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Abstract

Several general techniques on linear preserver problems are described. The first one is
based on a transfer principle in Model Theoretic Algebra that allows one to extend linear pre-
server results on complex matrices to matrices over other algebraically closed fields of char-
acteristic 0. The second one concerns the use of some simple geometric technique to reduce
linear preserver problems to standard types so that known results can be applied. The third one
is about solving linear preserver problems on more general (operator) algebras by reducing
the problems to idempotent preservers. Numerous examples will be given to demonstrate the
proposed techniques. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

An active research topic in matrix theory is the linear preserver problems (LPP)
that deal with the characterization of linear operators on matrix spaces with some
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special properties such as leaving certain functions, subsets or relations invariant.
One may see [37] for an extensive survey and see [27] for a gentle introduction of
the subject. As mentioned in [27], in the study of LPP one may focus on one specific
question (see [37, Chapter 3]) or a family of related questions (see [37, Chapters 2
and 4]). Also, one may focus on general techniques that can cover many different
LPP (see, e.g., [27, Sections 5 and 6]). In fact, there are a number of well-developed
techniques for studying LPP. To name a few examples, we have:

(i) the projective geometry technique (see [37, Chapter 4 and Section 8.5]),

(ii) the algebraic geometry technique (see [12,18,26]),

(i) the differential geometry technique (see [27, Section 6] and references therein),
(iv) the duality technique (see [27, Section 6] and references therein),

(v) the group theory technique (see [11,13,14,17,38,43] and [37, Section 8.4]), and
(vi) the functional identity technique (see [4]).

In this paper, we describe three more general techniques for studying LPP.

First, we discuss how to use a transfer principle in Model Theoretic Algebra to ex-
tend linear preserver results on complex matrices to matrices over other algebraically
closed fields of characteristic O.

In the study of LPP, many results were first obtained for complex matrices, and
then extended to matrices over other fields or rings. Sometimes it is easy to do the
extension, but in some cases a great deal of effort is needed to achieve the goal. In
Section 2, we show that using the transfer principle in Model Theoretic Algebra pro-
vides an efficient mean to do the job in many situations. Of course, another obvious
advantage of this approach is: one can use all kinds of complex analysis techniques
to prove results for the complex case and extend them to other fields whenever the
transfer principle is applicable.

It is worth noting that a standard procedure of studying LPP on matrix spaces
over an arbitrary field (or even ring) is to solve the corresponding problem in the
algebraic closure of the field and then deduce the results for the original problem. Of
course, precautions have to be taken in the processes of “going up”, i.e., extending
the problem to the algebraically closed field, and “coming back”, i.e., specializing
the result to the original field. Thus, having results on algebraically closed fields is
useful in studying LPP on arbitrary fields.

Another common scheme for solving LPP is to reduce the given question to some
well-studied LPP such as the rank preserver or nilpotent preserver problems so that
known results can be applied. In Section 3, we discuss a geometric technique that
can be used to do the reduction. As one can see in (i)—(iii), geometric techniques
have often been used in the study of LPP. The technique we are going to introduce is
linear algebraic and elementary in nature and does not require too much additional
knowledge of other areas. Yet, examples will be given to show that the technique can
be used to deduce some non-trivial results effectively.

Finally, we consider LPP on infinite-dimensional spaces or other general algebras.
In Chapter 4, we show that an efficient way to study LPP in infinite-dimensional case
is to reduce the problem to idempotent preserver problem.



A. Guterman et al. / Linear Algebra and its Applications 315 (2000) 61-81 63

The following notation will be used in our discussion:
M, »(F): the space of: x n matrices over the fiel#,
My (F): My 0 (F),

{E11, E12, . .., Ey}: standard basis favf,, , (F),
o (A): spectrumofd € M, (F).

2. Atransfer principle

In this section, we discuss how to use a transfer principle in Model Theoretic
Algebrato study LPP. It is worth noting that there were attempts to apply the transfer
principle to prove some results in Algebraic Geometry, see [39,44]. Let us begin by
introducing some basic terminology. Our main references are Refs. [10,22,40].

Definition 2.1. First-order sentences in the language of fields are those mathemati-
cal statements which can be written down using only:

(a) variables denoted by, y, ... varying over the elements of the field;

(b) the distinguished elements “0” and “17;

(c) the quantifiers “for all'(V) and “there exists(3);

(d) the relation symbol=<";

(e) the function symbols+” and “.”;

(f) logical connectives= (negation),A (and),Vv (or), — (implies), and« (equi-
valent);

(g) the separation symbols: left square brackgténd right square bracket]”.

First-order conditions or properties are those conditions or properties describable in

first-order sentences.

Definition 2.2. Two fieldsF; andF, are elementarily equivalent if and only if the
set of all first-order statements that are trud-inis the same as the set of all first-
order statements that are truefn

We have the following result (see [22, Theorem 1.13]).

Theorem 2.3 (Transfer principle).Two algebraically closed fields; and F, are
elementarily equivalent if and onlyéhai(F1) = chai(F2). Consequentlyif a first-
order property holds in one algebraically closed field it holds in each algebraically
closed field of the same characteristic.

Let us describe the general idea of how to apply the transfer principle to ex-
tend linear preserver results on complex field to general algebraically closed field of
characteristic 0 in the following.

Suppose we want to prove that the linear preservers of a certain first-order property
L onm x n matrices oveF have a specific form describable in first-order sentences.
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We formulate the following assertion concerning the fields follows: “Given pos-

itive integersm andn, if a linear mapy : M,, ,(F) — M, ,(F) has the preserving
propertyP, theng is of the specific form”. Here, of course, the preserving property
can be expressed as: “For everne M, ,(F) we haveA has property. implies that

¢ (A) has property”. Since one can identify as a family of(mn)? elements irF
acting onmntuples of elements ik under the usual rule of linear map, that involves
only multiplications and additions of the elements, it is evident that the assertion can
be formalized by first-order statements in the language of fields. Therefore, if we can
obtain the result for complex matrices, then the transfer principle will ensure that the
same result holds for any algebraically closed field of characteristic O.

Let us illustrate this scheme in the following. Some details will be given to the
proof of the first result. Then a number of other examples with references will be
mentioned with brief comments.

In [1], Beasley characterized those linear operatorsafn, (C) mapping the set
of rankr matrices into itself, where < min{m, n} is a fixed positive integer. His
proof depends heavily on a result on rangpaces (see Definition 2.8) on complex
matrices by Westwick [45]. Meshulam (see, e.g., [28]) later extended the result of
Westwick to algebraically closed fields of characteristic 0, and the ramlatrix
preserver result of Beasley was then extended accordingly. In the following, we il-
lustrate how to extend the result of Beasley to arbitrary algebraically closed field of
characteristic 0 using the transfer principle.

Theorem 2.4. Let F be an algebraically closed field of characterisfic Suppose
r, m, n are positive integers such that< min{m, n}. If ¢ is a linear operator acting
on M,, ,(F) mapping the set of rank r matrices into itselien there exist invertible
P e M,(F)yandQ € M,(F) such thatp is of the form

X — PXQ or X +— PX'Q inthe case ofn = n. (2.1)

Proof. For the complex case, see [1]. For the general algebraically closed field, we
use the transfer principle. In view of the explanation given above it is enough to show
that for a matrixA € My, ,(F) (identified with anmn-tuple of elements oF) the
property of being of rank can be formalized as a first-order sentence and also that
the forms (2.1) are describable in first-order sentences. The statement“eamk
is equivalent to:
(a) there exists an x r submatrix with non-zero determinant, and
(b) if » < min{m, n}, then all determinants ofr + 1) x (r + 1) submatrices are
zero.

So, a finite set of expressions involving ondy -, and our variables must hold
true.

To see that the conclusion of the theorem is also describable in first-order sen-
tences, one needs only to check the existence of collectiong ahdn? elements
in F corresponding to the matric®sandQ with detP # 0 and deQ # 0 so that
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() ¢(X) = PXQ forall m x n matrix X, or
(i) ¢(X) = PX'Q forallm x n matrixXin casen = n. O

One can specialize the above theorem to the case whem = r to get the
result on linear preservers of the general linear group/iriF). Alternatively, one
can apply the transfer principle to LPP related to classical group®,ai€), see
[2,31,36], and deduce the results on more general fields. For instance, we have the
following result.

Theorem 2.5. Let M, (F) be the algebra ofi x n matrices over an algebraically
closed fieldF of characteristicO. Suppose is a linear operator onM,, mapping
the generalspecia) linear group into itself. Then there exist invertibke Q € M,
(with dett P Q) = 1) such thatp is of the form

X +— PXQ or X PX'Q.

The transfer principle works well for linear preservers of relations. One can ex-
tend many results in [18,19] concerning linear preservers of equivalence relations
on complex matrix spaces to arbitrary algebraically closed fields of characteristic 0.
More precisely, we have the following result.

Theorem 2.6. Let~ be any one of the following equivalence relations on matrices

(&) (Equivalencep ~ B in M,, ,(F) if B = PAQ for some invertibleP? € M,,(F)
andQ € M, (F);

(b) (Similarity) A ~ B in M, (F) if B = S~1AS for some invertibleS € M, (F);

(c) (t-congruence or orthogonally t-congruende) B in M, (F) (or on symmetric
or skew-symmetric matrice# B = S'AS for some invertibleS € M, (F) (with
sts=1).

Then the corresponding linear preserver results on complex matrices are valid for

matrices over any algebraically closed field of characteritic

Note that sometimes we have to restate the hypotheses of the linear preserver
results to see that they are indeed first-order conditions. For examesimilar
to B can be expressed as follows: there exiBte M, such that d&T") # 0 and
det7T)A = adj(T)BT, which is a first-order condition, here adj) denotes the ad-
joint of the matrixT.

The transfer principle has been used in [34] to prove the following result on linear
preservers of the commutativity relation.

Theorem 2.7. Let F be an algebraically closed field of characteristic and let
n > 3. Suppose@ is a linear operator acting o/, (F) such that

¢(A)p(B) = p(B)p(A) wheneverAB = BA.
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Then either the range @f is commutative or there exists a scataran invertible S
and a linear functional f oM, (F) such thatp is of the form

X > aSTIXS+ f(X)I or X — aSTIX'S+ f(X)I. (2.2)

Also, one may consider other LPP arising in applications. In systems theory, no-
tion of controllability plays an important role, see [25]. Linear controllability pre-
servers ovelC were characterized in [16] and the results can be extended to any
algebraically closed fiel& with characteristic O.

The transfer principle can also be used to extend results related to LPP. We illus-
trate this on the results concerning rangpaces—an important concept and tool in
the study of rank preservers.

Definition 2.8. Let r, m, n be positive integers such that< min{m, n}. A linear
subspac®& < M,, ,(F) is called a rank space ifA € V implies either ranld = r
orA=0.

One of the most interesting questions in the theory of naspaces important
especially for LPP is what is the maximal dimension of such subspaces. In [45] one
can find several estimates (depending, of coursemon andr) for these maxi-
mal dimensions in the complex case. One readily checks that these results can be
formalized as first-order sentences. Hence, we have the following result.

Theorem 2.9. If every rank r space i, , (C) has dimension at most then so is
arank r space inV,,, , (F) for every algebraically closed field of characteristic0.

While the transfer principle works very well with many linear preserver (and relat-
ed) problems, it is not applicable to questions involvitig—the conjugate transpose
of a matrixA. Here, we discuss a slight extension of the transfer principle that allows
us to get around the problem.

Definition 2.10. A field F is called real closed i admits an ordering as an ordered
field and no proper algebraic extension has this property.

We have the following result concerning real closed fields (see [42, Chapter XI,
Section 81] and [22, Theorem 1.16]).

Theorem 2.11. Real closed field is not algebraically closdulit the extension of a
real closed field with the square root 6f1) is algebraically closed. Moreoveany
two real closed fields are elementarily equivalent.

Now, let us consider those algebraically closed fields obtained by extending a
real closed field with the square root 6f1). It then follows that allF[/—1] are
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elementarily equivalent. IR[+/—1], we can consider the involutiana + b/—1)* =

a — b+/—1 as in the complex field. Furthermore, we can define the conjugate trans-
poseA* of a matrixA. With this setting, many linear preserver results on properties
or invariants involving complex conjugate can be transferred to such algebraically
closed fields. We mention a few examples in the following, see [19].

Theorem 2.12. LetF be an algebraically closed field obtained by extending a real

closed field with the square root ¢f1). Suppose-~ is any one of the following

equivalence relations on matrices over

(& (Unitary equivalenceA ~ B in My, ,(F) if B = UAV for some invertibld/
M,,(F)andV € M, (F) satisfyinguU*U = I,,, andV*V = I,;

(b) (*-Congruence and unitary similarityd ~ B in M,,(F) if B = S*AS for some
invertible S € M, (F) (satisfyingS*S = 1,);

(c) (Con-similarity)A ~ B in M, (F) if B=S"1AS for some invertible§ € M,, (F).

Then the corresponding linear preserver results on complex matrices are valid for

matrices over.

Similarly, one may extend the results on linear preservers of the unitary group,
see [3,29].

There are many other examples of linear preservers and related problems for
which the transfer principle or the extended transfer principle is applicable. We will
let the readers explore them.

3. A geometric technique

In this section, we discuss some techniques of reducing a linear preserver problem
to some well-known cases. Such ideas of treating LPP have been used by many
researchers. The real question is whether we can find a systematic and efficient way
to do the reduction. Here, we propose a very simple linear algebraic method and
show that it is indeed very useful despite its simple nature.

To describe our scheme, we need the following definition.

Definition 3.1. Suppose” is a set of matrices i, , (F). For a non-negative in-
tegerr, let 7, (%), or simply .7, if the meaning of¥ is clear in the context, be the
set of matricesA € M,, ,(F) such that there existS € ¥ satisfyingC + «¢A € &
for all but at most scalarx.

The set7 . can be viewed as the set of all possible “directions” or “slopes” of
“punctured lines” lying in¥ with at mostr missing points.
Now, suppose we are interested in studying linear operatstgh that

S S o §(F) =Y. (3.1)
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Evidently, such & also satisfies
d(Tr) S Ty

for any non-negative integer If .7, has a simple structure, say, it is the set of rank

k matrices or a union of similarity orbits of nilpotent matrices, then we can use the

well-studied results on rank preservers (see, e.g.,[1] and Theorem 2.4 in Section 2) or

nilpotent preservers (see, e.g., [26, Lemma 2.5]) to help solve the original problem.
In the following, we illustrate how to reduce some LPP to nilpotent preserver

problems using the proposed scheme. Note that similar ideas have been used by

other authors [23,26,41]. We need one more definition.

Definition 3.2. Let % be a union of similarity orbits i1, (F). We say that¥ has
property(N,) if the set7 , in Definition 3.1 is a subset of nilpotent matrices.

Theorem 3.3. Let F be an algebraically closed field of characterisfic and let
& C M, (F) be a union of similarity orbits. Suppose

(@) ¥ < FI has property(N,) for some positive integer or

(b) & contains a non-scalar diagonal matrix and has prop&mt).

If ¢ is an invertible linear operator oM, (F) satisfyinge (¥) € &, then there
existanon-zero € FandA, B € M, (F) with A invertible such thap is of the form

X > cAXA 1+ WrX)B or X — cAX'A™l+ (trX)B.

Proof. Suppose (a) holds. Lebe a positive integer such that, associated witt¥”’

is a subset of nilpotent matrices. Now, supp@s&a non-scalar matrix it¥’. We may
assume that is in the Jordan canonical form. Assume first t6as diagonal. Then
C =diag(A1, ..., Ay) With Ag # Ag41 fOor some positive integet, 1 <k <n — 1.
Clearly,C + «Ey k41 is similar toC for every scalat. So,Ey x+1 € 7 ,. If Cis not
diagonal, therC = D + N with D diagonal andV # 0 having non-zero elements
only on the first upper diagonal. AB + N + aN is similar to D + N for every
a # —1we haveN € 7 ,. Therefore,7 , contains a non-zero nilpotent.M € 7,
then the similarity orbit oN is a subset o . So0,.7, # {0} is a (finite) union of
similarity classes of nilpotent matrices.

Now, if ¢ is an invertible linear operator satisfyieg.¥’) € &, then we already
know thatp (7 ,) € 7 ,, and consequently(7,) € 7 ,. Here,7 , denotes the
Zariski closure of7 ... In particular, rank one nilpotents are mapped into nilpotents.
As rank one nilpotents spav, (F)’, the subspace of all matrices with zero trace, we
conclude thats,, (F)’ is invariant undet. Therefore by [26, Lemma 2.5] is of the
asserted form on trace zero matrices. Now, putihg (1/n)(¢(I) — cI), we get
the conclusion.

Similarly, one can prove the proposition if (b) hold<.]

We will now show that the hypotheses of Theorem 3.3 are satisfied in many cases.
Let.¥ be a union of similarity orbits of matrices. Assume also that there achs2
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tinct elements.q, ..., Ag, € Fsuchthav (A) N{A1,..., A2} =0 foranyA € &.
Then% has propertyN1). Indeed, assume that for a matikxe M, (F) there exists

C € & such thatC + aN ¢ & for at most one scalar. If such a scalar exists, we
denote it byxg. Consider

detrl — C — uN) = f(r, ) = po(A) + pr(M)p + - - -+ pa ()",

Observe thapo(2) is a monic polynomial of degreg and all otherp; have degree
at mostz — 1. In particular, eaclp;, j =1, 2, ..., n, either vanish at at most— 1
points from the sefiy, ..., A2}, oritis zero. We claim thap; (1) = O forall j =
1,2,...,n. Ifthisis not true, then there exist distingt, . .., v,+1 € {71, ..., A2}

so that for everyn € {1,...,n + 1} we havep;(y,) # 0 for somej > 0. Then it

is possible to findx,, so thatf (y,, um) = 0, or equivalentlyy,, € o (C + u,uN).

It follows thatu,, = ag, m = 1, ..., n + 1. This further implies that the polynomial
A = f(&,ap) has at least + 1 distinct zeroes which is impossible since it is of
degreen. Thus, we see that

detA] — C — uN) = po(r) forall u e F.

Henceo (C + uN) = o (C) for all u € F. SupposeN hasr non-zero eigenvalues
with » > 0. Then we may puN in triangular form and see that the coefficient of
A" u" is non-zero, contradicting the fact thati, ) = po(A). Thusr = 0, i.e.,N

is a nilpotent matrix.

Recall thatd € M, (F) is a potent matrix ifA* = A for some integek > 2 and
is of finite order ifAK = I for some positive integee. The above remark yields that
1, the set of alh x n potent matrices, as well &, the set of alk x n matrices
of finite order are unions of similarity orbits with propert¥1). More general, if
the fieldF is uncountable, then the union of spectra of elements of any countable
family of similarity orbits is countable, and hence this family has propévt). In
particular, if(py) is a sequence of polynomials, then the set of all matrices satisfying
pr(A) = 0 for some positive integéris a union of similarity orbits and has property
(N1).

Let ¥ denote the set of matrices M, (C) having zero trace analdistinct eigen-
values. This is certainly a union of similarity orbits. We will see that it has property
(No). In order to prove this we recall that for given matricksnd B the pencil
P(a, B) = ¢ A + BB is said to have the-property if the eigenvalues df(«, 8) are
linearina, B (see [32,33]). Itis known (see [15, p. 103]) thatPifw, 1) is diagonal-
izable for any complex numbet, then P («, B) possess the-property. Assume that
for a matrix N € M,,(C) there existC € ¥ such thatC + oN € & for all scalars
a. ThenC + aN is diagonalizable for every scalat and so, the pencit N + SC
hasL-property. IfN has two different eigenvalues, then byproperty it is possible
to find @ such thatC 4+ « N has an eigenvalue with algebraic multiplicity two. This
contradiction shows that all eigenvalued\tdire equal. Clearly\ has trace zero, and
S0, it must be a nilpotent.



70 A. Guterman et al. / Linear Algebra and its Applications 315 (2000) 61-81

We will now apply Theorem 3.3 and above remarks to reprove some linear pre-
server results and also to obtain some new ones. To simplify the description of our
results, we list five types of linear operatorsih (F) in the following:

(1) There existinvertiblel, B € M, (F) such tha is of the form

X — AXB or X — AX'B.
(2) There exist an invertibld € M, (F) such thaw is of the form
X > AXA™! or X —» AxtA~L

(3) There exist an invertibld € M, (F) and a non-zero € F such thaip is of the
form

X = cAXA™ 1 or X > cAX'ATL

(4) There exist an invertibld € M, (F), a non-zera € F and a linear functiondl
on M, (F) such that is of the form

X > cAXA T+ F(X)I or X > cAX'A™ 4+ F(OI.

(5) There exist a non-zekoe F andA, B € M, (F) with A invertible such thap is
of the form

X > cAXA 1+ trX)B or X — cAX'A”1+ (trX)B.

Corollary 3.4. LetF be an algebraically closed field of characterisficSuppose

is an invertible linear operator o, (F).

(a) Let K be a proper non-empty subsetff Supposer (¢(A)) € K whenever
o(A) C K.If K # {0}, F\{0}, theng is of the form(4), where f (X) =dtrX
for some scalar d. IK = F\{0}, theng is of the form(1). If K = {0}, theng¢ is
of the form(5).

(b) If  maps the set of matrices having exactly n distinct eigenvalues into tresif
it is of the form(4).

(c) If  maps the set of potent matrices into itsdfien it is of the form3), where ¢
is a root of unity.

(d) If  maps the set of matrices of finite order into itsétien it is of the form(3),
where c is a root of unity.

(e) Supposd- is uncountable and” € M, (F) is a countable union of similarity
orbits suchthat¥ Z FI.If ¢ (&) C &, theng is of the form(5).

Several remarks are in order. The result () in full generality is new, although
most of the special cases were known before. If we take the special cagé that
F\ {0}, we get the classical result on linear maps preserving invertibility [31]. The
case where the complementtohas at leash elements follows from the results and
proofs in [23], where one can find also some other results on linear maps preserving
eigenvalue location. The assertions (b)—(d) were proved in [38] using deep results on
overgroups of algebraic groups. WhEns a complex field (c) was obtained in [6]
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without the non-singularity assumption. The statement (e) is an extension of the main
theorem in [26] where only finite unions of similarity orbits were treated. The results
on linear preservers of similarity orbits extend and unify a lot of known LPP results
(see [26]). In particular, we can apply them to obtain results on linear maps preserv-
ing matrices annihilated by a given polynomial. We will omit the details here as we
will study this problem in Section 4. Of course, the applicability of the reduction
technique presented in this section is not restricted only to the above assertions.
Sometimes, one has to modify slightly the approaches presented in Theorem 3.3
to study a certain linear preserver problem and in many cases it is possible to simplify
this approach considerably. For example, in the caseRl&an uncountable alge-
braically closed field of characteristic O the problem of characterizing linear maps
preserving potent matrices can be reduced to the problem of characterizing linear
maps preserving nilpotents using the following short argument. Assumal tisad
nilpotent matrix. Without loss of generality we can assume it is strictly upper trian-
gular. LetD be a diagonal matrix with different roots of unity on the diagonal. Then
D + AN is a potent matrix for every scalar (it hasn different eigenvalues all of
them being roots of unity). So, its image is potent. Therefore, for evéngre exists
an integer > 1 (depending on) such that

(@ (D) + 1¢(N))" — ¢(D) — rp(N) = 0.

There are uncountably manys. So there is an integet > 1 such that the above
equation withr = rg holds for infinitely manyi’s, and hence for all’s. It follows
that¢ (N) is nilpotent as desired.

Now, we are ready to present the proof of Corollary 3.4.

To avoid trivial considerations, we assume that 2.

We will divide the proof of (a) into two cases. In the case that the complement
of K has at least 2 elements we denote by the set of all matriceX satisfying
o(X) € K. By Theorem 3.3 and the remark following it, we see thas of the
form (5). So, we are done K = {0}. In order to complete the proof in the first case
we have to show that, K contains a non-zero element, thgiis a scalar matrix, or
equivalentlyg (1) is a scalar matrix. We will use an idea similar to that in [23]. After
applying similarity and going to transposes, if necessary, we may assungeishait
the form¢ (X) = ¢X + (tr X) B. Next, we recall the statement saying that for given
scalarsuy, ..., i, anon-scalar matriX is similar to a matrix whose diagonal entries
areus, ..., uy ifandonly if tr7 = pu1 + - - - + u, [24]. Choose a non-zew € K
and assume thgt(a/) = C is not a scalar matrix. Choogq from the complement
of Kandug, ..., u, € FsuchthattiC = w1 + --- + u,. There exists an invertible
Ssuch thats—1CS has main diagonaks, ..., u,. Let N be a nilpotent such that
S~INS is strictly upper triangular an8~1CS + S~INS is lower triangular. Then
o(al + ¢ IN) € K, while u1 € o(¢p(al + ¢1N)). This contradiction completes
the proofin our first case.

It remains to consider the case that the complemen bfis at most 2 ele-
ments, say.1, . .., Ax. Clearly,¢~1 maps the algebraic set of matricésatisfying
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det(A1l — X)--- (] — X)) = 0 into itself. By [12, Lemma 1)~ maps this set
onto itself. In other words, we havg X) C K ifand only ifo (¢ (X)) C K.

We will now characterize rank one matrices using our geometric scheme. In par-
ticular, we prove the following lemma.

Lemma 3.5. Let K be a proper subset df with a finite complementk = F\

{M, ..., Ax}. Thenforanon-zerd € M, (F) the following two statements are equiv-
alent
(a) rankr = 1.

(b) For everyX € M, (F) satisfyingo (X) € K we haves (X +«T) C K for all
but at most k scalars.

Proof. If T has rank one then it is similar either to a scalar multipleef, or to
E1. In both cases deX + oT — A ;1) considered as a polynomial inhas degree
at most 1. Its constant term @&t — A;7) is non-zero whenever(X) € K. So, it
has at most one zero. Now, (b) follows easily.

Assume now that (b) holds. We want to show that rdhk 1. Assume on the
contrary thafl has rank at least 2. Then up to a similafithas the upper triangular
block form

_[p o
-[o &
whereP is
0] g ﬂ with a andc (possibly equal) non-zero,
[a 0 O]
(i) |0 O 1 withanon-zero,
|0 0 O]
[0 1 O]
@) |10 0 1| or
|0 0 0]
[0 1 0 O
(iv) 0 0 0 O
0 0 0 1
|0 0 0 O

Let w1, u2, u3 € K, 7, 11, 2 € F, and defineX by

Y 0
X:[O Mal]
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whereY is

~fur O

| ’

ols ol
(w1 0 0]

@@ |0 w1 Of,
L0 7
[z 0 0

Gi) | 0 w1 0] or
L1 0 pa]
u1 0 0 O

. 11 u1 O 0

(iv) 0 0 u 0}
L0 0 = wm

depending on whethd®? satisfies (i), (ii), (iii) and (iv), respectively. Then(X) <

K. Clearly, fori =1, ..., k, we have)r; € o(X 4+ «T) whenever one of the linear
equationsuy + aa = A;, u2 + ac = A; is satisfied; or one of the equatiopg +

aa = Aj, (u1 — 1i)% = ta is satisfied; or(u1 — 1;)3 = —a?; or one of the equa-
tions (u1 — 2)% = t1er, (n1 — Ai)% = moa is satisfied, respectively. It is now not
difficult to show thatu1, u2, us, 7, t1, andrz can be chosen in such a way that
o(X +aT)N{Ar1,..., )} # @ for atleastk + 1 different scalare. [

The consequence of this characterization of matrices of rank one ig thaps
the set of rank one matrices into itself. gomust be of the form (1) (see, e.g., [1,30]
and Theorem 2.4 in Section 2). K = F\ {0}, we are done. So, assume that the
complement oK contains a non-zero element, say After going to transposes, if
necessary, we may assume thak) = AXB, X € M, (F). We want to show that
BAis a scalar multiple of the identity. It is enough to prove tBAkandx are linear-
ly dependent for every € F”. The linear mapX — XBA = A~1¢(X)A has the
same eigenvalue location preserving property a8ssume that there existse F”
such thak andBAxare linearly independent. Choo8es K, y € F satisfyingh1y ¢
{x2,...,22}, and a subspacé C F" such thatF" = sparfx, BAx} ® V. Define
X € M, (F) by XBAx = A1x, Xx = yBAx, andXv = Bv for everyv € V. Then
o(X) € K while A1 € 0(XBA). This contradiction completes the proof of (a).

In order to prove (b) we defineby 6 (X) = ¢(X) — (1/n)tr¢(X)I. Obviously0
maps the set of trace zero matrices havimistinct eigenvalues into itself. Applying
Theorem 3.3 and the remark following it, we conclude that in the casd-tlsathe
field of complex numbers the mappiéidas to be of the form (5). After multiplying
¢ by a non-zero constant, applying a similarity transformation, addiggadrans-
formation of the formX — f(X)I, wheref is a linear functional o, (C), and
going to transposes, if necessary, we may assumeptt¥t = X + (tr X)B, X €
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M, (C). To complete the proof in the complex case we have to showRhat[b;;]
is a scalar matrix. If this is not true, we may assume, after applying similarity, that
b11 # bao. Itis not difficult to find an upper triangula¢havingn distinct eigenvalues
satisfying trX = 1 such thatX + B is lower triangular and11 + b11 = x22 + b22.
Then, of coursep (X) has less than eigenvalues. This contradiction completes the
proof in the complex case. To extend this result to the general case we can apply the
transfer principle in Section 2.

The remaining three statements are easy to verify.(Corollary 3.4)

In the above proof, we have used the proposed geometric scheme to characterize
rank one matrices. In fact, we can use the same idea to characterize invertible linear
maps onM,, (F) that preserve matrices of rakKor matrices of rank no greater than
k), 1 < k < n. The cas& = n is the problem of characterizing linear maps preserv-
ing invertibility and was considered in Corollary 3.4(a). The set of all matrices of
rank no greater thakis the Zariski closure of the set of all matrices of rdalSo,
if ¢ preserves matrices of rakkthen it preserves matrices of ragkk. So, we will
assume thatt € M*(F) implies¢(A) € M*(F). Here,M¥(F) denotes the set of all
matrices of rank at most By the result of Dixon [12] mapsM,’f(F) onto itself.

We reduce the problem to the problem of rank one preservers. All we have to do
is to prove the following.

Proposition 3.6. Let A € M, (F) be non-zerpand letl < k < n. The following

conditions are equivalent

(i) rankA = 1.

(i) There existy" € M,’;(F) such thatT + 1A € M,’f(F) for every scalam and for
everyT € M,’f(F) we have eithefl + LA € M,’;(F) for every scalam. or T +
LA ¢ M,’f(F) for every non-zero scalak.

Proof. Assume first that rank = 1. We can choose invertiblé andQ such that
PAQ = E1p. LetT = P~YE1107L. ThenT + 1A € M*(F) for everyi. Assume
now that? € MX(F) andT + xoA ¢ M*(F) for somexo. Without loss of generality,
we can assume thap = 1. Then

k <rank(T + A) <rankT +rankA <k +1,
and so, rank’ = k and
rank7T + A) =rankT + rank A.

We say thafl andA are rank additive and it is well known that this is equivalent
toC(T)NC(A) = {0} andR(T) N R(A) = {0}, whereC andR denote the column
space and the row space. But this is further equivaleat(®) N C(uwA) = {0} and
R(T) N R(nA) = {0} for every non-zero scalar, and consequently,

rankT + nA) =rank7 +rankuA =k +1

for every non-zerqe. This completes the proof in one direction.
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To prove the other direction we assume that rank p > 1. If p > 2k, then
rank(7 + AA) > k for everyT € M,’f(F) and every non-zera. So, (ii) does not
hold. If k + 1 < p < 2k, then we can assume as above thés diagonal with first
p diagonal entries 1 and the other diagonal entries 0.TLleé diagonal with first
p — k diagonal entries-1 and the other diagonal entries 0. Then @k A) = k
and rankT + 2A) > k. It remains to consider the case thak2p < k. DefineT
to be diagonal with first diagonal entry 0, the second diagonal entrythe next
k — 1 diagonal entries 1 and the other diagonal entries 0. ThenFahkA) = k
and rankT + 2A) > k. This completes the proof.(]

We remark that the idea of the proof of the above proposition may have been
hidden in the work of other authors. Nonetheless, it helps us to illustrate how to
apply the geometric technique we proposed.

4. Reduction to idempotent preservers

The aim of this section is to show that some of LPP can be reduced to the prob-
lem of characterizing linear maps preserving idempotents. The advantage of this
technique is that it can be used also in the infinite-dimensional case as well as to
study linear preservers from,, (F) into M,, (F) with n different fromm. The idea to
reduce a linear preserver problem to the idempotent case has been already used when
studying the classical problem of invertibility preserving maps [7,8]. The reduction
techniques that we will present here are different from those in [7,8].

Let us first recall that @*-algebra</ is of real rank zero if the set of all finite
real linear combinations of orthogonal Hermitian idempotents is dense in the set of
all Hermitian elements of7. Equivalently, the set of Hermitian elements with finite
spectrum is dense in the set of all Hermitian elements/ofEvery von Neumann
algebra is aC*-algebra of real rank zero. In particula®(H ), the algebra of all
bounded linear operators on a complex Hilbert space, has real rank zero. There is a
vast literature on such algebras. Usually they are defined in a more complicated way.
We refer to [9] where the above simple definition can be found.

Let .« and % be algebras over a field. A linear map¢ : .o/ — % is called a
Jordan homomorphism if (x?) = ¢ (x)?, x € .«/. Homomorphisms and antihomo-
morphisms (linear maps satisfyiggxy) = ¢ (y)¢ (x)) are basic, but not the only
examples of Jordan homomorphisms. Indeed, let eacl ahd % be a direct sum
of two subalgebrasy = .71 ® o/ and% = %1 & %2, with the operations defined
componentwise. I : .«/1 — %1 is a homomorphism and, : </ — %2 is an
antihomomorphism, thegy & ¢> : .7 — % is a Jordan homomorphism.

The following theorem whose proof is a slight modification of an idea given in
[5, Remark 2.2] and its consequences show that once we reduce a certain linear
preserver problem to the idempotent case we can easily get its solution not only in
the matrix case but also in the infinite-dimensional case.
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Theorem 4.1. Let.«/ be aC*-algebra of real rank zero an# any complex Banach
algebra. Assume that a bounded linear map .« — % preserves idempotents.
Theng is a Jordan homomorphism.

Proof. Pick a Hermitian elemert which is a finite real linear combination of or-
thogonal Hermitian idempotents,= >, t; pi, pipj = 0if i # j. Sincep; + p;

is an idempotent if # j, we have(¢(p;) + ¢(pj))2 = ¢(pi) + ¢ (pj). This yields
o(pi)d(pj) + ¢ (p)¢o(pi) = 0. Using this relation we see thath?) = ¢ (7). Now,
the set of Hermitian elemenks which are finite real linear combinations of orthog-
onal Hermitian idempotents, is dense in the set of all Hermitian elements. &iace
continuous, we have (h2) = ¢ (h)? for all Hermitian elements. Replacitgpy / +

k, whereh andk are both Hermitian, we get(hk + kh) = ¢ (h)¢p (k) + ¢ (k) (h).
Since an arbitrary € .« can be written in the forme = 4 + ik with 2, k Hermitian,
the last two relations imply that(x2) = ¢ (x)2. This completes the proof.[]

In the special case that = M,,(C) we get the following result from [5].

Corollary 4.2. Let % be any complex Banach algebra. Assume that a linear map
¢ : M, (C) — % preserves idempotents. Theris a sum of a homomorphism and
an antihomomorphism.

Proof. SinceM, (C) is finite-dimensiona$ must be bounded. So, by the previous
theorem it is a Jordan homomorphism. According to [21, Theore¢igla sum of
a homomorphism and an antihomomorphisrl

Corollary 4.3. LetF be an algebraically closed field of characteris@i@and m, n
positive integers. Assume that a non-zero linear map/, (F) — M,,(F) preserves
idempotents. Them > n and there exist an invertible matrix € M,, (F) and non-
negative integerss, k> such thatl < k1 + k2, (k1 + k2)n < m and

dp(X)=AdiagX,.... X, X', ..., XL 0A™ Y, X e M, (F).

Here, diagX, ..., X, X', ..., X', 0) denotes the block diagonal matrix in which X
appearsk; times X' appearsk; times andO is a zero matrix of the appropriate size
(possibly absent

Proof. We will prove here only the special case tifat= C. The extension to the
general case can be done using the result in Section 2 as follows. We extend the
result (using the transfer principle) for every pair of positive integeasdn. When
extending the result we do not assume th& non-zero. We fimandn. If m < n,

then the conclusion is that is zero. Ifm > n, saym = 5 andn = 2, we have the
conclusion that is zero OR tha is of the desired form wittk; = 1 andky =0

OR¢ is of the desired form witlh; = 0 andkz = 1 OR¢ is of the desired form with

k1 = 1 andky = 1 OR ¢ is of the desired form wittk; = 2 andk, = 0 OR ¢ is of
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the desired form wittk; = 0 andk, = 2. For each possibility the desired form can
be expressed as a first-order sentence.

Now, return to the proof of the complex case. By Corollary 4.25 a sum of a
homomorphisng; and an antihomomorphisg@. DenoteP = ¢ (I,), P1 = ¢1(I,)
and P> = ¢2(I,). Clearly, P = P1 + P». Moreover, all of these matrices are idem-
potents. So, we have up to a similarity

I, 0 0 I, 0 0 0 0 O
p=|0 1, 0|, pm=|0 0 O, P,=|0 I, Of,
0 0 0 0 00 0 0 0

where one off,, or I, may be zero and some border zeroes may be absent. Conse-
quently, we have

p1(X) 0 O 0 0 0
$1(X) = 0 0 0], ¢2X)=|0 @2X) O, X e M),
0 0 O 0 0 0

whereg; is a unital homomorphism a#7,,(C) into M,(C) andg> is a unital an-
tihomomorphism o\, (C) into M, (C). Composing an antihomomorphism by the
transposition we get a homomorphism. Thus, in order to complete the proof it is
enough to prove that if is a unital homomorphism a¥/, (C) into M, (C), wheren

andp are positive integers, thendividesp and

@(X) = BdiagX,...,X)B™, X e M,(C),

for some invertibleB € M,(C). Here, diagX, ..., X) is a block diagonal matrix,
whereX appeary/n times.

First note that becauseis unital it preserves invertibility. IK andY are of the
same rank, then there exist invertible matrigemndSsuch thatX = 7Y S. Conse-
quently,p(X) = o(T)e(Y)¢(S) has the same rank asY). Letp(E11) be of rankr.
Theng(E11), ..., ¢(E,,) are all idempotents of ranksatisfyingp (E;;)¢(E;;) =0
whenevei # j. It follows thate(1,) = I, is of rankrn. So,n dividesp. Obviously,
the map

7(X) =diagX, ..., X) € M,(C), X € M,(C),

is a unital algebra homomorphism. By a special case of the Noether—Skolem theo-
rem [35, Lemma, p. 230] there exists an invertiBle= M,(C) such thatp(X) =
Bt(X)B~1, X € M,(C), as desired. This completes the proof]

Let p be a polynomial. A linear map : .o/ — 2 preserves elements annihilated
by pif p(¢(x)) = 0 whenevep(x) = 0.

Corollary 4.4. Let.«/ be a unitalC*-algebra of real rank zero an&¥ any complex
unital Banach algebra. Let p be a complex polynomitdgp > 1, with simple ze-
roes (each zero has multiplicity oneAssume that a linear bounded unital map
o/ — % preserves elements annihilated by p. Thea a Jordan homomorphism. If
o/ = M, (C), theng is a sum of a homomorphism and an antihomomorphism.
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Proof. Assume thaki, ..., A; are zeroes gb. Let x be any complex number amg
the monic polynomial with simple zerogs — u, ..., Ay — . Theng preserves el-
ements annihilated by, Indeedg (A) = Oifand only if p(A + ) = 0. This implies
thatp(¢(A) + 1) = 0 which is equivalent tq (¢ (A)) = 0.

So, without loss of generality we may assume that= 0 and either: (1) alk ;'s
are in the closed left half complex plane and not all of them are on the imaginary
axis, or (2) allx;’s belong to{zi : + < 0} (negative part of the imaginary axis).

Let P be an arbitrary idempotent it¥. Thenp(i; P) = 0, and sop(A;¢(P)) =
0. Let u belong to the spectrum af(P). Theni;u belongs to the spectrum of

¢ (A; P) which is contained in0, Ao, ..., A¢}. So, for everyi and every positive
integerswe have
At € {0, Aoy ..., Akl (4.1)

It follows thatu = O or there exists such thaj” = 1. Letr be the smallest positive

integer such that this is true. From the position of th&s in the complex plane and

(4.1) we conclude that = 1. Therefore, the spectrum ¢f P) is contained iq{0, 1}.
We know that

A2¢ (P)[A2¢(P) — A2l[A2¢p(P) — A3] - - [A2¢(P) — Ax] = 0.
Sincer2¢(P) — 4, j = 3, is invertible we have
ro¢p(P)[A2¢p(P) — 22] = 0.

Thus,¢ (P) is an idempotent. Hence, preserves idempotents. The result now fol-
lows from Theorem 4.1 and Corollary 4.2(1

Corollary 4.5. LetF be an algebraically closed field of characterisi@ndm, n
positive integers. Let p be a polynomial oerdegp > 1, with simple zeroes. As-
sume that a linear unital mag : M, (F) — M,,(F) preserves matrices annihilated
by p. Then n divides m and there exist an invertible matrig M,,(F) and non-
negative integers, k> such that(ky + k2)n = m and

d(X) =AdiagX,.... X, X', ..., XxHA™Y, X e M, (F).

Here diag X, ..., X, X!, ..., X" denotes the block diagonal matrix in which X ap-
pearsk; times whileX! appearsk, times.

Proof. Once again we will prove only the special case that C. By Corollary 4.4,
¢ is a sum of a homomorphism and an antihomomorphism. The result now follows
from Corollary 4.3 and the fact thatis unital. O

The special case when = n was proved in [20] (see also [26]) under the ad-
ditional assumption of bijectivity without assuming thats unital. In fact, in the
special case that = n and¢ is invertible Howard characterized linear maps pre-
serving matrices annihilated by any given polynomial. Let us show that in our more
general situation the assumption tpditas simple zeroes is indispensable. To see this
defineg : M, (F) — M,2(,, 2 (F) by
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P(X) = ¢ ((xi))) = WrX/m)(I — (1)) + ¢(X),

whereg(X) is a block diagonal matrix having on a diagondlblocks Yij, i,j=
1,...,n, ofthe size(n + 2) x (n + 2). Here, the first row of;; equals(0, x;1, . . .,
Xin, 0), the last column of;; equals(0, x1;, ..., x4j, 0)t, and all other entries af;;
are zero. Thew is a unital linear mapping which preserves square-zero matrices.
Even more, it preserves them in both directions, thap () is square-zero if and
only if Xis square-zero. But clearly,is not a Jordan homomorphism.

Another application of the reduction technique treated in this section is the char-
acterization of linear maps preserving potent elements.

Corollary 4.6. Let.«Z be a unitalC*-algebra of real rank zero an&¥ any complex
unital Banach algebra. Assume that a linear bounded unital ghapz — % pre-
serves potent elements. Theis a Jordan homomorphism. / = M, (C), theng
is a sum of a homomorphism and an antihomomorphism.

Proof. We have to prove that preserves idempotents. Lgbe any idempotent from

/. Theng(p) is a potent element. So, we have to show that its spectrum is contained
in {0, 1}. Let A be any element a¥ (¢(p)). Asp, 1 — p, and 1— 2p are all potent
elements, the same must be truedap), 1 — ¢ (p) and 1— 2¢(p). Hence, each of

the numbers.,, 1 — A and 1— 2 is either O or a root of unity. This is possible only

if »=0o0rx =1asdesired. [

Corollary 4.7. LetF be an algebraically closed field of characteris@i@and m, n
positive integers. Assume that a linear unital m@ap M, (F) — M,,(F) preserves
potent matrices. Then n divides m and there exist an invertible matexM,, (F)
and non-negative integeks, k2 such that(ky + k2)n = m and

d(X)=AdiagX,.... X, X' ..., xHA™ L, X € M,(F).

Here diag(X, ..., X, X!, ..., X") denotes the block diagonal matrix in which X
appearsk; times whilex' appearsk; times.

If we compare the last two results with Corollary 3.4(c) we see that the underlying
algebras here are much more general. However, we have the additional assumption
that ¢ is unital. In Corollaries 4.6 and 4.7 one can replace the assumptio that
preservers potent elements by the assumption that it preserves elements of finite
order and get the same conclusion. As the idea of the proof is similar we leave the
details to the reader.
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