra A does exist and it is an integer, e_{A}. Moreover, there exist constants $a_{1}, \alpha_{1}, b_{1}, \beta_{1}$ such that

$$
a_{1} n^{b_{1}} e_{A}^{n} \leqslant c_{n}(A) \leqslant \alpha_{1} n^{\beta_{1}} e_{A}^{n} .
$$

Similarly, there exist constants $a_{2}, \alpha_{2}, b_{2}, \beta_{2}$ such that

$$
a_{2} n^{b_{2}} e_{B}^{n} \leqslant c_{n}(B) \leqslant \alpha_{2} n^{\beta_{2}} e_{B}^{n}
$$

and constants $a_{3}, \alpha_{3}, b_{3}, \beta_{3}$ such that

$$
a_{3} n^{b_{3}} e_{A \oplus B}^{n} \leqslant c_{n}(A \oplus B) \leqslant \alpha_{3} n^{\beta_{3}} e_{A \oplus B}^{n} .
$$

Recall that $\exp (A \oplus B)=\max \{\exp (A), \exp (B)\}$. Without loss of generality, let us assume that the maximum is e_{A}.

Now we are going to find an upper bound for the sequence $c_{n}^{\mathbb{Z}_{2}}(R)$. By formula 2 one has

$$
c_{n}^{\mathbb{Z}_{2}}(R) \leqslant \alpha_{3} n^{\beta_{3}} e_{A}^{n}+n \sum_{p+q=n-1} \alpha_{1} p^{\beta_{1}} \alpha_{2} q^{\beta_{2}}\binom{n-1}{p} e_{A}^{p} e_{B}^{q} .
$$

Now, setting $\alpha:=\max \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ and $\beta:=\max \left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$, and noticing that $p, q \leqslant n$, the latter expression satisfies

$$
\begin{aligned}
& \leqslant \alpha n^{\beta} e_{A}^{n}+\alpha^{2} n^{2 \beta+1} \sum_{p+q=n-1}\binom{n-1}{p} e_{A}^{p} e_{B}^{q} \\
& \leqslant \alpha^{2} n^{2 \beta+1}\left(e_{A}^{n}+\left(e_{A}+e_{B}\right)^{n-1}\right) \\
& \leqslant \alpha^{2} n^{2 \beta+1}\left(e_{A}^{n}+\left(e_{A}+e_{B}\right)^{n}\right) .
\end{aligned}
$$

Similarly, we may find a lower bound using formula 2 once again:

$$
\begin{aligned}
c_{n}^{\mathbb{Z}_{2}}(R) & \geqslant a_{3} h^{b_{3}}\left(e_{A \oplus B}\right)^{n}+n \sum_{p+q=n-1} a_{1} p^{b_{1}} a_{2} q^{b_{2}}\binom{n-1}{p} e_{A}^{p} e_{B}^{q} \\
& \geqslant a_{1} a_{2} \sum_{p+q=n-1} p^{b_{1}} q^{b_{2}}\binom{n-1}{p} e_{A}^{p} e_{B}^{q} .
\end{aligned}
$$

Set $b:=\min \left\{b_{1}, b_{2}\right\}$ and notice that $p^{b_{1}} q^{b_{2}} \geqslant(p q)^{b}$. If $b \geqslant 0$ then

$$
\begin{aligned}
c_{n}^{\mathbb{Z}_{2}}(R) & \geqslant a_{1} a_{2} \sum_{\substack{p+q=n-1 \\
p q \neq 0}}(p q)^{b}\binom{n-1}{p} e_{A}^{p} e_{B}^{q} \\
& \geqslant a_{1} a_{2} \sum_{\substack{p+q=n-1 \\
p q \neq 0}}\binom{n-1}{p} e_{A}^{p} e_{B}^{q} \\
& \geqslant a_{1} a_{2}\left(\left(e_{A}+e_{B}\right)^{n-1}-e_{A}^{n-1}-e_{B}^{n-1}\right) \geqslant a_{1} a_{2}\left(\left(e_{A}+e_{B}\right)^{n-1}-2 e_{B}^{n-1}\right) .
\end{aligned}
$$

If on the contrary $b<0$ then notice that $(p q)^{b} \geqslant(n-1)^{2 b}$. Therefore

$$
\begin{aligned}
c_{n}^{\mathbb{Z}_{2}}(R) & \geqslant a_{1} a_{2} \sum_{\substack{p+q=n-1 \\
p q \neq 0}}(p q)^{b}\binom{n-1}{p} e_{A}^{p} e_{B}^{q} \\
& \geqslant a_{1} a_{2}(n-1)^{2 b}\left(\left(e_{A}+e_{B}\right)^{n-1}-2 e_{B}^{n-1}\right) .
\end{aligned}
$$

Now, if we consider the corresponding nth root sequences, we obtain

$$
e_{A}+e_{B} \leqslant \lim _{n} \sqrt[n]{c_{n}^{\mathbb{Z}_{2}}(R)} \leqslant e_{A}+e_{B}
$$

hence $\exp ^{\mathbb{Z}_{2}}(R)=e_{A}+e_{B}$.
A description of the proper graded cocharacter sequence of R in the spirit of Theorem 3.1 is also possible.

Theorem 3.12. Let A, B PI-algebras, and let M be a free (A, B)-bimodule. Let the matrix algebra $R:=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$ be endowed with the following \mathbb{Z}_{2}-grading

$$
R_{0}:=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) \quad R_{1}:=\left(\begin{array}{cc}
0 & M \\
0 & 0
\end{array}\right)
$$

Then the Y-proper \mathbb{Z}_{2}-graded cocharacter sequence for R is the following

$$
\xi_{m, 0}(R)=\xi_{m}(A \oplus B)
$$

$$
\begin{aligned}
& \xi_{m, 1}(R)=\sum_{r+s+t=m}\left(\xi_{r}(A) \otimes(t) \otimes \xi_{s}(B)\right)^{S_{m}} \otimes(1) \\
& \quad(n \in \mathbb{N}),
\end{aligned}
$$

where $\xi_{i}(A)$ and $\xi_{i}(B)$ are the ordinary ith proper cocharacters of A and B and (t) denotes the irreducible S_{t}-character corresponding to the partition (t).

Proof. The relation is clear for $\xi_{n, 0}(R)$, Indeed, by the equalities

$$
\chi_{n, 0}(R)=\chi_{n}(A \oplus B)
$$

and

$$
\chi_{n}(A \oplus B)=\sum_{m=0}^{n}\left((n-m) \otimes \xi_{m}(A \oplus B)\right)^{S_{n}}
$$

the statement follows a fortiori.
For $\xi_{m, 1}(R)$ we need to show that

$$
\chi_{n, 1}(R)=\sum_{m=0}^{n}\left((n-m) \otimes\left(\sum_{r+s+t=m} \xi_{r}(A) \otimes(t) \otimes \xi_{s}(B)\right)\right)^{S_{n}} \otimes(1) .
$$

We know by Theorem 3.1 that

$$
\begin{align*}
\chi_{n, 1}(R) & =\sum_{p+q=n}\left(\chi_{p}(A) \otimes \chi(B)\right)^{S_{n}} \otimes(1) \\
& =\sum_{p+q=n}\left(\sum_{r+t=p}\left((t) \otimes \xi_{r}(A)\right)^{S_{p}} \otimes \sum_{s+u=q}\left((u) \otimes \xi_{s}(B)\right)^{S_{q}}\right)^{S_{n}} \otimes(1) \tag{1}\\
& =\sum_{p+q=n}\left(\sum_{\substack{r+t=p \\
s+u=q}}\left((t) \otimes \xi_{r}(A)\right)^{S_{p}} \otimes\left((u) \otimes \xi_{s}(B)\right)^{S_{q}}\right)^{S_{n}} \otimes(1) .
\end{align*}
$$

Now note that the following equality holds:

$$
\begin{aligned}
&((t)\left.\otimes \xi_{r}(A)\right)^{S_{p}} \otimes\left((u) \otimes \xi_{s}(B)\right)^{S_{q}} \\
& \quad=\left((t) \otimes \xi_{r}(A) \otimes(u) \otimes \xi_{s}(B)\right)^{S_{p} \times S_{q}}
\end{aligned}
$$

(see [5], Theorem 43.2). Hence

$$
\begin{aligned}
\chi_{n, 1}(R) & =\sum_{p+q=n}\left(\sum_{\begin{array}{c}
r+t=p \\
s+u=q
\end{array}}\left((t) \otimes \xi_{r}(A) \otimes(u) \otimes \xi_{s}(B)\right)^{S_{q} \times S_{q}}\right)^{S_{n}} \otimes(1) \\
& =\sum_{p+q=n}\left(\sum_{\begin{array}{l}
r+t=p \\
s+u=q
\end{array}}(t) \otimes \xi_{r}(A) \otimes(u) \otimes \xi_{s}(B)\right)^{S_{n}} \otimes(1)
\end{aligned}
$$

$$
=\sum_{m=0}^{n}\left(\sum_{r+s+t=m}(n-m) \otimes \xi_{r}(A) \otimes(t) \otimes \xi_{s}(B) \otimes\right)^{S_{n}} \otimes(1)
$$

and the second equality follows from [5], Theorem 38.4. Therefore, a fortiori, the Y-proper graded cocharacter sequence of R is as stated.

4. Graded cocharacter sequences for $\boldsymbol{U} T_{n}(\mathbb{K})$

An immediate application of Theorem 3.1 (and of Theorem 3.12) concerns the algebras of upper triangular matrices with entries from \mathbb{K}. It is known (see [20]) that if G is an abelian group then all possible G-gradings for $U T_{n}(\mathbb{K})$ are elementary, i.e. the unit matrices are all G-homogeneous. Here we consider the \mathbb{Z}_{2}-gradings only.

A convenient way to describe a fixed grading is to display a vector $\mathbf{g} \in \mathbb{Z}_{2}^{n}$

$$
\mathbf{g}=\left(g_{1}, \ldots, g_{n}\right)
$$

the homogeneous G-degree of the unit matrix $\mathbf{e}_{i j}$ is then $g_{j}-g_{i}$. Notice that in an elementary grading all diagonal matrix units, $\mathbf{e}_{i i}$, are therefore in the 0 -component, hence $\mathbf{1} \in R_{0}$.

In [9], Corollary, it has been proved that if $U T_{n}(\mathbb{K})$ is endowed with the \mathbb{Z}_{2}-grading

$$
\mathbf{g}:=(\underbrace{0, \ldots, 0,1}_{k}, \ldots, 1),
$$

then

$$
T_{2}\left(U T_{n}(\mathbb{K})\right)=T_{2}(R) \text { for } R=\left(\begin{array}{cc}
A & M \\
0 & B
\end{array}\right),
$$

where A, B are PI-algebras satisfying $T(A)=T\left(U T_{k}(\mathbb{K})\right), T(B)=T\left(U T_{n-k}(\mathbb{K})\right)$ and M is a free (A, B)-bimodule.

Proposition 4.1. Let $U T_{n}(\mathbb{K})$ be endowed by the \mathbb{Z}_{2}-grading $(\underbrace{0, \ldots, 0,1}_{k}, \ldots, 1)$. Then its Y-proper graded cocharacter sequence is

$$
\begin{aligned}
& \xi_{m, 0}^{\mathbb{Z}_{2}}\left(U T_{n}(\mathbb{K})\right)=\sum_{r=0}^{\max \{k, n-k\}} \sum_{\substack{p_{i} \geqslant 2 \\
p_{1}+\cdots+p_{r}=m}}\left(\left(p_{1}-1,1\right) \otimes \cdots \otimes\left(p_{r}-1,1\right)\right)^{S_{m}} \\
& \xi_{m, 1}^{\mathbb{Z}_{2}}\left(U T_{n}(\mathbb{K})\right)=\sum_{r=0}^{n-2} \sum_{\substack{p_{i} \geqslant 2 \\
p_{1}+\cdots+p_{r}+t=m}}\left(\left(p_{1}-1,1\right) \otimes \cdots \otimes\left(p_{r}-1,1\right) \otimes(t)\right)^{S_{m}} \otimes(1)
\end{aligned}
$$

for $m \geqslant 2$.
Proof. We recall as a key step that the proper cocharacter sequence for the algebra $U T_{k}(\mathbb{K})$ has been obtained by Drensky and Kasparian in [11], Theorem 2.7, and is the
following (up to the notation)

$$
\begin{equation*}
\xi_{m}\left(U T_{k}(\mathbb{K})\right)=\sum_{r=0}^{k-1} \sum_{\substack{p_{i} \geqslant 2 \\ p_{1}+\cdots+p_{r}=m}}\left(\left(p_{1}-1,1\right) \otimes \cdots \otimes\left(p_{r}-1,1\right)\right)^{S_{m}} . \tag{3}
\end{equation*}
$$

In order to show the first equality of the proposition, we recall that $T(A \oplus B)=$ $T(A) \cap T(B)$ and that if $k \geqslant h$ then $T\left(U T_{k}(\mathbb{K})\right) \subseteq T\left(U T_{h}(\mathbb{K})\right)$. Hence, $T\left(U T_{k}(\mathbb{K}) \oplus\right.$ $\left.U T_{n-k}(\mathbb{K})\right)=T\left(U T_{j}(\mathbb{K})\right)$ where $j=\max \{k, n-k\}$. The formula of the proposition follows then by Theorem 3.12 and by formula 3 .

Now we are going to prove the second equality of the proposition. By Theorem 3.12 it holds that

$$
\xi_{m, 1}^{\mathbb{Z}_{2}}\left(U T_{n}(\mathbb{K})\right)=\sum_{r+s+t=m}\left(\xi_{r}\left(U T_{k}(\mathbb{K})\right) \otimes(t) \otimes \xi_{s}\left(U T_{n-k}(\mathbb{K})\right)^{S_{m}} \otimes(1) .\right.
$$

Then applying Eq. (3) to the ξ_{r} and ξ_{s}, and rearranging the order of the factors in the tensor, we may rewrite

$$
\begin{aligned}
& \xi_{m, 1}^{\mathbb{Z}_{2}}\left(U T_{n}(\mathbb{K})\right) \\
& =\sum_{r+s+t=m}\left(\left(\sum_{a=0}^{k-1} \sum_{\substack{p_{i} \geqslant 2 \\
p_{1}+\cdots+p_{a}=r}}\left(p_{1}-1,1\right) \otimes \cdots \otimes\left(p_{a}-1,1\right)\right)^{S_{r}}\right. \\
& \left.\quad \otimes\left(\sum_{b=0}^{n-k-1} \sum_{\substack{q_{i} \geqslant 2 \\
q_{1}+\cdots+q_{b}=s}}\left(q_{1}-1,1\right) \otimes \cdots \otimes\left(q_{b}-1,1\right)\right)^{S_{s}} \otimes(t)\right)^{S_{m}} \otimes(1) .
\end{aligned}
$$

By [5], Theorem 43.2, it follows that

$$
\begin{aligned}
\xi_{m, 1}^{\mathbb{Z}_{2}}\left(U T_{n}(\mathbb{K})\right)= & \sum_{r+s+t=m} \sum_{a=0}^{k-1} \sum_{b=0}^{n-k-1} \sum_{\substack{p_{i} q_{j} \geqslant 2 \\
p_{1}+\cdots+p_{a}=r \\
q_{1}+\cdots+q_{b}=s}}\left(\left(p_{1}-1,1\right) \otimes \cdots \otimes\left(p_{a}-1,1\right)\right. \\
& \left.\otimes\left(q_{1}-1,1\right) \otimes \cdots \otimes\left(q_{b}-1,1\right) \otimes(t)\right)^{S_{m}} \otimes(1) \\
= & \sum_{l=0}^{n-2} \sum_{\substack{h_{i} \geqslant 2 \\
h_{1}+\cdots+h_{l}+t=m}}\left(\left(h_{1}-1,1\right) \otimes \cdots \otimes\left(h_{l}-1,1\right) \otimes(t)\right)^{S_{m}} \otimes(1)
\end{aligned}
$$

by rewriting suitably the summation.

It is possible to give the graded cocharacter sequences for the algebra $U T_{3}(\mathbb{K})$ with respect to all possible nonequivalent \mathbb{Z}_{2}-gradings. These are the following:
(1) $(0,0,0)$. The even part is then $U T_{3}(\mathbb{K})$ and the odd part is simply 0 . The Y-proper graded cocharacter sequence is then the proper cocharacter sequence of the full algebra, and it is a particular case of formula 3 obtained by Drensky and Kasparian in [11].
(2) $(0,0,1)$. In this case the even and odd parts of the algebra are

$$
R_{0}=\left(\begin{array}{ccc}
* & * & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right) \quad R_{1}=\left(\begin{array}{ccc}
0 & 0 & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right)
$$

where the $*$ denote entries from \mathbb{K}. Its Y-proper graded cocharacter sequence is described by Theorem 3.12 and the result of Drensky and Kasparian expressed by formula 3. Explicitly, it is the following

$$
\begin{aligned}
& \xi_{m, 0}^{\mathbb{Z}_{2}}=\xi_{m}\left(U T_{2}(\mathbb{K})\right)=(m-1,1) \\
& \xi_{m, 1}^{\mathbb{Z}_{2}}=\sum_{p+q=m}((p-1,1) \otimes(q))^{S_{m}} \otimes(1) .
\end{aligned}
$$

Its graded codimension sequence can be obtained by Corollary 3.10. Recall that the codimension sequence for $U T_{2}(K)$ is $c_{n}\left(U T_{2}(\mathbb{K})\right)=2+2^{n-1}(n-2)$ (see [18]). Therefore, one has

$$
\begin{aligned}
c_{n}^{\mathbb{Z}_{2}}(R) & =c_{n, 0}^{\mathbb{Z}_{2}}(R)+n \sum_{p+q=n-1}\binom{n-1}{p} c_{p}\left(U T_{2}(\mathbb{K})\right) c_{q}(\mathbb{K}) \\
& =c_{n}\left(U T_{2}(\mathbb{K})\right)+n \sum_{p+q=n-1}\binom{n-1}{p} c_{p}\left(U T_{2}(\mathbb{K})\right) c_{q}(\mathbb{K}) \\
& =2+2^{n-1}(n-2)+n \sum_{p+q=n-1}\binom{n-1}{p}\left(2+2^{p-1}(p-2)\right) \\
& =3^{n-2} n(n-4)+2^{n-2}(3 n-2)+2
\end{aligned}
$$

as one can easily verify using the formula

$$
\sum_{p=0}^{n}\binom{n}{p} p 2^{p}=2 n 3^{n-1}
$$

since the equality $p\binom{n}{p}=n\binom{n-1}{p-1}$ holds.

From this it follows that the superexponent of R is

$$
\exp ^{\mathbb{Z}_{2}}(R)=\lim _{n} \sqrt[n]{c_{n}^{\mathbb{Z}_{2}}(R)}=3
$$

(3) $(0,1,1)$. In this case the grading is

$$
R_{0}=\left(\begin{array}{ccc}
* & 0 & 0 \\
0 & * & * \\
0 & 0 & *
\end{array}\right), \quad R_{1}=\left(\begin{array}{ccc}
0 & * & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

and the relatively free superalgebra is the opposite of the relatively free superalgebra of the previous case. It is immediate that the quantitative information are the same.

One grading is not included in the previous list. It is the grading $(0,1,0)$. Explicitly, it is the following

$$
R_{0}=\left(\begin{array}{ccc}
* & 0 & * \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right), \quad R_{1}=\left(\begin{array}{ccc}
0 & * & 0 \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right) .
$$

In the rest of this section we are going to study the graded cocharacter sequence for this algebra.

From the results in [8] it follows that
Proposition 4.2. Let $R:=\left(\begin{array}{ccc}* & 0 & * \\ 0 & * & 0 \\ 0 & 0 & *\end{array}\right) \oplus\left(\begin{array}{ccc}0 & * & 0 \\ 0 & 0 & * \\ 0 & 0 & 0\end{array}\right)$ the \mathbb{Z}_{2}-grading for the algebra $U T_{3}(\mathbb{K})$). Then

$$
\mathscr{B}:=\left\{z_{1} z_{2} z_{3}, z_{1}\left[y_{1}, y_{2}\right],\left[y_{1}, y_{2}\right] z_{1},\left[y_{1} y_{2}\right]\left[y_{3}, y_{4}\right]\right\}
$$

is a basis for the graded polynomial identities of R. Moreover, the spaces of Y-proper multilinear polynomials $\Gamma_{n, 0}(R), \Gamma_{n, 1}(R), \Gamma_{n, 2}(R)$ (for $n \geqslant 0$) have the following \mathbb{K}-basis:
$\Gamma_{n, 0}(R):\left[y_{i_{1}}, y_{1}, y_{i_{2}}, \ldots, y_{i_{n-1}}\right]$ with $i_{2}<i_{3}<\cdots<i_{n-1}$ and $\left\{i_{1}, \ldots, i_{n-1}\right\}=\{2, \ldots, n\}$. $\Gamma_{n, 1}(R):\left[z_{1}, y_{1}, \ldots, y_{n}\right]$.
$\Gamma_{n, 2}(R):\left[z_{1}, y_{i_{1}}, \ldots, y_{i_{k}}\right]\left[z_{2}, y_{i_{k+1}}, \ldots, y_{i_{n}}\right], \quad\left[z_{2}, y_{i_{1}}, \ldots, y_{i_{k}}\right]\left[z_{1}, y_{i_{k+1}}, \ldots, y_{i_{n}}\right]$, where $k=0,1, \ldots, n, i_{1}<i_{2}<\cdots<i_{k}$ and $i_{k+1}<i_{k+2}<\cdots<i_{n}$.

Corollary 4.3. With the same notation of the previous Proposition, the Y-proper graded codimension sequences for R are the following:

$$
\begin{aligned}
& \gamma_{n, 0}(R)=n-1 \\
& \gamma_{n, 1}(R)=1
\end{aligned}
$$

$$
\gamma_{n, 2}(R)=2^{n+1} .
$$

Now we will list the proper cocharacter sequences.
Proposition 4.4. With the same notation of Proposition 4.2, the Y-proper graded cocharacter sequences of R are the following:

$$
\begin{aligned}
\xi_{n, 0}(R)= & (n-1,1) \\
\xi_{n, 1}(R)= & (n) \otimes(1) \\
\xi_{n, 2}(R)= & \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} m_{k}(R)((n-k, k) \otimes(2)) \\
& \oplus \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} m_{k}(R)((n-k, k) \otimes(1,1)),
\end{aligned}
$$

where $\left\lfloor\frac{n}{2}\right\rfloor$ denotes the largest integer not greater than $n / 2$ and $m_{k}(R):=n-2 k+1$.
Proof. It should be clear that the S_{n}-submodule generated by $\left[y_{2}, y_{1}, y_{3}, \ldots, y_{n}\right]$ in $\Gamma_{n, 0}(R)$ is isomorphic to the irreducible submodule associated to the partition $(n-1,1)$. By counting the dimension, it is the whole $\Gamma_{n, 0}(R)$. Hence the first equality holds. The same argument, even more easily shows that the second equality is true. A little more tricky is to show the last equality.

First, notice that $\left[z_{1} y_{1}, \ldots, y_{k}\right]$ generates an $S_{k} \times S_{1}$-submodule isomorphic to the irreducible module associated to the "double partition" $(k) \otimes(1)$. The same arguments show that $\left[z_{2}, y_{k+1}, \ldots, y_{n}\right]$ generates an $S_{n-k} \times S_{1}$-module isomorphic to the one corresponding to $(n-k) \otimes(1)$. Therefore the polynomial $\left[z_{1}, y_{1}, \ldots, y_{k}\right]\left[z_{2}, y_{k+1}, \ldots, y_{n}\right]$ generates an $\left(S_{k} \times S_{n-k}\right) \times\left(S_{1} \times S_{1}\right)$-module M isomorphic to

$$
((k) \otimes(n-k)) \otimes((1) \otimes(1)) .
$$

By Proposition 4.2, the $S_{n} \times S_{2}$-submodule of $\Gamma_{n, 2}(R)$ generated by that polynomial is isomorphic to the $S_{n} \times S_{2}$-induced submodule $M^{S_{n} \times S_{2}}$. Its dimension over \mathbb{K} can be computed noticing that

$$
\operatorname{dim}_{\varangle<}((k) \otimes(n-k))^{S_{n}}=\left[S_{n}:\left(S_{k} \times S_{n-k}\right)\right]=\binom{n}{k} .
$$

(see for instance [5], 12.27). By "moving" the square brackets correspondingly to the possible $k=0,1, \ldots, n$, one obtains in $\Gamma_{n, 2}(R)$ the $S_{n} \times S_{2}$-submodule

$$
\sum_{k=0}^{n}((k) \otimes(n-k))^{S_{n}} \otimes((1) \otimes(1))^{S_{2}}
$$

whose dimension over \mathbb{K} is exactly 2^{n+1}. Therefore, it is the whole $\Gamma_{n, 2}(R)$.

Finally, by applying the Young-Pieri rule, one gets the decomposition into $S_{n} \times$ S_{2}-irreducible modules:

$$
\left(\sum_{k=0}^{\lfloor n / 2\rfloor} m_{k}(R)(n-k, k)\right) \otimes((2) \oplus(1,1)),
$$

where $m_{k}(R)=n-2 k+1$. Therefore, its character follows accordingly.

References

[1] Y. Bahturin, V. Drensky, Graded polynomial identities of matrices, Linear Algebra Appl. 357 (2002) 15-34.
[2] Y. Bahturin, A. Giambruno, M. Zaicev, G-identities on associative algebras, Proc. Amer. Math. Soc. 127 (1) (1999) 63-69.
[3] Y. Bahturin, S.K. Sehgal, M. Zaicev, Group gradings on associative algebras, J. Algebra 241 (2) (2001) 677-698.
[4] A. Berele, Cocharacters of $Z / 2 Z$-graded algebras, Isr. J. Math. 61 (1988) 225-234.
[5] C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, New York, 1988.
[6] O.M. Di Vincenzo, Cocharacters of G-graded algebras, Comm. Algebra 24 (10) (1996) 3293-3310.
[7] O.M. Di Vincenzo, On the graded identities of $M_{1,1}(E)$, Isr. J. Math. 80 (3) (1992) 323-335.
[8] O.M. Di Vincenzo, P. Koshlukov, A. Valenti, Gradings on the algebra of upper triangular matrices and their graded identities, J. Algebra 275 (2004) 550-566.
[9] O.M. Di Vincenzo, V. Drensky, The basis of the graded polynomial identities for superalgebras of triangular matrices, Comm. Algebra 24 (2) (1996) 727-735.
[10] O.M. Di Vincenzo, V. Drensky, V. Nardozza, Subvarieties of the varieties of superalgebras generated by $M_{1,1}(E)$ or $M_{2}(\mathscr{K})$, Comm. Algebra 31 (1) (2003) 437-461.
[11] V. Drensky, A. Kasparian, Polynomial identities of eighth degree for 3×3 matrices, Annuarie de l'Univ. de Sofia, Fac. de Math. et Mecan., Livre 1, Math. 77 (1983) 175-195.
[12] A. Giambruno, S. Mishchenko, M. Zaicev, Group actions and asymptotic behaviour of graded polynomial identities, J. London Math. Soc. (2) 66 (2) (2002) 295-312.
[13] A. Giambruno, M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998) 145-155.
[14] A. Giambruno, M. Zaicev, Exponential codimension growth of PI-algebras: an exact estimate, Adv. Math. 142 (1999) 221-243.
[15] A. Giambruno, M. Zaicev, Minimal varieties of exponential growth, Adv. Math. 174 (2003) 310-323.
[16] A.R. Kemer, Varieties and \mathbb{Z}_{2}-graded algebras, Math. USSR Izv. 25 (2) (1985) 359-374.
[17] A.R. Kemer, Ideals of identities of associative algebras, AMS Translations of Math. Mon. 87 (1988).
[18] V.N. Latyshev, Complexity of nonmatrix varieties of associative algebras, Algebra i Logika 16 149-183 (Russian), English trans.; Algebra and Logic 16 (1977) 98-122.
[19] J. Lewin, A matrix representation for associative algebras I, Trans. Am. Math. Soc. 188 (2) (1974) 293-308.
[20] A. Valenti, M. Zaicev, Abelian gradings on upper-triangular matrices, Arch. Math. 80 (1) (2003) 12-27.

[^0]: ${ }^{2}$ Partially supported by MIUR COFIN 2003 and Università di Bari.

 * Corresponding author.

 E-mail addresses: divincenzo@dm.uniba.it (O.M. Di Vincenzo), vickkk@tiscalinet.it (V. Nardozza).

