Oculopharyngeal muscular dystrophy: Recent advances in the understanding of the molecular pathogenic mechanisms and treatment strategies

Aida Abu-Baker, Guy A. Rouleau *

Center for the Study of Brain Diseases, CHUM Research Center-Notre Dame Hospital, J.A. de Sève Pavilion, Room Y-3633, 1560, Sherbrooke Street East, Montreal, QC, Canada H2L 4M1

Received 2 September 2006; received in revised form 5 October 2006; accepted 6 October 2006
Available online 11 October 2006

Abstract

Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. OPMD is caused by a small expansion of a short polyalanine tract in the poly (A) binding protein nuclear 1 protein (PABPN1). The mechanism by which the polyalanine expansion mutation in PABPN1 causes disease is unclear. PABPN1 is a nuclear multifunctional protein which is involved in pre-mRNA polyadenylation, transcription regulation, and mRNA nucleocytoplasmic transport. The distinct pathological hallmark of OPMD is the presence of filamentous intranuclear inclusions (INIs) in patient’s skeletal muscle cells. The exact relationship between mutant PABPN1 intranuclear aggregates and pathology is not clear. OPMD is a unique disease sharing common pathogenic features with other polyalanine disorders, as well as with polyglutamine and dystrophic disorders. This chapter aims to review the rapidly growing body of knowledge concerning OPMD. First, we outline the background of OPMD. Second, we compare OPMD with other trinucleotide repeat disorders. Third, we discuss the recent advances in the understanding of the molecular mechanisms underlying OPMD pathogenesis. Finally, we review recent therapeutic strategies for OPMD.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Polyalanine; Oculopharyngeal muscular dystrophy; Intranuclear inclusions; Poly(A) binding protein nuclear 1

1. Oculopharyngeal muscular dystrophy (OPMD) background

OPMD (MIM 164300) is an autosomal dominant, adult-onset disease that usually starts in the fifth or sixth decade of life [1–3]. The disease is characterized by progressive eyelid drooping (ptosis), swallowing difficulties (dysphagia), and proximal limb weakness. OPMD was first described in a French-Canadian family in 1915 [4], and was recognized as a distinct disease in 1962 [5]. OPMD has a world-wide distribution and has been reported in at least 33 countries [6–16]. The largest OPMD cluster is in the French-Canadian population, where the estimated prevalence is 1:1000 [17–20], whilst its highest prevalence is amongst the Bukhara Jews in Israel (~1:600). In Europe, the estimated prevalence is 1:100 000 [21].

Filamentous intranuclear inclusions (INIs) in muscle fibers of OPMD patients are the pathological hallmark of this disease [22].

1.1. OPMD symptoms

The symptoms of OPMD, recently reviewed by [23], usually start insidiously and become manifest in the fifth or sixth decade, with a slowly progressive course; eventually, beyond the age of 70, all patients are symptomatic [24]. The main symptoms are ptosis and dysphagia due to weakness of the levator palpebrae and pharyngeal muscles. Although other extraocular muscles may become gradually involved, complete external ophthalmpoplegia is rare and intrinsic eye (ciliary, sphincter) muscles are not affected [20]. Ptosis is always bilateral, but may be asymmetrical. Upon progression of ptosis, patients try to compensate their limitation of the visual field by contracting the frontal muscle and reclining the head. The symptoms of dysphagia in OPMD typically are noticed first for
solid foods. Later on, fluids may become difficult to swallow as well. Weakness and atrophy of the tongue can be observed in the vast majority of patients [25].

Disease progression varies from one individual to another. Complications include choking, regurgitation, aspiration and pneumonia [26]. Consecutive aspiration pneumonia, together with malnutrition or even starvation, are the leading causes of death in patients with OPMD. However, these events mostly occur at a later age and life expectancy seems not to be shortened, although quality of life may be substantially impaired during the last years of life. The myopathic process may become manifest with several symptoms other than ptosis and dysphagia, such as dysarthrophia, proximal weakness and facial weakness [27]. A small number of patients in their late 60s will need a wheelchair [3,25], while others in their 80s present no significant limb weakness.

OPMD is a myopathy, which affects all voluntary muscles and appears to spare smooth and cardiac muscles. The muscle involvement is specific, symmetric and its severity, in descending order, is: levator palpebrae, tongue, pharynx, in the vast majority of patients [25]. The myopathic process may become manifest with several symptoms other than ptosis and dysphagia, such as dysarthrophia, proximal weakness and facial weakness [27]. A small number of patients in their late 60s will need a wheelchair [3,25], while others in their 80s present no significant limb weakness.

OPMD is a myopathy, which affects all voluntary muscles and appears to spare smooth and cardiac muscles. The muscle involvement is specific, symmetric and its severity, in descending order, is: levator palpebrae, tongue, pharynx, extraocular muscles, iliopsoas, adductor femoris, gluteus maximus, deltoid and hamstrings [26].

No medical treatment is presently available for OPMD. Surgical treatments are used to correct the ptosis [28] and improve swallowing [29,30] in moderately to severely affected individuals. However, ptosis and dysphagia typically will recur within five to fifteen years after the surgery.

1.2. OPMD genetics

OPMD is usually inherited as an autosomal dominant trait with complete penetrance and without gender preference. The OPMD locus was mapped to chromosome 14q11.2–q13 by linkage analysis [17], and has been confirmed by others [11,31,32]. OPMD is caused by expansions of the short (GCG) trinucleotide repeat in the coding sequence of the poly (A) binding protein nuclear 1 (PABPN1, also known as PABP2) gene [33]. The coding sequence of PABPN1 comprises seven exons. Dominant OPMD is caused by an expansion of a GCG trinucleotide repeat in the first exon [33]. The normal PABPN1 gene has a (GCG)_6 repeat encoding a polyalanine (polyA) stretch at the 5’ end, while in OPMD patients this repeat is expanded to (GCG)_{8–13}. Due to the presence of a GCA GCA GCA GCG coding sequence adjacent to the (GCG)_k repeat, the wild-type PABPN1 protein has a 10 A stretch, whereas the mutated PABPN1 in dominant OPMD has 12 to 17 alanines in the N-terminal domain [33]. Interestingly, homozgyosity for a (GCG)_7 allele leads to an autosomal recessive form of OPMD. The worst OPMD phenotype has been observed in patients homozygous for an autosomal dominant mutation in PABPN1 [34].

1.3. Neurological involvement in OPMD

To date OPMD is considered as a primary myopathic disorder and there is little morphologic evidence for neurogenic etiology, though the peripheral nervous system (PNS) seems to be affected in some rare cases [35]. The first of such cases reportedly presented a severe depletion of myelinated fibers in endomyosial nerve twigs of extraocular, pharyngeal and lingual muscles pointing to neurogenic changes in these muscles and suggesting nerve involvement [35]. In accordance with these pioneering findings, other more recent reports showed PNS alterations in members of an OPMD family [36].

The existence of a concomitant axonal sensorimotor neuropathy in OPMD patients has also been reported [32,35,37–43]; more interestingly, one case showed involvement of the CNS [44]. Nevertheless, it remains unclear whether the neuropathy is causatively related to OPMD or whether it is a coincidental disorder in OPMD patients, or simply a process of ageing.

Recently, more evidence has emerged suggesting neurologic involvement in OPMD. Boukriche et al. reported the case of an OPMD patient who developed a severe chronic axonal neuropathy [45]. Nakashima et al. reported an OPMD patient with neurogenic features in the electrophysiological and pathological findings [46]. Recently, analysis of mitotic and postmitotic tissues in OPMD transgenic animals revealed ubiquitinated PABPN1-positive INIs in neuronal cells [47]. Similar INIs in postmortem brain sections from an OPMD patient were also observed. These results indicate that mutant PABPN1, presumably via the toxic effects of its polyA tract, can lead to inclusion formation and neurodegeneration in both the mouse and the human [47]. These findings raise the possibility that neurogenic changes, as in polyQ diseases, may contribute to the pathophysiology of OPMD [47].

1.4. OPMD histopathology

The histology of OPMD muscle biopsy specimens shows some particular changes: (1) small angulated fibres which may represent an ageing-related concomitant denervation process, and (2) rimmed vacuoles within the muscle fibres which most probably derive from an autophagic process (similar vacuoles are seen in inclusion body myositis) [48]. Electron microscopy reveals tubulofilamentous inclusions of about 8.5 nm in diameter within the nuclei of muscle fibres, which correspond to INIs and seem to be the most specific diagnostic sign of OPMD, after genetic testing [48]. These inclusions consist of mutated, aggregated PABPN1 (see below).

Other histological changes are common to many muscular dystrophies (loss of muscle fibres, abnormal variation in fibre size, increase in the number of nuclei, expanded interstitial fibrous and fatty connective tissue). Although probably all skeletal muscles are affected, the histologic changes are most pronounced in extraocular, lingual, pharyngeal and diaphragmatic muscles in autopsy findings [20].

1.5. Diagnosis of OPMD

To confirm the diagnosis in patients clinically suspected of having OPMD, molecular genetic testing is performed. Considering DNA sequencing as the analytical gold standard, it is estimated that >99% of patients diagnosed with severe,
autosomal dominant OPMD actually carry a pathogenic PABPN1 triplet repeat expansion [23].

Before genetic testing became available, the diagnosis of OPMD was made on purely clinical grounds. The presence of slowly progressive ptosis and dysphagia, an onset of symptoms after age 40, and a positive family history were pathognomonic. Later on, light and electron microscopy studies of muscle biopsy specimens provided further diagnostic confirmation by the presence of rimmed vacuoles within muscle fibres and OPMD-specific nuclear inclusion bodies. Additionally, electro (neuromyographic studies were used to exclude other neuro-muscular disorders.

1.6. Poly (A) binding protein nuclear 1 (PABPN1): OPMD gene product

Wild-type PABPN1 is an abundant nuclear protein, with wide-spread staining in the nucleoplasm [49]. It is mostly concentrated in discrete nuclear domains called ‘speckles’ (domains within the nucleus that are enriched in splicing factors, poly(A) RNA, and other components of the mRNA processing machinery). Wild-type PABPN1 is a well studied protein [50]. The predicted molecular weight of wild-type PABPN1 is 32.8 kDa, but the real molecular weight is higher due to post-translational modifications-closer to 50 kDa [51]. Wild-type PABPN1 is a multi-domain protein of 306 amino acids [51] that comprises a polyA stretch of 10 consecutive alanines and a proline-rich region in the acidic N-terminus. The residues located between positions 125 and 161 are predicted to form an α-helix structure which is required for the stimulation of the poly(A) polymerase [52]. The central region of wild-type PABPN1 also includes a putative ribonucleoprotein (RNP)-type RNA binding domain (RBD) (approximately from Met161 to Thr257) [51]. The basic C-terminal domain of wild-type PABPN1, which is rich in dimethylated arginine residues, contains a nuclear localization signal (NLS) (amino acids 249–306) (Fig. 1) that interacts with transportin (a nuclear transport receptor) [51,53]. The association of wild-type PABPN1 and transportin occurs in a Ran GTP-sensitive manner, suggesting an active transport pathway [53]. Two potential oligomerization domains (ODs) of PABPN1 were mapped out [54]. The first, OD1 (aa 155–294), overlaps with the RNA binding domain, and the second, OD2 (aa 264–306) overlaps with the NLS, is localized at the C-terminus of PABPN1 [54] (Fig. 1).

All eukaryotic mRNA molecules are post-transcriptionally modified at their 3′-ends by addition of a poly(A) tail, which binds two different proteins: PABPN1 (nuclear), and PABPC (cytoplasmic). While wild-type PABPN1 stimulates the rapid and processive polymerization of the poly (A) tail in the nucleus [55,56], PABPC in the cytoplasm has a role in the initiation of translation and in the regulation of mRNA decay [57]. Several studies suggested that PABPC is a shuttling protein, entering the nucleus and being exported to the cytoplasm in association with mRNA [58]. Wild-type PABPN1 is also able to perform nucleocytoplasmic shuttling, as demonstrated by heterokaryon assays [53,59].

Wild-type PABPN1 binds with high affinity to the poly(A) tail of mRNA and is involved in mRNA polyadenylation [55]. Polyadenylation is a two-step reaction whereby endonucleolytic cleavage of the nascent mRNA transcript is followed by the addition of ~250 adenylate residues to the up-stream cleavage product [60–62]. Poly(A) tail synthesis is catalyzed by poly(A) polymerase through interaction with CPSF, the cleavage and polyadenylation specificity factor. However, this process is slow and inefficient, and the length of poly(A) tail is poorly controlled. Adding PABPN1 to this reaction will stimulate processive poly(A) addition and control the size of the tail to be ~250 nucleotides in length [55,56,63]. The RNA binding domain of PABPN1 mediates its specific binding to the poly(A) tail of mRNA [50]. Poly(A) bound PABPN1 forms both linear filaments and discrete-sized, compact oligomeric particles in vitro [64]. Titration and gel retardation assays indicated that 12 adenylate residues are required for high affinity RNA binding and the packing density on the poly(A) tail is approximately 15 adenylate residues per PABPN1 molecule [50]. However, PABPN1 tends to form oligomers even in the absence of mRNA [51].

1.7. Intranuclear inclusions (INIs): OPMD pathological hallmark

In 1980, Tome and Fardeau studied deltoid muscle biopsies from OPMD patients by light and electron microscopy and identified for the first time a unique accumulation of nuclear filaments in OPMD muscle fibers [22]. Later reports further confirmed the presence of the intranuclear inclusions in muscle nuclei [65–70]. Under an electron microscope, OPMD inclusions can be visualized as filaments that have a tubular appearance with an outer diameter of 8.5 nm, an inner diameter of 3 nm and a length of ≤ 0.25 μm. Filamentous intranuclear inclusions are considered the pathological hallmark of OPMD [22,48]. The frequency of nuclei in which filament inclusions
were seen varied from 2% to 5% per slide [3]. Only INIs of the described size are considered the hallmark of OPMD, as they differ from all other types of inclusions so far described within nuclei of muscle fibers [71]. This finding can be considered as a criterion in making the definite diagnosis of OPMD.

Several in vitro OPMD cell culture models have shown that mutant PABPN1 over-expression is characterized by the accumulation of nuclear aggregates [54,72,73,74]. The composition of intranuclear inclusions might reflect the process of INI formation and contribute to the pathogenesis of OPMD. Mutant PABPN1 aggregates have been shown to contain mRNA [59] and various proteins, including heat shock proteins and components of the ubiquitin–proteasome pathway [72,73].

Recently, we have shown that the promyelocytic leukemia (PML) protein, a major component of nuclear bodies, strongly co-localized to intranuclear aggregates of mutant PABPN1 [75]. Some have hypothesized that sequestration into aggregates may impair the function of these proteins and perturb their downstream pathways. However, it is not clear if their presence in aggregates compromises protein function. In fact, many of the proteins demonstrated to be in aggregates are upregulated as a consequence of mutant PABPN1 expression [76]. In addition, it is possible that interaction may be transient and proteins may be able to diffuse in and out of mutant PABPN1 aggregates.

OPMD is one of a number of diseases that are associated with the formation of aggregates in affected tissues. Whether these aggregates are pathogenic, or the consequence of a molecular defense mechanism, remains controversial in these diseases. In the past, some reports provided data suggesting that mutant PABPN1 nuclear aggregates may promote cell death in OPMD [54,72]. Despite these observations, the role of mutant PABPN1 polyA aggregates as the primary causal event remains ambiguous. A recent report has shown that polyQ aggregates may have protective effects in Huntington’s disease [77]. The debate is complex as it is difficult to differentiate experimentally between the effects of large aggregates, oligomeric species and the dynamic aggregation process itself.

The polyA expansion mutation is not absolutely required for the aggregation of mutant PABPN1. Wild-type PABPN1 forms aggregates when transfected into culture cells and expressed at high levels [54,72,78] and aggregates comprising wild-type PABPN1 have been observed in oxytocin-producing neurons from normal rat hypothalamus [79].

Time-lapse experiments performed in an adenoviral OPMD model have recently indicated that INIs of mutant PABPN1 are dynamic structures and can disassemble during mitosis [80]. The dynamism of mutant PABPN1 INIs during cell cycle was corroborated in recent studies [78,79]. Apoptosis was also observed in a small proportion of cells that all had INIs [80]. The authors suggest that as OPMD is a late onset disease, this slow but constant cell death mechanism could be implicated in OPMD pathology [80]. We have recently generated similar results in our OPMD cell model (Fig. 2) (unpublished data).

2. OPMD is a trinucleotide repeat disorder

Many human pathologies involve trinucleotide expansions. Trinucleotide repeat diseases are caused by expansion of trinucleotide repeats in a gene. They can be classified according to the amino acid they code for: polyglutamine (polyQ) repeat diseases, polyalanine (polyA) repeat diseases. OPMD is a very unique polyalanine disease sharing common features with other polyQ disorders, as well as with polyA and dystrophic disorders [81].

PolyQ diseases that are caused by (CAG)n repeat expansions represent the largest group of trinucleotide repeat diseases. PolyQ diseases include Huntington’s disease (HD), spinobulbar muscular dystrophy (SBMA), spinocerebellar ataxias (SCA) types 1,2,3 (or Machado–Joseph disease MJD), 6, 7, 10, and 12 and dentatorubral pallidoluysian (DRPLA) [82]. It is worth mentioning that the affected proteins in polyQ diseases and OPMD are widely expressed yet diseases target specific tissues/cell types.

The disease course and underlying mechanisms in OPMD appear to be in some ways similar to that seen in polyQ expansion disorders as protein misfolding and subsequent aggregation appear to be central to the pathogenesis [73]. Both OPMD and polyQ diseases are coding expanded triplet diseases and both are of late onset. Both polyQ and polyA are hydrophobic amino acids which are able to form β-sheet structures and induce intracellular protein aggregation. The most striking difference between OPMD and polyQ diseases is the repeat length. Short expansions (>2) of the polyA stretch in wild-type PABPN1 cause OPMD, while much longer expansions of polyQ (>35) are required to cause neurodegenerative diseases. It is proposed that polyQ is more harmful to the cell than polyQ [83,84]. Another difference is that in OPMD the pathogenic effects are mostly observed in skeletal muscle cells as opposed to neuronal tissues in the case of polyQ disorders. PolyA tract expansions have now been described in several human diseases. At least 9 disorders are associated with polyA expansions (Table 1). Examples of PolyA disorders include: Synpolydactyly [85,86], cleidocranial dysplasia [87], familial holoprosencephaly [88], hand–foot–genital syndrome [89], blepharophimosis/ptosis/epicanthus inversus syndrome type II [90], X-linked mental retardation and epilepsy [91]. X-linked
mental retardation with growth hormone deficiency [92], congenital central hypoventilation syndrome [93] and oculo-pharyngeal muscular dystrophy [33].

An alanine expansion was first identified as the disease-causing mutation in synpolydactyly syndrome (SPD) [85,86]. Since, similar mutations have been described in eight additional disorders. In contrast to polyQ expansions which cause late onset neurodegenerative diseases, all polyA disorders, except for OPMD, result in early developmental defects, such as malformations of the brain, digits and other structures. All the mutated genes in polyA diseases, except poly(A) binding protein nuclear 1 (PABPN1) which causes OPMD, code for transcription factors that play important roles in early development [81]. Furthermore, the size of the alanine expansion leading to a disease phenotype in OPMD is the smallest ever described in polyA diseases (Table 1).

Table 1
Description of polyalanine diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Symptoms</th>
<th>Gene</th>
<th>Protein’s function</th>
<th>Normal polyA tract size</th>
<th>Expanded polyA tract size</th>
<th>Protein aggregates</th>
<th>Affected cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synpolydactyly (SPD)</td>
<td>Hand/foot malformation with syndactyly and polydactyly, brachydactyly</td>
<td>HOXD13</td>
<td>Transcription factor patterning of dorsal axis limbs, genitals</td>
<td>15</td>
<td>22–29</td>
<td>Cytoplasmic</td>
<td>Skeletal</td>
</tr>
<tr>
<td>Hand–foot–genital syndrome (HFGS)</td>
<td>Hand/foot malformation with short thumbs/great toes, abnormal genitalia</td>
<td>HOXA13</td>
<td>Transcription factor patterning of dorsal axis limbs, genitals</td>
<td>18</td>
<td>24–26</td>
<td>Cytoplasmic</td>
<td>Skeletal</td>
</tr>
<tr>
<td>Cleidocranial dysplasia (CCD)</td>
<td>Skeletal dysplasia open fontanelles, tooth abnormalities, with hypoplastic clavicles, short stature</td>
<td>RUNX2(CBFA1)</td>
<td>Transcription factor central role in morphogenesis of skeleton, osteoblast differentiation</td>
<td>17</td>
<td>27</td>
<td>Cytoplasmic</td>
<td>Skeletal</td>
</tr>
<tr>
<td>Congenital central hypoventilation syndrome (CCSH)</td>
<td>Loss of ventilatory response and Hirschsprung disease</td>
<td>PHOX2B</td>
<td>Transcription factor development of brain</td>
<td>20</td>
<td>25–29</td>
<td>Nervous system</td>
<td></td>
</tr>
<tr>
<td>Holoprosencephaly (HPE)</td>
<td>Malformation of midline structures of the forebrain and facial cranium</td>
<td>ZIC2</td>
<td>Transcription factor development of brain and limbs</td>
<td>15</td>
<td>25</td>
<td>Nervous system</td>
<td></td>
</tr>
<tr>
<td>Blepharophimosis/ ptosis/epicanthus inversus syndrome (BPES)</td>
<td>Blepharophimosis, ptosis, epicanthus inversus ovarian failure</td>
<td>FOXL2</td>
<td>Helix/forkhead transcription factor expressed in developing eye and ovaries</td>
<td>14</td>
<td>22–24</td>
<td>Nuclear and Cytoplasmic</td>
<td></td>
</tr>
<tr>
<td>Infantile spasm syndrome X-linked (MR)</td>
<td>Mental retardation, epilepsy, dystonia</td>
<td>ARX</td>
<td>Transcription factor role in development of cerebral cortex and axonal guidance</td>
<td>16</td>
<td>18–23</td>
<td>Nuclear system</td>
<td></td>
</tr>
<tr>
<td>X-linked mental retardation with growth hormone deficiency (MR and GH)</td>
<td>Mental retardation, short stature caused by growth hormone deficiency</td>
<td>SOX3</td>
<td>Transcription factor, neuronal differentiation in brain and spinal cord</td>
<td>15</td>
<td>26</td>
<td>Cytoplasmic</td>
<td>Nervous system</td>
</tr>
<tr>
<td>Oculo-pharyngeal muscular dystrophy (OPMD)</td>
<td>Progressive, late onset, muscular weakness of eyelid, pharyngeal</td>
<td>PABPN1 Poly(A) binding protein</td>
<td>Regulates length of poly(A) mRNA tails</td>
<td>10</td>
<td>12–17</td>
<td>Nuclear system</td>
<td>Muscles</td>
</tr>
</tbody>
</table>

Another contrast between polyA and polyQ is the mutational mechanism. Polymerase slippage has long been assumed to be the mechanism of expansion in polyQ diseases. In contrast, polyA expansions are thought to arise from unequal allelic homologous recombination during meiosis and/or mitosis [94]. Expanded polyA are meiotically and mitotically stable, whereas expanded polyQ tracts tend to be meiotically and mitotically unstable [82]. PolyQ repeats show both somatic and germline instability. PolyA tracts show only a low degree of polymorphism [95].

Recent findings in OPMD, as well as other polyA diseases, indicate that protein misfolding and aggregation may be common features shared with other polyQ diseases. Until last year, among the family of polyA expanded proteins, mutant PABPN1 was the only member believed to form intranuclear inclusions (INIs). Recently, it has been shown for at least 5 other polyA diseases that mutant protein forms aggregates [96–98]. Recent reviews focused on the details of polyA diseases [24,81,95,99–102].

3. OPMD recent molecular mechanisms

Different cellular and animal models, including mice and Drosophila, were generated to study the pathological mechanisms underlying OPMD [54,73,103,104,105].

The mechanism by which the polyA expansion mutation in PABPN1 causes disease is unclear. However, the mutation is thought to confer a toxic gain-of-function on the protein. Repeat length appears to correlate with disease severity. Widespread expression of the human PABPN1 gene in transgenic mice yielded polyA length-dependent muscle pathology, including vacuoles, central nuclei, and numerous dystrophic changes.
Due to biophysical limitations [111].

Resulting in the formation of protein aggregates within the cell.

Protein conformation, protein functional domains of the protein and therefore essential to have been regarded as flexible spacer elements located between homopolymeric repeats, when compared with polyQ repeats [107,108]. Above a threshold of 19 alanines, the polypeptide stretch could form a core β-sheet structure that mediates the intermolecular association of mutant proteins into fibrillar inclusions in human pathologies [113]. Unlike the typical tectorial properties of amyloid fibrils, polyA fibrils did not show fluorescence with thioflavin T or apple-green birefringence with Congo red. Shinchuk et al. postulated that the high stability of the macromolecular fibrils of an expanded polyA stretch could form a core β-sheet structure that mediates the intermolecular association of mutant proteins into fibrillar inclusions in human pathologies [113].

3.1. PolyA-β sheets in OPMD pathogenesis

The biophysical properties of polyA were suggested to play an important role in the accumulation of mutant PABPN1 in OPMD muscle nuclei [24].

PolyA stretches have been found in 494 human proteins [95]. Under physiological conditions in vitro, alanine stretches form β pleated sheet fibrillar macromolecules that are extremely resistant to chemical denaturation and enzymatic degradation [107,108]. Above a threshold of 19 alanines, the polypeptide aggregates and forms intracellular inclusions, leading to cell death [109]. Interestingly, alanine stretches within proteins do not exceed 20 alanines in humans making them relatively short homopolymeric repeats, when compared with polyQ repeats [101].

PolyA are frequent in eukaryotic cells, and preferentially found in transcription factors (TFs); 36% of proteins containing polyA stretches in humans are TFs [95,110]. Alanine tracts have been regarded as flexible spacer elements located between functional domains of the protein and therefore essential to protein conformation, protein–protein interactions and/or DNA binding [86,110].

Expanded polyQ and polyA protein repeats are thought to destabilize the native configuration of the mutant protein resulting in the formation of protein aggregates within the cell. It appears likely that an increase of alanine repeat length above 12–22 results in misfolding and/or aggregation of the protein due to biophysical limitations [111].

It seems surprising that extension of the alanine repeat by two residues in mutant PABPN1 should have such a drastic effect as causing OPMD. To find out whether alanine repeats tend to aggregate, Perutz et al. made the peptide D2A10K2 and measured its Circular Dichroism (CD) spectra in solution as a function of pH [111]. The spectra showed that the peptide forms α-helices at all pHs, with no sign of aggregation. α-Helices can adhere to each other by forming coiled coils, but it is most unlikely that expansion from six to eight alanines would have this effect. Perutz suggested the following interpretation: alanine repeats are hydrophobic and would, therefore, occupy internal positions in the protein. An additional alanine would be a misfit that lowers the free energy barrier to unfolding of the protein [111].

In a recent protein structural study, wild-type PABPN1 was shown to slowly form filaments, while mutant PABPN1 formed filaments more quickly. Structural analysis of the fibrils indicated antiparallel β-sheets [112].

In another recent study on polyA repeats, Shinchuk et al., analyzed the self-assembly of synthetic poly-(L-alanine) peptides containing 3–20 residues. They found that the conformational transition and structure of polyA assemblies in solution are not only length-dependent but also are determined by concentration, temperature, and incubation time. No β-sheet complex was detected for those peptides characterized by $n<8$, where n are number of alanine residues [113]. Unlike the typical tectorial properties of amyloid fibrils, polyA fibrils did not show fluorescence with thioflavin T or apple-green birefringence with Congo red. Shinchuk et al. postulated that the high stability of the macromolecular fibrils of an expanded polyA stretch could form a core β-sheet structure that mediates the intermolecular association of mutant proteins into fibrillar inclusions in human pathologies [113].

Two recent reports by Hung and Hall [114,115] investigated the kinetics simulation of fibril formation of polyA peptides. Fibril formation appeared to be a conformational conversion process in which small amorphous aggregates → β-sheets → ordered nucleus → subsequent rapid growth of a small stable fibril or protofilament [114,115].

We have recently proposed a potential molecular mechanism for OPMD pathogenesis [21]. The expansion of the polyA repeat in mutant PABPN1 causes misfolding and exposes the hydrophobic alanine stretch, which would otherwise be buried inside the protein in the wild type form. The longer the polyA stretch is, the more exposed the hydrophobic region is.

3.2. Oligomerization of mutant PABPN1 in OPMD pathogenesis

Wild-type PABPN1, when bound to poly(A) RNA, forms both linear filaments and discrete-sized, compact oligomeric particles in vitro [50]. Oligomerization of wild-type PABPN1 is mediated via two potential oligomerization domains (ODs), one in the middle of the protein and the other at the C-terminus [54]. In this study we provided evidence, in cell culture, that oligomerization of mutant PABPN1-A17 plays an important role in the formation of INIs and cell death in OPMD. Inactivating oligomerization of mutant PABPN1-A17 by deletions in either of the ODs prevented nuclear protein aggregation and significantly reduced cell death [54]. It should be noted that ODs do not overlap with the alanine stretch of PABPN1. These findings suggest that oligomerization of mutant PABPN1 plays a crucial role in the formation of OPMD nuclear protein aggregation, while the expanded polyA stretch is necessary but not sufficient to induce OPMD protein aggregation.

Both Congo red and doxycycline (anti-amyloid compounds) have been found to reduce aggregation and cell death in cell models of OPMD [116]. The parallel protection that Congo red affords against the cytotoxicity of expanded polyQ [117] and polyA is consistent with the idea that abnormal protein
aggregation and accumulation may be deleterious in all intracellular amyloidoses, irrespective of the primary mutation. Recent work on a transgenic model of OPMD provided evidence that doxycycline (anti-amyloid compound) can be used as a treatment in OPMD, suggesting that this drug is able to inhibit oligomerization induced by mutant PABPN1 [103].

3.3. Transcription dysregulation in OPMD pathogenesis

The transcription of muscle-specific genes in OPMD may be compromised. One group suggested that the continuous remodeling of adult extraocular muscles leading to the accumulation of defective mRNA as a consequence of mutant PABPN1 production could be an explanation for selective craniofacial involvement in OPMD [118].

A recent study has shown that ectopic expression of mutant PABPN1 in a muscle cell culture model reduced expression of several muscle-specific proteins including α-actin, muscle creatine kinase, and two myogenic transcription factors, myogenin and MyoD [119]. These findings should be confirmed in OPMD mice models.

Recent reports support wild-type PABPN1’s involvement in transcription. First, wild-type PABPN1 directly interacts with the Ski-interacting protein (SKIP) [120], a muscle transcription regulatory protein which, along with MyoD, regulates muscle cell differentiation [120]. Second, normal PABPN1 associates with RNA polymerase II during transcription and accompanies the released transcript to the nuclear pore [121]. Modifications of these processes by expanded PABPN1 might play an important role in OPMD.

We have also recently found that both transcription factors CBP and p300 (histone acetyltransferases) are sequestered into protein aggregates of mutant PABPN1 in OPMD HeLa and muscle models (Fig. 3), reinforcing the role of transcriptional dysfunction in OPMD (unpublished data).

3.4. Involvement of ubiquitin–proteasome pathway (UPP) and molecular chaperones in OPMD pathogenesis

The situation in OPMD appears to have many parallels with polyQ diseases and more recently with polyA diseases, raising the possibility that misfolded, aggregate-prone proteins may perturb similar pathways, irrespective of the nature of the mutation or protein context.

The appearance of ubiquitinated aggregates implies an underlying incapacitation of the cellular chaperones and proteasome machinery, which normally function to prevent the accumulation of misfolded proteins [73].

INI formation in mutant PABPN1 may result from an imbalance between protein refolding and aggregation. Different observations converge to suggest that a gain of function of PABPN1 may cause the accumulation of nuclear filaments observed in OPMD [22]. The involvement of the ubiquitin–proteasome pathway and molecular chaperones in OPMD is well documented in several studies. First, Calado et al. showed that OPMD-specific nuclear inclusions in deltoid muscle from OPMD patients recruit, in addition to wild-type PABPN1, ubiquitin and subunits of the proteasome [59]. Second, human, yeast, and chemical chaperones were shown to reduce both aggregation and cell death in an OPMD cell model without

![Fig. 3. Both CBP and p300 transcription factors are recruited into protein aggregates of mutant PABPN1-A17 in both OPMD cellular models. Immunocytochemical detection on HeLa and C2C12 cells transfected with mutant PABPN1-A17 (green), 48 h post-transfection. CY3 conjugated secondary antibody (red) was used to immunodetect CBP and p300 (top middle, bottom middle). Merging (yellow) of the two signals (red and green) illustrates co-localization.](image-url)
affecting the levels of mutant PABPN1 [72,73]. Third, Abu-Baker et al. presented evidence that the UPP and molecular chaperones are part of the cellular response to mutant polyA-containing PABPN1. Both HSP70 and ubiquitin were shown to be recruited into INIs of OPMD in cell-based models and human tissue [73]. The proteasome inhibitor ‘lactacystin’ resulted in an enhancement of both nuclear and perinuclear protein aggregation that are associated with cellular toxicity [73]. Ravikumar et al. also demonstrated that epoxomicin (another proteasome inhibitor) did increase the proportion of COS-7 cells expressing green fluorescent protein-A19 (GFP-A19) aggregates [122].

Recent evidence has shown that over expression of heat shock proteins HSP70 and HSP40 in cells expressing mutant PABPN1 increases the solubility of the mutant PABPN1 protein, which consequently reduces the formation of INIs and cell toxicity [73]. Since these HSPs can promote refolding, solubilization, and degradation of damaged polypeptides, the loss of this protective response combined with aging in skeletal muscle might seriously compromise the cell’s capacity to cope with the mutant PABPN1. Recently, microarray analysis of an adenoviral model of OPMD revealed that HSP70 was upregulated, suggesting that there is no compromise of HSP70 expression [76].

3.5. Possible impairment of mRNA transport or processing in OPMD pathogenesis

To find out whether a loss-of function underlies OPMD, Calado et al. measured the steady-state poly(A) tail length in both OPMD and normal myoblasts [59]. Surprisingly, there were no significant differences between the steady-state poly(A) tail length in OPMD and normal myoblasts. However, poly(A) RNA is detected in OPMD inclusions at higher concentrations than in the rest of the cell. These findings suggest that mRNA may be trapped in the inclusions. If this is the case, then the inclusions may interfere with mRNA export and the cellular traffic of poly(A) RNA. As a result, depending on the relative transcription and turnover rates of different mRNA species, in particular those that are specifically expressed in severely affected muscles, some protein levels may become inadequate and contribute to cell death [59].

We have recently identified two wild-type PABPN1 interacting proteins, the heterogenous nuclear ribonucleoproteins (hnRNP) A1 and A/B [106]. These hnRNPs are mRNA binding proteins that are involved in both mRNA processing and export from the nucleus to the cytoplasm [123]. Both hnRNP A1 and A/B can interact (via the C-terminus) with wild-type PABPN1 and they also co-localize with mutant PABPN1 in OPMD INIs [106]. More recently, mutant PABPN1 nuclear inclusions were found to sequester other proteins involved in mRNA biogenesis, such as poly(A) polymerase (PAP) [78]. It has also been proposed that wild-type PABPN1 plays a role in mRNA export [53]. The interaction between wild-type PABPN1 and hnRNP proteins might be required for the packaging of mRNA for the export process [106]. Together, these observations and a recent report of OPMD INIs sequestering mRNA [59] suggest that OPMD INIs may be toxic by acting as “mRNA traps” interfering with the mRNA nucleocyttoplasmic export.

Recent work on an adenoviral OPMD model revealed that mutant PABPN1 overexpression leads to upregulating of genes encoding proteins that are sequestered in OPMD nuclear inclusions [76]. Interestingly, many of the upregulated genes encode proteins involved in RNA processing, mRNA splicing, packaging and transport [76].

Recently, it has been shown that the formation of mutant PABPN1 inclusions requires binding to poly(A) RNA, and interfering with any of the protein domains required for stimulation of poly(A) polymerase prevents the formation of inclusions [78]. Site-directed mutations within the RNA binding domain (RBD) of mutant PABPN1 led to mutant protein no longer forming INIs [78].

3.6. The role of RNA binding domain (RBD) of mutant PABPN1 in OPMD pathogenesis

Recently, Simonelig’s group has suggested that the RNA-binding domain is crucial for OPMD associated toxicity [105]. Simonelig’s group [105] has created a Drosophila model of OPMD that recapitulates the features of the human disorder: progressive muscle degeneration, with muscle defects proportional to the number of alanines in the tract, and formation of mutant PABPN1 nuclear inclusions. Strikingly, in their Drosophila model, the polyA tract was not absolutely required for muscle degeneration, whereas another domain of PABPN1, the RNA-binding domain and its function in RNA binding, are required. The authors suggest that OPMD does not result from polyA toxicity, but from an intrinsic property of mutant PABPN1 dependent on the RBD [105]. They also identified several suppressors of the OPMD phenotype. For example, molecular chaperone HSP70 and anti-apoptotic protein P35 were efficient suppressors [105]. It is important to mention that there is an overlap between the RBD and one of the oligomerization domains (OD1) of wild-type PABPN1 that have been characterized by our group [54]. The oligomerization domains of mutant PABPN1 were shown to be relevant in OPMD associated toxicity in vitro [54]. Thus, the toxicity may be dependent on aggregation, which is dependent on the same domains as the RNA binding.

3.7. The role of the nucleus in OPMD pathogenesis

It is becoming increasingly clear that, although the expanded polyA stretch in mutant PABPN1 is crucial to initiate OPMD pathogenesis, residues outside the polyA stretch also play important roles in the disease [75,105]. We have recently also presented evidence that the nuclear environment is necessary for mutant PABPN1 inclusion formation and cellular toxicity [75]. This was achieved by inactivating the mutant PABPN1 nuclear localization signal (NLS) and by generating full-length mutant PABPN1 fused to a strong nuclear export signal. Targeting mutant PABPN1 to the cytoplasm resulted in a significant suppression of both intranuclear aggregate formation and cellular toxicity, two hallmarks of OPMD [75].
3.8. Apoptosis in OPMD pathogenesis

Recently, a study on OPMD transgenic mice demonstrated that doxycycline reduces susceptibility of cells to pro-apoptotic insults [103]. Doxycycline treatment influenced Bax levels, as this protein permeabilizes mitochondria, leading to cytochrome c release and subsequent activation of caspases 9 and 3, after various pro-apoptotic insults [103]. Bax levels were elevated in the muscle of A17 mice, compared to wild-type littermates, and Bax levels in OPMD mice were reduced by doxycycline. Anti-apoptotic protein P35 was also efficient suppressors in OPMD Drosophila model [105]. Indeed, other strategies that reduce apoptosis may be effective in OPMD; lithium decreases the toxicity induced by expression of a polyA expansion (tagged to GFP) in a Drosophila model, at least partially via activation of the anti-apoptotic wnt pathway [124].

4. Treatment advances for OPMD

4.1. Trehalose

The disaccharide chemical chaperone trehalose has been used effectively to alleviate symptoms in a mouse model of Huntington’s disease [125]. Trehalose is thought to elicit its effect by binding and stabilizing partially folded polyQ proteins and inhibiting the formation of aggregates. In OPMD cell and mouse models [126] it was shown that trehalose decreases the aggregation and toxicity of mutant PABPN1 [126]. Furthermore, treatment of an OPMD mouse model with trehalose resulted in the attenuation of muscle weakness, decreased aggregate formation and a reduced number of TUNEL-positive nuclei in skeletal muscle fibres [126].

4.2. Single-domain intracellular antibody

Verheesen et al., have recently isolated and characterized a diverse panel of single-domain antibody reagents (VHH), recognizing different epitopes in PABPN1 [127]. The antibody reagents specifically detected endogenous PABPN1 in cell lysates on Western blot and labeled PABPN1 in cultured cells and muscle sections. When expressed intracellularly as intrabodies in a cellular model for OPMD, aggregation of mutant PABPN1 was prevented in a dose-dependent manner [127]. More importantly yet, these intrabodies could also reduce the presence of previously existing aggregates [127].

4.3. Induction of HSP70 expression

The reduction of mutant PABPN1 aggregation by chemical or molecular chaperones (e.g. HSP70, HSP40) correlates with decreased death in OPMD cell models [72,73].

Recently, Wang et al. tested four pharmacological agents for their ability to induce HSP70, and reduce mutant PABPN1 aggregation in a HeLa cell culture model [128]. They showed that exposure to moderate levels of ZnSO4, 8-hydroxyquinoline, ibuprofen and indomethacin produced a robust stress response resulting in the induction of HSP70 in HeLa cells expressing the mutant PABPN1-A17 as a GFP fusion protein [128]. A concomitant reduction of cell death in drug-treated mutant PABPN1 expressing cells was also observed [128]. Zinc sulfate (ZnSO4) is an essential mineral nutrient. 8-hydroxyquinoline is an anti-microbial anti-parasitic agent used to treat infections in humans. Ibuprofen and indomethacin are well-known anti-inflammatory drugs.

4.4. Doxycycline (anti-aggregation and anti-apoptotic)

Rubinsztein’s group has developed a transgenic mouse model of OPMD that manifests progressive muscle weakness accompanied by intranuclear aggregates and TUNEL-stained nuclei in skeletal muscle fibers [103]. The onset and severity of these abnormalities were substantially delayed and attenuated by doxycycline treatment, which may exert its therapeutic effect by reducing aggregates and by distinct anti-apoptotic properties. The authors suggest that doxycycline may represent a safe and feasible therapeutic for OPMD [103].

4.5. Other therapies: myoblast transfer therapy

Using telomere measurements, Mouly et al. have shown that the proliferative capacity of satellite cells is dramatically decreased in muscle dystrophies, thus hampering the possibilities of autologous cell therapy [129]. The authors concluded that autologous cell therapy can be applied to specific targets when there is a source of satellite cells which is not yet exhausted. This is the case of OPMD, and patients suffering from this disease agreed to participate in a clinical trial using autologous satellite cells isolated from muscles spared by the disease.

This resulted in a clinical trial for the pharyngeal muscles of patients suffering from OPMD. The results of this trial will not be available for 2 years [129].

5. Conclusions

Despite all the advances in OPMD research, there are still fundamental questions that need to be addressed for better understanding of the pathophysiology of OPMD: (1) Which is the toxic form of the mutant protein: soluble or insoluble, or both? Does aggregation have a causative role in OPMD-associated cyto-toxicity? Does it have a role in disease progression, or is this process in some way protective? (2) Why is the muscle the most affected tissue in OPMD disease? (3) Is the underlying mechanism of expanded polyA toxicity in OPMD a loss or gain of function? (4) Are there mainly primary or parallel mechanisms acting together in OPMD pathogenesis?

Understanding the molecular pathogenic mechanisms underlying OPMD will help to identify the appropriate treatments for this disease.

Acknowledgment

We thank Dr. Claudia Gaspar for her careful reading of this review.
References

