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Abstract

Let K be a field of characteristic zero, let A4, B be [-algebras with polynomial identity and let
M be a free (4, B)-bimodule. The algebra R= (g Ag ) can be endowed with a natural Z,-grading.
In this paper, we compute the graded cocharacter sequence, the graded codimension sequence and
the superexponent of R. As a consequence of these results, we also study the above Pl-invariants
in the setting of upper triangular matrices. In particular, we completely classify the algebra of
3 x 3 upper triangular matrices endowed with all possible Z,-gradings.

© 2004 Published by Elsevier B.V.

MSC: Primary: 16R50; secondary: 16W55

1. Introduction

In the theory of algebras with polynomial identity a prominent role is played by
the superalgebras and their identities. In fact, within the results of Kemer about the
structure of varieties of associative algebras, the superalgebras come into play in a very
natural way (see the monograph [17]). For instance, in case charlK=0, any variety U of
algebras is generated by the Grassmann envelope G(B) of a suitable finite dimensional
superalgebra B. In terms of T-ideals of the free algebra, this means that given any
Pl-algebra A, T(4) = T(G(B)) (see [16]), that is, 4 satisfies the same polynomial
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identities as the Grassmann envelope G(B) of some finite dimensional superalgebra B.
At the light of this, it seems an interesting problem to investigate the graded polynomial
identities of a superalgebra and more generally, of a G-graded algebra, in case G is
an arbitrary group ([2,6,12]).

In this context the matrix algebras with their gradings and their graded polyno-
mial identities are a central object of study ([1]). For instance, the description of all
Z,-gradings on matrix algebras is an important step in the study of verbally prime
varieties, which are the building blocks of Kemer’s theory.

As a natural extension of matrix algebras, one can consider the so-called block-
triangular matrices. These algebras play an exceptional role in the investigation on the
codimension growth of varieties (see [13—15]). The simplest block-triangular matrix
algebras are the full matrix algebras M, () and the upper-triangular matrix algebras
UT,(K). In [3] the authors classified all possible gradings on the algebra M, (I<) when
K is algebraically closed, and in [20] the authors described all possible gradings of
upper-triangular matrix algebras when the group is finite abelian and the field is alge-
braically closed.

0 B
Pl-algebras and M is a free (4, B)-bimodule. In [9] the authors described a generating
set for the Z,-graded polynomial identities for these block-triangular matrices endowed
with the natural grading

(o 3)-0000)

in terms of the ordinary polynomial identities of 4 and B. They obtained also a de-

A M
0 B

Some of the block-triangular matrix algebras are of type (A M ) where A4, B are

scription of the relatively free superalgebra generated by (

result of Lewin ([19]).

In this paper, we describe the graded cocharacter sequence, the graded codimension
sequence and we determine the so-called superexponent of these superalgebras, in terms
of the ordinary polynomial identities of 4 and B. From these results, we derive a
description of these Pl-invariants for upper-triangular matrix superalgebras, in case the
Z;,-grading is of type (0,...,0,1,...,1).

Of course, not all possible Z;-gradings on UT,(IK) are of this kind for n > 3. In the
last section of this paper we determine explicitly the sequence of graded cocharacters
of UT3(K) endowed with all possible non-equivalent gradings and from this we derive
the superexponent and the sequence of graded codimensions of the superalgebra.

) in the spirit of a

2. General notions and tools

Let KK be a field of characteristic zero. A unitary associative [-algebra 4 is a
superalgebra, or a Z,-graded algebra, if it is the direct sum of two vector subspaces
Ao, A4y satisfying the property 4;4; C A;; where i, j€Z,. A classical (and very
important) example of superalgebra is the so called Grassmann algebra of an infinite
dimensional vector space.



O.M. Di Vincenzo, V. Nardozzal Journal of Pure and Applied Algebra 194 (2004) 193-211 195

When studying superalgebras, one is interested in homomorphisms preserving the
superalgebra structure. Namely, if 4 =4, @ 4, and B = B & B, are superalgebras, the
chosen homomorphisms are the algebra homomorphisms ¢: 4 — B such that ¢(4;) C
B; for i =0,1.

One defines a free object in the class of superalgebras by considering the free
[K-algebra over the disjoint union of two countable sets of variables, ¥ and Z, whose
elements are regarded as even (i.e. with Z,-degree 0) and odd (their Z,-degree is 1)
respectively. We shall denote this fiee superalgebra by K(Y,Z). Its even part is the
space spanned by those monomials in which the elements of Z occur in even number.
The remaining monomials span the odd component of K(¥,Z).

A polynomial f(y1,..., VnsZ1,---,2m) in K(Y,Z) is called a Z,-graded polynomial
identity for a superalgebra A4 if it is in the kernel of all Z,-graded homomorphisms
o: K(Y,Z) — A. In other words, f is a graded polynomial identity for A4 if it van-
ishes under all possible substitutions of the variables by elements of 4 with the same
parity: the y;’s are replaced by a; € Ag and the z;’s by b; € 4. One often calls these
substitutions admissible (or graded) substitutions. If & is an admissible substitution,
the evaluation of f at & will be denoted by fs.

The set 75(A4) of all graded polynomial identities of 4 is an ideal of the free superal-
gebra invariant under all graded endomorphisms of K(Y,Z). It is called the T»-ideal of
(the graded polynomial identities of) 4. The factor algebra IK(Y,Z)/T>(A) inherits the
superalgebra structure of the free superalgebra, and is a free object for the class of the
superalgebras B such that 75(4) C T»(B). This factor algebra is called the relatively
free superalgebra associated to A.

The T,-ideal of a superalgebra is very large in general, and it is more convenient
to study the Z,-graded multilinear polynomials lying in it. A natural way of defining
Z,-graded multilinear polynomials is the following:

Definition 2.1. For n € N, the vector space
VnZ2 = span(xa(l)xa(z) .. .xg(,,)ltf €S, x; € {yi,Zi}>

is called the space of Z,-graded multilinear polynomials.

Since the characteristic of the ground field K is zero, a standard process of multilin-
carization shows that T,(4) is generated, as a T»-ideal, by the subspaces V72 N Ty(A).
Actually, it is more efficient to study the factor space

VA
I/n 2

Z -
Vn 2(A) = szz A Tz(A)

An effective tool to this end is provided by the representation theory of the symmetric
group.

Indeed, one can notice that VnZz is an S,-module with respect to the natural left action,
and V22 N T5(A4) is an S,-submodule, hence the factor space V,”2(4) is an S,-module,
as well. We shall denote by y22(A4) its character (the nth Z,-graded cocharacter of A)
and by cZ2(4) its dimension (the nth Z,-graded codimension of A).
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Actually, the study of the structure of V?2(4) can be furthermore simplified by
considering “smaller” spaces of multilinear polynomials. To be more precise, for fixed
h, k, set

Vik := span{m monomials of Vhﬁzk|y1,...,yh,zh+1,...,zh+k occur in m).

Setting n := h+k, and #; := Sym({1,....h}) x Sym({h+1,...,n}) < S,, the space
Vik 1s an # x-module, and the subspace V},x N T2(4) is a submodule. Therefore one
can form the factor ) ;-module

Vik
Vik N Ta(4)

We shall denote by y,i(A4) its # ;-character, and by cj «(A) its dimension.

We briefly recall that if H is a subgroup of a group G and M is an H-module, we
can turn M into a G-module by considering the induced G-module structure. In other
words, one sets M%: = KG @, M. This is the so-called G-module induced by M.
The relation between the S,-structure of I/;,ZZ(A) and the 7, ,-structure of V} x(4) is
then displayed by the following result (see [4,7]):

Vii(4) ==

Theorem 2.2. Let A be a superalgebra. Then for all n€ N

V) 2> (Faki(4))

k=0

as S,-modules. In particular,

C’ZZ(A) = Z <Z > cn—k,k(A )

k=0

In this way the study of the S,-structure of ¥72(4) is reduced to the study of the
modules V,_ x(4).

We give a small account on the representation theory of the groups 7, =S, x Sk
(h+k:=n). The irreducible 7} x-characters are in one-to-one correspondence with the
pairs of partitions (4, u) where A+ A and p - k. More precisely, if y, denotes the irre-
ducible S),|-character associated to the partition v, then the irreducible 7, ;-character
associated to (4, 1) is i = 17 @ Ku-

In order to simplify the notation, we shall often identify the irreducible character
«v of the symmetric group with the corresponding partition v = (vy,...,v,). So, for
instance, we shall write

In—tki(A) = z MA@ p

Fn—k
utk

for some multiplicities m;, = m;,(4) = 0.
There is another useful approach, involving the notion of Y-proper polynomials. 1f
R is an associative algebra, the commutator of a,b € R is the Lie product

[a,b] := ab — ba.
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One defines inductively higher (left-normed) commutators by setting

lai,....a,] :==[[a1,...,an—1], au].

By the Poincare—Birkhoff—Witt theorem K(Y,Z) has a basis
{oy eyt -zf]"u? cwsp tir; =0, p,g,ne N},
where uy,u;,... are higher commutators.
We denote by B the vector subspace of K(Y,Z) spanned by all products

r1 vy S1 S
{1z o |rys; =0, mone N}

The Y-proper polynomials are the elements of B. B denotes its homogeneous com-
ponent of degree n.

An alternative definition of Y-proper polynomials is the following: f is Y-proper if
all formal partial derivatives 0f/dy;, defined by 0y;/0y; := 6;; (Kronecker delta), are
zero for all i=1,...,m.

It is well known (see, for instance, Lemma 1, Section 2 in [10]) that all graded
polynomial identities of a superalgebra 4 follow from the Y-proper ones. This means
that the set 75(4) N B generates the whole 7>(4) as a T,-ideal. Let us denote B(A4) :=
B/(T>(4) N B).

We shall denote I’y the set of multilinear polynomials of V;; which are Y-proper.
It is not difficult to see that I ; is a left ) ;-submodule of V},; and the same holds
for I'j N T2(A). Hence the factor module

Iy

Iy (4= ——"——
wi(4) i N To(A4)

is an ¢ y-submodule of 7}, ;(4). We shall denote by &, its character (a Z,-graded
proper cocharacter of A) and by y; (4) its dimension.

The following result relates the structure of V}, x(4) with the structure of I'j(A4)
(see [10] Proposition 1, Section 2):

Proposition 2.3. Let A be a unitary superalgebra, and let & (A) = mj) /@ u be
the sequence of proper cocharacters of A, Then

h
Ini(A) = Z <Z Z my w(Ah—iy @ Xi)Sh> @ Aus
ek \i=0 J-i

where yu—iy is the Sy_;-irreducible character associated to the partition (h—i). More-
over,

h h
cn(A) = ( , ) Pik(A).
i=0 \?

Since in the sequel also ordinary Pl-algebras occur, we recall that with obvious
meaning one can consider the ordinary S,-modules V},(4), for a PI-algebra 4. We shall
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denote by y,(A) its character, and by ¢,(4) its dimension. In this ordinary case, it has
been proved that the limit

lim /e (4)

does exist for any nontrivial Pl-algebra (see [13] and [14]) and it is a non-negative
integer, called the PIl-exponent of A, and denoted by exp(4). This Pl-invariant can be
used in order to classify the varieties of Pl-algebras, as suggested by the mentioned
papers. In the case of superalgebras, one can define a “superexponent” by setting

exp?2(4) == lim \/ c2*(4),

if this limit does exist.

3. The main result
The main result is the following.

Theorem 3.1. Let A,B be Pl-algebras, and let M be a free (A, B)-bimodule. Let the

matrix algebra R := (g Ag ) be endowed with the following Z,-grading

Ro= (1) mo= (M),
0 B 0 0

Then the Z,-graded cocharacter sequence for R is the following

Xn,O(R) = Xn(A S B)a

1 (R) =" (1p(A) @ 10— p(B)™ @ 11,
p=0

Inik(R)=0 for k>2
(neN).

As a Corollary, we shall obtain that exp?2(R) = exp(4) + exp(B).
In order to prove Theorem 3.1, let us decompose Vnzf into the sum of linear subspaces
in the following way.

Definition 3.2. For every J C 7 := {l,...,n} let us denote by ¥, , the subspace of
Vi

Vag = span(yi, ... yi,zyj .. Vi, Hits..oipy = j1. .o jg} =\ J).
Remark 3.3. Clearly, V; | = EBJQ Vig.

For a generic element of V,; the following holds.
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Lemma 3.4. Let =3, f1€ Vi1 (f5€ V). Then
fe(R) if and only if f; € Tr(R) for all J C .

Proof. If all the components of f are in 7>(R), it is clear that f € T(R) as well. So
assume that /' € T5(R) and let J be a subset of 7. If |J| = p we may assume without
loss of generality that J = {1,..., p}. We want to prove that f; is zero under all
graded substitutions & of the variables yi,..., y,,z. Actually, since f; is multilinear,
what needs to be checked is just that f;, vanishes under all substitutions & of type
z+> mejp and y > aey; or y > bey, where meM, ac A and b € B.

It is easy to see that f; vanishes under the substitution & in case y; — b;ex for
some i < p. The same happens if y; — a;e;; for some i > p. So just the substitutions
& of type

ae;; i< p
Vi — Z — meqp
biey i>p

for ac A, b€ B and m € M need to be checked.
On the other hand, for each such substitution, the remaining components f7, for
T #J, of f vanish. Hence

0=fle=_ frls=fils

TCh

and f; vanishes under these substitutions, as well. Therefore, f; vanishes under all
possible substitutions, that is f; € To(R). [

By the previous argument, we obtain

Vaa N Ta(R) :JECBA(V;,J N T2(R)).

We may notice that ¥}, ; N T>(R) is not an S,-module. However, for all p < n the sum

VVn,p:: @ Vn,J

JCih
[J=p

is an §,-module, and we are going to show that the following decomposition of
S,-modules holds:

Vn,l ~ Wn,p
I/;,’l N Tz(R) - =0 Wn,p N TZ(R)

n

(1)

It should be clear that this is a vector space isomorphism, under a canonical isomor-
phism ¢. Since the induced action of S, over the summands

o(fp + W p NT2(R))) = a(fp) + (Wap N T2(R))

and this action commutes with the isomorphism ¢, the latter is an isomorphism between
S,-modules, as well.
W
Let us denote the factor module WT’;(R) by W, »(R). By Eq. (1), we are led to

study the S,-module structure of the W, ,(R) in order to obtain the structure of V;, {(R).

n,p :
W R 1S
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Remark 3.5. Notice that if J, I C 7 have the same cardinality, then the factor vector
spaces V, ;/(V,s N T2(R)) and V, ;/(V,; N Ta(R)) are isomorphic. In particular, all the
vector spaces decomposing W, ,(R) have the same dimension, which we shall denote
by d, ,(R). From this it follows that

dimy W, ,(R) = ( ! ) dy p(R).
p

Furthermore, let p <n, J := {1,..., p}, and denote by S,_, the group Sym{n \ J}.
Notice that there is a canonical S, x S,_ ,-action on V, ;/(V, s N T2(R)).

Lemma 3.6. The following isomorphism of S,-module holds:

2%,
W, ,(R) =2 KS, (g} _
#(R) Vg N Ta(R)
K(SyxSup)

Proof. As a first remark, let us notice that the vector spaces in the statement have the
same dimension over [, as a consequence of general results about induced represen-
tations (cf. [5], 12.27).

Now we are going to build up an S,-module isomorphism between them. Let us
define

2%,
(i KS, x —2 S —
" Vs NTa(R) 162 Vir N Ta(R)
lIj=p

by

(0,f)— a(f)
for all ¢ €S, and ]_” € V,s/(Vug N Ta(R)). It is clear that { is well-defined. Moreover,
it is clearly KK-linear.
In order to show that { is §), x S,_ ,-balanced, it is enough to consider the monomials
in place of the whole f. This is clearly true, as well, i.e. for all AueS, x S,, (¢ :=
n— p), g €S, and monomials y;, -y, ZV; -V,

{(a(Ap), v, < Vi 2V ---yjq) = Yoi(ir) « -+ Yoi(i,)ZYou(jr) - - - You(j,)

= o, (A)(Vi Vi, 2550 Vi)
Therefore { induces a homomorphism

7 Vi Va1
Pk, ®Q @
(S, XSn_p) Vs N Ta(R) 1o Var N Ta(R)
[|=p
Since the dimensions of the vector spaces are equal, it is sufficient to prove that { is
surjective. Indeed if ;. 3, zy; ...y, is a monomial in P it is the

R Vi
|§|%np Vi NT2(R)

image of (0, y1 ... YpZyps1-.. Vs) Via ¢ where

1 e p p+1 . n
0= . . . . :
1 lp J1 ]q
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Finally, this linear isomorphism clearly commutes with the S,-action, hence it is an
isomorphism of S,-modules. []

Remark 3.7. Although we wrote the S,-module KS, @s,«s, ) #TJZ(R) explicitly,

in the standard notation adopted in the representation theory of groups it should be

Sn
denoted shortly as ( . In other words, it is the S,-module induced by the

Vs
VaaNT2(R)
(Sp x Sy—p)-module %&R) Therefore, we may rewrite the statement of the previous
Lemma as

v, 5
W, (R) =g | —"' ) |
a[’( ) Sy (V,,JﬁTz(R))

The next step is therefore to study, for all p <n, the structure of the
(Sp x Sy—p)-module

4%,

Vis(R) i= ——F——
W=y A n®y

where J :={1,..., p}.

Remark 3.8. With the same notation, notice that if f(x,...,x,)€T(4) and
g(x1,...,xn) € T(B) then f(y1,...,y,)z € To(R) and zg(y1,..., ym) € T2(R).

Lemma 3.9. Let p < neN. The following isomorphism of (S, x S,_ ,)-modules holds

Vp ® Vaep
V,NT(A) = VN T(B)

V;z,J(R) =

Proof. Let us start by defining
C: Vp(A) X Vn—p(B) — Vn,J(R)

mapping (f + T'(4),g + T(B)) — (fzg + (V,.; N T2(R))). This map is well defined by
Remark 3.8.

Actually, the map { is K-linear hence induces an homomorphism of linear spaces
: Vp(A) @ Va— p(B) — V. s(R) which commutes with the (S, x §,_,)-action.

Now we have to show that { is bijective. To this aim we shall exhibit an inverse
for (.
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Let y: V, s — Vp(4) ® V,— p(B) the map defined by
MpZMy— p — My Q My p,

where m, is a multilinear monomial in the variables {yi,...,y,}, m,—, a multilinear
monomial in the remaining variables, and by m,, m,—, we denote m, + (V, N T(A4)),
My—p + (anp NT(B)).

In order to induce a (S, x S,—,)-module homomorphism from V, ;(R), we need
to check that keryy O (¥, N T2(R)). Actually, if this inclusion is not true, then there
should be a polynomial f € (¥, ;NT>(R)) with Wy(f) # 0. Let us choose f:Zf;l fizgi
for a minimal %.

We may assume that the g; are K-linearly independent modulo 7'(B). Indeed, if
g1 = Zf;z o;gi, then f = Zf;z(oci f1+ fi)zg;, contradicting the minimality of &.

Moreover, we may assume that f; & T'(4) for all i =1,...,k. Indeed, let f” be the
sum of the f;zg; such that f; € T(4) (if any) and let /" be the sum of the remaining
ones. Then /' = f’ + f”. We may notice that f; € T(4) implies that f;z € T>(R) (by
Remark 3.8) and therefore f’ € T>(R). On the other hand, since the f; occurring in f’
are in 7(4) we get Y(f')=0. Therefore /"' = f — f’ satisfies f”' €V, ; N T»(R) and
V(f")y=y(f) # 0. Hence, if /' # 0, we obtain a contradiction to the minimality of
k once again.

Finally, these conditions on f, the g;’s and the f;’s imply that the polynomial f
cannot be in 7,(R), as showed in the proof of Theorem 1, p. 731 in [9], which is a
contradiction. Therefore kery/ O ¥}, ;N T>(R), and we get an induced S, x S,_ ,-module
homomorphism 1 : Vi,s(R) = V,(A) ® V,— ,(B) which inverts (O

Now the proof of Theorem 3.1 follows easily by collecting the obtained S,-module
isomorphisms.

Proof of Theorem 3.1. The first statement of Theorem 3.1 is trivial: ¥, oNT2(R)=V,N

(TAYNT(B))=V,NT(A D B).
In order to prove the second statement, one writes the S, x S;-module isomorphisms

V(R = | @D W p(R) | @ I

p=0
= [ D1, p R | @ K
p=0

1%

Py en_B)" | ek
p=0

by Lemmas 3.4, 3.6 and 3.9. [
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Corollary 3.10. The graded codimension sequence of R is related to the ordinary
codimension sequences of A, B and A ® B by the following formula:

-1
r(R)y=cid@B)+n Y (n >cp(A)cq(B). (2)
p

p+g=n—1

Proof. By Theorem 2.2 one has
" n
c%m:2<>@wm>
i=0 \!
By [9], Theorem 1, it follows that c,_;;(R) =0 if i > 2, hence
CZZ(R) = cn,O(R) + ncn—l,](R)'

The explicit formula follows then as a consequence of Theorem 3.1. [J

Corollary 3.11. The Z,-graded Pl-exponent of R is
exp?2(R) := lim \/ cl*(R) = exp(4) + exp(B).
n

Proof. By the results of Giambruno and Zaicev [13,14], the exponent of the algebra
A does exist and it is an integer, e4. Moreover, there exist constants ay, a1, by, /1 such
that

alnb‘ez < c(4) < oclnﬁ'ej.

Similarly, there exist constants a,, oy, by, > such that
aznbzeg <c(B) < aznﬁze};

and constants a3, o3, b3, 3 such that
azn” ey < cu(A® B) < oznlelj

Recall that exp(4®B)=max{exp(4),exp(B)}. Without loss of generality, let us assume
that the maximum is ey.

Now we are going to find an upper bound for the sequence cZ2(R). By formula 2
one has

n—1
CZZ(R) < 053’1/}36;11 +n Z oc1pﬁloczqﬁ2 ( > efe%.
p

prq=n—1

Now, setting o := max{oy,, a3} and f := max{f, 2, f3}, and noticing that p,q < n,
the latter expression satisfies

n—1
<anfel +a?n? N ( ) eiey
p+q=n—1 p

<N+ (ea+es) ™)

< 20N+ (e +ep)").
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Similarly, we may find a lower bound using formula 2 once again:

n—1
CZZ(R) > a3nb3(eAeBB)n +n Z alpblaquz < ) e

€5
ptg=n—1 p
n—1
can Y e el
prg=n—1 p
Set b := min{b;,b,} and notice that p’'¢> > (pq)’. If b > 0 then

n—1
(R = aay Y (pq)b< >e;;eg
p

prg=n—1
PgF0

n—1
> aja; Z elel

ptg=n—1 p
Pg#0

> ajax((eq +ep) ' — 62_‘ - eg_l > ajax((es +ep)"" — 23?3_1)'
If on the contrary b < 0 then notice that ( pg)? > (n — 1)?*. Therefore
2 s [ 1
'Ry = aay Y (pq) ejey
pt+g=n—1 p
Pg7#0

> ajar(n — 1)*((eq +ep)"™" —2e57 ).

Now, if we consider the corresponding nth root sequences, we obtain
es + e <lim\/c(R) < ey + ez,
n
hence exp”2(R) =ey +ez. [

A description of the proper graded cocharacter sequence of R in the spirit of Theorem
3.1 is also possible.

Theorem 3.12. Let A, B Pl-algebras, and let M be a free (A,B)-bimodule. Let the

g 1\; ) be endowed with the following Z,-grading

A 0 0 M
Ry = R, = .
0 B 0 0

Then the Y-proper Z,-graded cocharacter sequence for R is the following

matrix algebra R := (

ém,O(R) - ém(A ©® B)
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Eni(R)= Y (&)@ &B) @ (1)
r+s+t=m

(neN),

where £i(A) and E(B) are the ordinary ith proper cocharacters of A and B and (t)
denotes the irreducible S;-character corresponding to the partition (t).

Proof. The relation is clear for &, o(R), Indeed, by the equalities
Xn,O(R) = )fn(A S2) B)
and
(A ®B) = ((n—m)® (4 D B))®
m=0

the statement follows a fortiori.
For &, 1(R) we need to show that

n S
xn,l(m:Z((n—m)@( > ér(A)®(t)®é‘s(B)>) ® (1).

m=0 rs+t=m
We know by Theorem 3.1 that

iRy = > (1,(4) @ 1(B)* @ (1)

ptq=n
S
=y (Z((r)eafr(A))sﬂ@ Z((u)@e:s(B))Sq) ® (1)
pt+q=n \r+t=p stu=q

Sn

=Y | D (easu)r (e a®d) | ).

ptq=n \ r+t=p
s+u=q

Now note that the following equality holds:
() @ &)™ @ (1) @ E(B))™

=((t) @ &(4) @ (u) @ E(B))Sr™s

(see [5], Theorem 43.2). Hence
S”

m®=> | Y (e&@ewe B S | 1)

ptq=n \ r+t=p
s+u=q

Sn

=Y | S meswewmes®d | o)

ptq=n \ r+i=p
stu=q
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n Sy
=Z< > (n—M)®ér(A)®(t)®és(B)®> ® (1)

m=0 \r+ts+i=m

and the second equality follows from [5], Theorem 38.4. Therefore, a fortiori, the
Y-proper graded cocharacter sequence of R is as stated. [

4. Graded cocharacter sequences for UT,(KK)

An immediate application of Theorem 3.1 (and of Theorem 3.12) concerns the al-
gebras of upper triangular matrices with entries from K. It is known (see [20]) that
if G is an abelian group then all possible G-gradings for UT,(IK) are elementary, i.e.
the unit matrices are all G-homogeneous. Here we consider the Z,-gradings only.

A convenient way to describe a fixed grading is to display a vector g € Z},

g=(g1,---»9n):
the homogeneous G-degree of the unit matrix e; is then g; — g;. Notice that in an
elementary grading all diagonal matrix units, e;, are therefore in the 0-component,
hence 1 €Ry.

In [9], Corollary, it has been proved that if UT,(I) is endowed with the Z,-grading
g :=(0,...,0,1,...,1),
——
k

then

A M
T (UTW(K)) = Ta(R) for R = < ) ,
0 B

where A4, B are Pl-algebras satisfying T(4) = T(UT(K)), T(B) = T(UT,_x(K)) and
M is a free (4, B)-bimodule.

Proposition 4.1. Let UT,(IK) be endowed by the Z,-grading (0,...,0,1,...,1). Then
——

k
its Y-proper graded cocharacter sequence is
max{k,n—k}
éIZTO(UTn(K)): Z Z (pr—-L1DH®---(p — 1’1))&”
r=0 pi=2
pit+-+p=m

n—2
EXULAEN=Y > ((pm-LD®-@(p - L))" 1)
= p|+~{)jv-i-2+t:m

for m = 2.

Proof. We recall as a key step that the proper cocharacter sequence for the algebra
UT;(KK) has been obtained by Drensky and Kasparian in [11], Theorem 2.7, and is the
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following (up to the notation)

k—1
U= Y (m—-LD& & (p —1,1)™ 3)
r=0

pi=2
pitetpr=m

In order to show the first equality of the proposition, we recall that 7(4 & B) =
T(4)N T(B) and that if k£ > & then T(UTy(K)) C T(UTy(K)). Hence, T(UTy(K) &
UT,—«(IK)) = T(UT;(IK)) where j = max{k,n — k}. The formula of the proposition
follows then by Theorem 3.12 and by formula 3.

Now we are going to prove the second equality of the proposition. By Theorem 3.12
it holds that

& (UT(K)) = S (GUTK)) ® (1) ® &(UT, ()™ @ (1),

r+s+t=m

Then applying Eq. (3) to the &, and &, and rearranging the order of the factors in the
tensor, we may rewrite

&0 (UT(KK))

S,
k—1
=> 12X X (m-the--ep.-1L1)
r4s+t=m a=0 pi=2
it pa=r
S, S
n—k—1
® Y @-Lhe-e@-LD)| @@ 0.
b=0 qi=2
qQ+-+qp=s
By [5], Theorem 43.2, it follows that
k—1n—k—1
ERUnLEN= >3 > Y (m-LD@ - @(pa—1L1)
r+s+t=m a=0 b=0 pigj =2
prtect pa=r
q1+-+qp=s
(g — LD @(gp— L@ (1) @ (1)
n—2
=S Y (n-1LDe @0 -1, @) @ (1)
1= hi=2

hythHt=m

by rewriting suitably the summation. [
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It is possible to give the graded cocharacter sequences for the algebra UT5(IK) with
respect to all possible nonequivalent Z,-gradings. These are the following:

(1) (0,0,0). The even part is then U73(IK) and the odd part is simply 0. The Y-proper
graded cocharacter sequence is then the proper cocharacter sequence of the full
algebra, and it is a particular case of formula 3 obtained by Drensky and Kasparian
in [11].

(2) (0,0,1). In this case the even and odd parts of the algebra are

x o+ 0 0 0 =
R(): 0 * 0 R1: 0 0 * .
0 0 = 0 0 0

where the * denote entries from K. Its Y-proper graded cocharacter sequence is
described by Theorem 3.12 and the result of Drensky and Kasparian expressed by
formula 3. Explicitly, it is the following

&y = En(UTy(K)) = (m — 1,1)

an= Y (p-LhHa@) " a0

ptq=m

Its graded codimension sequence can be obtained by Corollary 3.10. Recall that
the codimension sequence for UT»(K) is ¢,(UT»(IK))=2+2""!(n—2) (see [18]).
Therefore, one has

-1
c2(R) :cffo(R) +n Z <n ) cp(UTH(K))cy(K)
p

p+q=n—1

—1
= e (UT(K) +n Y <" >Cp(UT2(K))Cq(K)

ptg=n—1 p

-1
=2+42"'n—2)+n Z (n )(2+2”‘1(p—2))

pt+g=n—1 p
=3"2p(n —4)+2"2(Bn —2) +2
as one can easily verify using the formula
n n
> p2P =2n3""",
p

p=0

since the equality p (;) =n (;:11) holds.
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From this it follows that the superexponent of R is

exp?2(R) = lim \/ ¢2(R) = 3.

(3) (0,1,1). In this case the grading is

* 0 0 0 x =x
R(): 0 ES * 5 R1: O 0 O N
0 0 =« 0 0 0

and the relatively free superalgebra is the opposite of the relatively free superalge-
bra of the previous case. It is immediate that the quantitative information are the
same.

One grading is not included in the previous list. It is the grading (0, 1,0). Explicitly,
it is the following

* 0 =% 0 = 0
Ry=10 x 0|, R =10 0 =
0 0 =x 0 0 0

In the rest of this section we are going to study the graded cocharacter sequence for
this algebra.
From the results in [8] it follows that

x 0 % 0 x 0
Proposition4.2. Let R := | 0 = 0| ® |0 0O x| the Zy-grading for the
0 0 = 0 0 O

algebra UTs(IK)). Then

B = {z1z223,21[y1, y21. [V1, 2121, [v1 021 3, val}

is a basis for the graded polynomial identities of R. Moreover, the spaces of Y-proper
multilinear polynomials I, o(R), I'n1(R), I'n2(R) (for n=0) have the following
<-basis:

Tpo(R) : [Wivs Vis Vigseeos Vi) With iy <iy < -+ <iy_y and {iy,...,i,—1} ={2,...,n}.

Fn,l(R) : [Zlayl:“'syn]'

Lu2(R) 2 (215 Yigs -5 Vi l[22, Vipys - -5 Vi s (22, Virs- o> Vi ll21s Vigors - Vi ], where
k=0,1,....n, [ <ip <+ <ip and iy <ipip < -+ <lIy.

Corollary 4.3. With the same notation of the previous Proposition, the Y-proper
graded codimension sequences for R are the following:

Tno(R)=n—1
’))n,l(R) =1



210 O.M. Di Vincenzo, V. NardozzalJournal of Pure and Applied Algebra 194 (2004) 193-211

Pn2(R) = 2",

Now we will list the proper cocharacter sequences.

Proposition 4.4. With the same notation of Proposition 4.2, the Y-proper graded
cocharacter sequences of R are the following:

in,O(R) = (l’l - 1) 1)
En1(R)=(n) ® (1)

5]
Ena(R) =Y mi(R)(n — k. k) ® (2))

k=0

3]
@Y m(R)((n — k&)@ (1,1)),
k=0

where L%J denotes the largest integer not greater than n/2 and mi(R): =n — 2k + 1.

Proof. It should be clear that the S,-submodule generated by [y2, yi, y3,..., Vs] In
I',.0(R) is isomorphic to the irreducible submodule associated to the partition (n—1,1).
By counting the dimension, it is the whole I', o(R). Hence the first equality holds. The
same argument, even more easily shows that the second equality is true. A little more
tricky is to show the last equality.

First, notice that [z;yy,..., yx] generates an S; X S;-submodule isomorphic to the
irreducible module associated to the “double partition” (k) ® (1). The same arguments
show that [z, yk+1,-.., ¥n] generates an S,_; X S;-module isomorphic to the one cor-
responding to (n — k) ® (1). Therefore the polynomial [zy, vi,..., Villz2, Vit1s---s Vnl
generates an (S; x S,_x) X (8] x S7)-module M isomorphic to

(k) ® (n=k)) @ ((1) @ (1)).

By Proposition 4.2, the S, x S;-submodule of I',2(R) generated by that polynomial is
isomorphic to the S, x Sy-induced submodule M5*52, Its dimension over K can be
computed noticing that

dimic((k) ® (n = k) = [S,:(Sg X Sp—)] = (Z) :

(see for instance [5], 12.27). By “moving” the square brackets correspondingly to the
possible £ =0, 1,...,n, one obtains in I',>(R) the S, x S>-submodule

D ()@ (n— k)™ @ (1)@ (1),

k=0

whose dimension over K is exactly 2"+l Therefore, it is the whole I’ n2(R).
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Finally, by applying the Young-Pieri rule, one gets the decomposition into S, X
S,-irreducible modules:

|n/2]
> m(R)(n—kk) | @ ((2) @ (1,1)),
k=0

where m;(R)=n — 2k + 1. Therefore, its character follows accordingly. [

References

[1] Y. Bahturin, V. Drensky, Graded polynomial identities of matrices, Linear Algebra Appl. 357 (2002)
15-34.

[2] Y. Bahturin, A. Giambruno, M. Zaicev, G-identities on associative algebras, Proc. Amer. Math. Soc.
127 (1) (1999) 63-69.

[3] Y. Bahturin, S.K. Sehgal, M. Zaicev, Group gradings on associative algebras, J. Algebra 241 (2) (2001)
677-698.

[4] A. Berele, Cocharacters of Z/2Z-graded algebras, Isr. J. Math. 61 (1988) 225-234.

[5] C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, New
York, 1988.

[6] O.M. Di Vincenzo, Cocharacters of G-graded algebras, Comm. Algebra 24 (10) (1996) 3293-3310.

[7] O.M. Di Vincenzo, On the graded identities of M j(£), Isr. J. Math. 80 (3) (1992) 323-335.

[8] O.M. Di Vincenzo, P. Koshlukov, A. Valenti, Gradings on the algebra of upper triangular matrices and
their graded identities, J. Algebra 275 (2004) 550—566.

[9] O.M. Di Vincenzo, V. Drensky, The basis of the graded polynomial identities for superalgebras of
triangular matrices, Comm. Algebra 24 (2) (1996) 727-735.

[10] O.M. Di Vincenzo, V. Drensky, V. Nardozza, Subvarieties of the varieties of superalgebras generated
by M; 1(E) or My(#"), Comm. Algebra 31 (1) (2003) 437-461.

[11] V. Drensky, A. Kasparian, Polynomial identities of eighth degree for 3 X 3 matrices, Annuarie de 1’Univ.
de Sofia, Fac. de Math. et Mecan., Livre 1, Math. 77 (1983) 175-195.

[12] A. Giambruno, S. Mishchenko, M. Zaicev, Group actions and asymptotic behaviour of graded poly-
nomial identities, J. London Math. Soc. (2) 66 (2) (2002) 295-312.

[13] A. Giambruno, M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math.
140 (1998) 145-155.

[14] A. Giambruno, M. Zaicev, Exponential codimension growth of Pl-algebras: an exact estimate, Adv.
Math. 142 (1999) 221-243.

[15] A. Giambruno, M. Zaicev, Minimal varieties of exponential growth, Adv. Math. 174 (2003) 310-323.

[16] A.R. Kemer, Varieties and Z,-graded algebras, Math. USSR Izv. 25 (2) (1985) 359-374.

[17] A.R. Kemer, Ideals of identities of associative algebras, AMS Translations of Math. Mon. 87 (1988).

[18] V.N. Latyshev, Complexity of nonmatrix varieties of associative algebras, Algebra i Logika 16
149-183 (Russian), English trans.; Algebra and Logic 16 (1977) 98-122.

[19] J. Lewin, A matrix representation for associative algebras I, Trans. Am. Math. Soc. 188 (2) (1974)
293-308.

[20] A. Valenti, M. Zaicev, Abelian gradings on upper-triangular matrices, Arch. Math. 80 (1) (2003)
12-27.



	Z2-graded cocharacters for superalgebras of triangular matrices
	Introduction
	General notions and tools
	The main result
	Graded cocharacter sequences for UTn(K)
	References


