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Abstract

We classify dark energy models in a plane of observables that correspond to the common parameterization of a non-constant equation of state,
w(a) = wg + wg (1 —a), where a is the scale factor of the universe. The models fall into four classes and only two of these classes have a region
of overlap in the observable plane. We perform a joint analysis of all Type Ia supernova (SNIa) data compiled by the High-Z SN Search Team
(HZT) and the Supernova Legacy Survey (SNLS) and find that no class of models is excluded by current SNIa data. However, an analysis of large
scale structure, Ly forest and bias constraints from SDSS, the Gold SNIa data and WMAP data indicates that non-phantom barotropic models

with a positive sound speed are excluded at the 95% C.L.
© 2006 Elsevier B.V. Open access under CC BY license.

Abundant cosmological data indicate that the expansion of
the universe has changed from a decelerating phase to an ac-
celerating phase in the last few billion years. This is generally
attributed to the recent dominance of an energy component with
negative pressure called dark energy.! For reviews see Ref. [2].

Among candidates for dark energy are the cosmological
constant A proposed by Einstein and a dynamical scalar field
such as quintessence [3-5]. The cosmological constant arises
in particle physics as vacuum energy with constant energy den-
sity p, constant pressure p and equation of state w = p/p =
—1. A cosmological constant is troublesome from the particle
physics standpoint because the cosmologically measured value
of p/* is found to be about (0.7,)!/4 ~ 0.002 eV, where p, is
the critical density for which the universe is flat. Quantum field
theory, however, suggests a value at least 15 orders of magni-
tude larger under the assumption that the Standard Model is an
effective theory valid below 1 TeV. For the vacuum energy to
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' Modifications to the Friedman—Robertson—Walker equation can also pro-
vide an explanation for the current accelerated expansion such as in Cardassian
models [1] which do not have exotic forms of energy or a vacuum contribution.
We do not consider such models here.
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be renormalized to 0.002 eV, a fine tuning in the energy den-
sity at the level 60 decimal places is required. See Ref. [6] for
a review of the cosmological constant problem. Compounding
this, is the cosmic coincidence problem which seeks an expla-
nation for why the dark matter and vacuum energy densities
are comparable today although their ratio scales as 1/a>, where
a =1/(1 4+ z) in terms of redshift z [2]. Quintessence is a not
a solution, but provides a phenomenological explanation for
these problems. It is a time-varying field with w(a) > —1 and
is usually represented by a very light scalar field rolling down
a potential. The potential and field values are chosen so that
the energy density in quintessence dominates the dark matter
density only recently and takes on the measured value. This
picture has been generalized to schemes with w < —1 called
phantom dark energy and to dark energy as a barotropic fluid
with w = f(p)/p. In what follows, we consider phantom mod-
els, barotropic fluid models of dark energy and two classes of
quintessence models.

Recently, in a sequence of papers [7-9], models of dark
energy have been divided into categories depending on their
equation of state, w, and its derivative with respect to the loga-
rithm of the scale factor, w’ = #’fa); since H~! = #ﬁa), w' is
the time derivative of w in units of Hubble time. It was pointed
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out that different classes of models evolve in different regions
of the w—w’ plane.?

Building on this work, we classify models of dark energy in a
parameter space of observables. It has been argued in Ref. [11],
that given the sensitivities of future cosmological experiments,
one can realistically expect to constrain at most two parameters
related to the equation of state. Specifically, we use the standard
parameterization of dark energy evolution in terms of the equa-
tion of state and its derivative with respect to z at the present
time [12]:

z
= _— l
w(z) wo+walJrZ (D
with
_ dw _ ,
Wy = — = -2w'|;=1. 2)

dz z=0

Note the relationship between w, and the value of w’ at z =1,
the epoch when the dark energy contribution to the expansion
rate is expected to increase in importance.> We classify models
in the wo—w, plane. The primary advantage of this parameter-
ization is that since the dark energy density evolves according
to

p(2) = p(0)(1 + z)>I Tt p=3wa iz 3)

it is well-behaved from high redshifts until today. Note that for
dark energy to be subdominant at early times, wo + w, < 0.
We do not impose the latter restriction since the parameteriza-
tion of Eq. (1), though well-behaved at high redshift, may be
inapplicable there.

The previously popular linear parameterization w(z) = wo+
w1z [16] diverges at high redshift and consequently yields ar-
tificially strong constraints on w; in analyses involving data at
high redshifts such as CMB data. Since Eq. (1) is often used in
the analysis of data, our classification will enable a direct com-
parison between the results of such analyses and the theoretical
space of models.

The categorization we develop is analogous to that of in-
flationary models where models populate regions in a plane
defined by the spectral index of scalar perturbations, ng, and
the relative normalization of the tensor and scalar spectra, R
[17], or in a plane of horizon-flow parameters [18].

Dark energy models

Here, we briefly review the models under consideration, de-
fine the regions they occupy in the w—w’ plane and classify
them in the wo—w, plane.

We first consider models which obey the null energy condi-
tion, w > —1, and then consider phantom models with w < —1.

2 Equivalently, different dark energy models evolve in different regions of
statefinder planes [10]; the statefinder diagnostic, defined in terms of the second
and third time derivatives of a, is directly related to w and w'.

3 InRefs. [13,14], the transition from matter domination to dark energy dom-
ination is found to occur at z 2~ 0.5. For a recent discussion of the low redshift
evolution of the dark energy density see Ref. [15].

Thawing models  The nomenclature, “thawing” models,
was coined in Ref. [7] to describe a scalar field whose equa-
tion of state increases (thaws out) from w >~ —1 as the scalar
rolls down towards the minimum of its potential. Potentials of
the form ¢" (with n > 0) and e~? are typical of these models.
Particle-physics models involving axions [19], pseudo Nambu—
Goldstone bosons [4], moduli or dilatons [20] often have such
potentials. They are found to satisfy [7]

1+w<w <3(1+w). 4)

It is natural to impose this constraint at the epoch when dark
energy starts becoming important, i.e., z = 1. With w(l) =
wo + wu/2 and w'|,=1 = —w, /2, we find

_%(1+w0)<wa<—(l+wo). &)

Thawing models occupy the dark-shaded triangular wedge in
Fig. 1.

Cooling models  In these models, initially, w > —1 and w
decreases as the scalar rolls down the potential, which is typ-
ically of the form ¢~" or ¢_”e¢2 (with n > 0). The tracker
models of Ref. [21] adopt such potentials. Such forms of the po-
tential also arise in models of dynamical supersymmtery break-
ing [22] and supergravity [23]. These models lie in a region of
the w—w’ plane defined by [7-9]

Bl -—w)(1+w)<w <02w(l +w). (6)

By requiring that w(1) obey the above inequality, we obtain the
region with red slant hatches (with negative slope) in Fig. 1.
As shown in Ref. [9], k-essence models [24] with a non-linear
kinetic term also fall within the class of cooling models.

Note that the “freezing” models of Ref. [7] are a special case
corresponding to the situation in which the potential has a min-
imum at ¢ = co. For freezing models,

3wl +w) <w < 02wl + w). 7

Barotropic fluids A barotropic fluid is one for which the
density depends only on the pressure. Supposing that dark en-
ergy is a barotropic fluid with p = f(p) leads to a class of
models that contains as special cases the generalized Chaplygin
gas [25] for which f(p) = —A/p* with o > —1 and the orig-
inal Chaplygin gas model with « = 1 [26]. While the models
of Refs. [25,26] were proposed to unify dark matter and dark
energy, subsequent work addressed the possibility of Chaply-
gin gas models as being models of dark energy alone [27].
Barotropic fluid models arise in string theories [28] in which
e.g. the Chaplygin gas corresponds to a gas of d-branes in a
d + 2 spacetime [29].

Non-phantom barotropic models were found to satisfy [8]

w <3w(l +w) 3

under the assumption that cf =dp/dp > 0 so that perturbation
growth is stable.

The region with green slant hatches (with positive slope) in
Fig. 1 depicts barotropic fluids. This region partially overlaps
with that for cooling models.
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Fig. 1. Classification of the four types of models in the (wg, w,) plane. All regions depicted by a light shaded yellow region correspond to phantom models with

w < —1 today or recently.

Comparing Eq. (7) with Eq. (8), we see that freezing mod-
els and barotropic fluids have nonoverlapping regions with a
common boundary in the w—w’ plane. In the observable wo-w,
plane, freezing models occupy the region with red slant hatches
(with negative slope) below the cross hatched region (non-
overlapping with the region occupied by barotropic fluid mod-
els). See Fig. 1.

Phantom models Finally, we consider phantom models for
which w < —1 today or recently. It was shown in Ref. [9] that
for the prototypical phantom (i.e. a ghost with a negative kinetic
term) model [30],

30 —w)(1+w) <w <3w(l —w)(1 4+ w). ©)]

However, we do not impose this inequality since it is very
marginally more constraining than w < —1, and since the up-
per bound on w’ was obtained specifically for tracker phantom
models. Requiring wp < —1 or w(1) < —1 we find that phan-
tom models populate the light yellow shaded region in Fig. 1.

The subregion defined by vertical (horizontal) lines corre-
sponds to wg < —1 and w(l) > —1 (wg > —1 and w(l) < —1)
i.e., models for which the equation of state crossed the phantom
divide line w = —1 from a higher value to a lower value (lower
value to a higher value). The light yellow shaded region with-
out lines corresponds to “pure phantom” models for which the
phantom divide line has not been crossed recently i.e., wg < —1
and w(l) < —1.

Note that not all models that violate the null energy condi-
tion require the scalar to be a phantom. Demonstrations of the
violation of the null energy condition have been made in mod-
els of vacuum metamorphosis [31], climbing scalar fields [32],
and the braneworld [33] without the introduction of negative
energies or negative norm states.

Interestingly, the quintom model of Ref. [34] lies in the re-
gion with vertical lines.

We caution against interpreting this classification as being
comprehensive. For example, dark energy with an oscillating
equation of state [35] can rarely be realized in a potential for-
mulation. (An example of oscillating dark energy from a quite
complicated potential can be found in Ref. [36].) Thus, oscil-
lating dark energy as a class of models falls outside the realm
of our classification unless the equation of state crosses the
phantom divide line as in quintom models [34]. Similarly, we
have not attempted to include neutrino dark energy [37] or dark
energy with generalized equations of state [38] in the classifi-
cation.

When viewed in conjunction with data, our classification is
intended to provide guidance as to what kinds of schemes are
preferred by data. It is necessary that a cosmological constant
(wg, wy) = (—1, 0), be excluded by data to distinguish between
thawing, cooling and phantom models because these models
have a cosmological constant as a limiting case. This is in con-
trast to barotropic fluids with a positive sound speed.

Current status

Having defined the regions that the four different types of
models occupy in the wo—w, plane, we now examine if current
data are able to discriminate between these classes.

We perform a joint analysis of SNIa data compiled by the
High-Z SN Search Team (HZT) and the Supernova Legacy
Survey (SNLS). We include the Gold and Silver datasets of
Ref. [13], the 4 SN of Ref. [14], and the SNLS dataset [39] as-
suming a flat universe with 0.2 < £2,,, < 0.4 and 0.5 </ < 0.9.
We have removed the SN common to both surveys from the
SNLS dataset which results in a full dataset of 266 SN. Our joint
analysis is implemented as follows. The statistical significance
of a cosmology is determined in terms of x2 = XIZJZT + XS%NLS’
with

188
2 (M?bs —5logodL(zi; $2m, h, wo, wq) — M)?
XHZT = Z 3 )

o
(10

i=1 i
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2 % (,u?bs —5logiodr(zi; 82m, h, wo, We) — M>)? gous to absolute magnitudes if observational data are provided
XSNLS = _ o2 + o2 ’ as apparent magnitudes.
i=l . n (11) Note that SNLS provides the apparent magnitudes, the

stretch factor used to calibrate them, and the rest frame color
factor that measures host galaxy dust extinction. We have cho-
sen to use the derived u values instead for two reasons: (1) it
is not possible to perform an analysis at the same level of so-
phistication for the HZT data since the High-Z SN Search Team
provides only the distance modulus (i.e., after corrections have
been made to the apparent magnitude m(z)), and (2) it would
be overkill considering that current SN data are not very con-
straining in the (wg, w,) plane.
6 : . . : Reference [39] finds ojy = 0.13 £ 0.02. To be conservative
in our combined analysis we choose ojy = 0.15. We emphasize
that our approximate analysis of SNLS data alone yields good
agreement with that of the more accurate analysis of Ref. [39]
implemented in Ref. [40]. Gravitational lensing bias could be
reduced by use of the flux-averaging procedure of Ref. [41].

In Fig. 2 we display the 68% and 95% C.L. allowed re-
. gions obtained in our analysis. We immediately conclude that
all classes of dark energy models are comfortably allowed by
current SN data. In Fig. 3 we overlay the results of an analy-
sis of large scale structure, Ly« forest and bias constraints from
SDSS, the Gold SNIa data and WMAP data on the plane of clas-
sification. The 68% and 95% C.L. allowed regions have been
adapted from Fig. 9 of Ref. [42] after accounting for the fact
1 that our w, corresponds to —w1 in Ref. [42].
. ! . . It appears that current data exclude non-phantom barotropic
25 -2 -1.5 -1 05 0  models with a positive sound speed at the 95% C.L. Also,

W, among cooling models, freezing models appear to be favored.

However, it may be too soon to draw these conclusions with
confidence because the analysis of several correlated datasets
has led to these results. It will be more convincing if the same

where u?bs is the distance modulus at redshift z;, dy, is the lu-
minosity distance (in units of 10 pc), o; is the total uncertainty
in the distance modulus, al%i is the measurement variance and
oint 18 the intrinsic dispersion of SN absolute magnitudes. M
and M; are nuisance parameters that are marginalized over in
the fit. They correspond to analysis-dependent global unknown

constants in the definition of distances. M; and M, are analo-

Fig. 2. 68% C.L. and 95% C.L. allowed regions from a combined analy-
sis of the HZT and SNLS SNIa data. The crosshair marks the best-fit point
(wg, wg) = (—1.2,1.5). No class of dark energy model is excluded.
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conclusions can be made from an analysis of fewer distinct but
larger datasets. For a recent assessment of the abilities of fu-
ture dark energy surveys to discover the time evolution of w
see Ref. [43].
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