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a b s t r a c t

We note here that quadratic entropy, a measure of biological diversity introduced by
C.R. Rao, is a variant of the weighted Wiener index, a graph invariant intensively studied
in mathematical chemistry. This fact allows us to deduce some efficient algorithms for
computing the quadratic entropy in the case of given tip weights, which may be useful
for community biodiversity measures. Furthermore, on ultrametric phylogenetic trees,
the maximum of quadratic entropy is a measure of pairwise evolutionary distinctness in
conservation biology, introduced by S. Pavoine. We present an algorithm that maximizes
this quantity in linear time, offering a significant improvement over the currently used
quadratic programming approaches.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Phylogenetic trees are simply graphs depicting the inferred relationships among predefined sets of leaves (which often
correspond to species). This means that they are amenable to analyses with graph theory [1]. If they are given a direction by
identifying a root, we can speak about evolutionary trees. Their structure models evolution, which has a direction from past
to present, and which is generally (but not exclusively, see [2]) diversifying, and such that the simultaneous production of
more than two descendant lineages from an ancestral lineage is rare. Biologists often consider internal vertices to represent
extinct ancestral lineages and the edge lengths to represent the amount of evolution that occurred between the species
corresponding to the endvertices. Evolutionary trees are most often inferred by fitting an evolutionary process model to
discrete data measured on the leaves in a maximum likelihood or Bayesian framework [3]. Because evolutionary trees are
representations of the evolutionary history of a set of contemporaneous leaves, they are often forced to be ultrametric, i.e. all
leaves are equidistant from the root. Such an evolutionary tree has a height h, the sum of edge lengths on the path from the
root to (any) leaf; edge lengths are then inferred to represent the relative elapsed time between internal vertices.

Past mathematical research has considered tree inference, tree shape distribution and accompanying generatingmodels,
as well as parameter estimation from inferred trees. So, Semple and Steel [1] summarize how graph theory can contribute
to the NP-complete problem of evolutionary tree inference, e.g. what the mathematical properties allow for recovery of
the underlying tree under different assumptions concerning character evolution, and how subtrees can be combined to
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best preserve their information. Explorations of evolutionary tree structure distributions have a long pedigree, with most
attention focused on the Yule [4] and uniform [5] distributions of topologies [6,7]. There has also been related discussion
on appropriate prior distributions (of tree topology and edge lengths) for evolutionary tree inference [8–10], and efficient
algorithms listing all possible evolutionary trees for a given set of species have been developed [11]. At the other end of
the evolutionary tree inference cycle, mathematically-inclined biologists have produced tools for estimating evolutionary
parameters (speciation and extinction rates) from inferred trees [12–14].

Graph theory can also bear on practical biological conservation. If we assume that one aspect of the leaves (species) that
humans would like to conserve is the unique information they embody, and if we let the edge-weighted evolutionary trees
represent the pattern of shared and unique information, we can start to devise approaches that maximize this quantity
(called ‘evolutionary history’ or ‘phylogenetic diversity’) under constraints of final subset size, budgets for conservation,
costs of conservation, and the probabilities of species survival [15,16]. This has been termed the ‘‘Noah’s Ark Problem’’ [17].
A related metric is the contribution of a leaf to future subsets on an evolutionary tree—these have been termed a leaf’s
‘originality’ or ‘distinctness’ [18–24].

In this contribution, we explore one such measure, quadratic entropy, introduced by Rao [25] and recently applied to
evolutionary trees by Pavoine [22,26]. These authors propose computing the probability distribution µ maximizing the
quadratic entropy for general finite metric spaces. In the evolutionary context, Pavoine [22] specifically suggests using µ
as an importance score for species on a tree as a weight representing its expected pairwise contribution of evolutionary
originality. The method can be interpreted as finding an optimum of a quadratic mathematical program, yielding an
algorithm of complexity O(n4). It has been implemented as a function [27] in the ADE package for analysis of environmental
data [28] within the statistical environment R [29]. However, one can use the specific structure of evolutionary trees to
develop a linear time algorithm formaximizing the quadratic entropy in twodepth-first traversals of the tree. Presenting this
algorithm (implemented in R [30]) is the main goal of the present contribution. We also make a few additional observations
on computing the quadratic entropy and its connections with the graph invariant Wiener index [31–34], widely known in
mathematical chemistry. This last connection also allows for an alternative and rapid (linear time) algorithm of computing
the quadratic entropy on evolutionary trees with known leaf weights.

2. Evolutionary trees and quadratic entropy

An evolutionary tree T = (T , r, w) consists of a tree T rooted at a vertex r ∈ V (T ) whose edges have their length
determined by a function w : E(T ) → R+

∪ {0}. Between any two pairs of vertices u, v ∈ V (T ), there is a unique shortest
path in T , and by the distance d(u, v) between u and v we denote the length of this path, i.e. the sum of the w-values of its
edges. In a rooted tree, every vertex v ∈ V (T ) has a unique incident edge ev that lies on the shortest path connecting v
with r . The component of T − ev containing v is the subtree Tv rooted at v. Then, Tv = (Tv, v, w /E(Tv)) is the corresponding
evolutionary subtree. The endvertex of ev distinct from v, is the parent of v, and all neighbors for which v is a parent are
children of v.

Each vertex in an evolutionary tree represents a species in the history of Earth. A leaf vertex represents either a living
species or an extinct species, and an internal vertex represents the common ancestral species of those corresponding to the
vertices in V (Tv). The length of an edge uv represents the time elapsed between the species v, whose immediate ancestor is
u, branched into two or (rarely) more new species. Therefore the living species are represented by the leaves at the largest
distance h from r , called the height of T . We assume that T contains no extinct leaf species, i.e. all the leaves of T are at
distance h from r , making T strictly ultrametric. The height corresponds to the age of the species represented by r . Note that,
in the case that the root r has degree one, we do not consider it as a leaf of T .

Let µ be a probability distribution on the leaves of T and let D denote the random variable, representing the distance
among two µ-randomly selected leaves of T (with repetition). Quadratic entropy E(D) is the expected value of this random
variable [22,26,25]. We can define it for any metric space X , in which case we are evaluating the expected distance between
two randomly selected elements of X . Thus, ifµ is the vector of relative frequencies of elements from X (in our case, species)
and A is the corresponding distance matrix (in our case, the matrix of distances in the evolutionary tree), then

E(D) = µTAµ.

Matrix multiplication from this formula yields a quadratic algorithm for computing E(D) for given µ and A. Further, finding
the probability distribution µ that maximizes E(D) for given A corresponds to finding a maximum of a quadratic program
in variable µ and can be done using standard methods of convex programming. In the special case of evolutionary trees, we
develop significantly more efficient algorithms for both tasks, which run in linear time.

3. Computing quadratic entropy

Suppose T1 = (T1, r1, w1) and T2 = (T2, r2, w2) are two evolutionary trees. The join of these two trees is the tree
T = T1 + T2, T = (T , r, w), where T is obtained from T1 and T2 by identifying their roots r1 and r2 into a new root r , and
the length functionw of T is induced by the functionsw1 andw2. For a binary tree, At each node the operation is performed
only once, but several iterative applications (at each internal vertex one less than the number of children) can be combined
to construct an arbitrary tree, cf. Fig. 1.
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Fig. 1. The iterative join of evolutionary trees T1 , T2 , and T3 .

For a subtree T ′ of T , let E(D | T ′) denote the expected value of D conditional to both leaves being selected from T ′,
and let µ(T ′) denote the sum of µ(l) for all leaves l in T ′, i.e. the probability that a random leaf of T is a leaf of T ′. Our key
observation, made precise in Proposition 1, is, that for an ultrametric tree T = T1 + T2, the expected value E(D) for T can
be iteratively computed from E(D | T1) and E(D | T2), where we use the fact that any leaf from T1 is at the same distance to
any leaf in T2. A similar argument applies to maximizing quadratic entropy, thus both computation algorithms follow the
manner in which a tree is constructed by iteratively joining its subtrees, cf. Fig. 1. The following proposition holds:

Proposition 1. Let T be a tree with probability distribution µ on its leaves, and let T be the join of two trees T1 and T2 of the
same height h. Then,

E(D) = E(D | T1)µ(T1)
2
+ E(D | T2)µ(T2)

2
+ 4hµ(T1)µ(T2).

Proof.

E(D) =

−
l,l′∈T

µ(l)µ(l′)d(l, l′)

=

−
l,l′∈T1

µ(l)µ(l′)d(l, l′) +

−
l,l′∈T2

µ(l)µ(l′)d(l, l′) +

−
l∈T1,l′∈T2

µ(l)µ(l′)d(l, l′) +

−
l∈T2,l′∈T1

µ(l)µ(l′)d(l, l′)

= E(D | T1)µ(T1)
2
+ E(D | T2)µ(T2)

2
+ 4h

−
l∈T1

µ(l)
−
l′∈T2

µ(l′)

= E(D | T1)µ(T1)
2
+ E(D | T2)µ(T2)

2
+ 4hµ(T1)µ(T2).

Wehave essentially used the fact that all the leaves are at distance h from r , thus the distance between any l ∈ T1 and l′ ∈ T2
is d(l, l′) = d(l, r) + d(l′, r) = 2h. �

Recursive application of Proposition 1 yields a linear algorithm that computes E(D) for a given probability distribution
µ on the leaves of T . It is presented as Algorithm 1. It computes the values of E(D | Tv) in one depth-first traversal of T .

Algorithm 1 Computing quadratic entropy for a given probability distribution.
Procedure compute_ε(v,d)
Parameter v: vertex for which we are computing E(D|Tv).
Parameter d: distance from v to the leaves of Tv .
1: if v is a leaf then
2: set ε(v) = 0.
3: let µ(v) be the assigned probability P(l = v).
4: else
5: let c1, . . . , ct be the children of v.
6: compute_ε(c1,d − d(vc1)).
7: set ε(v) = ε(c1).
8: set µ(v) = µ(c1)
9: for i = 2 to t do

10: compute_ε(ci,d − d(vci)).
11: set µ(v) = µ(v) + µ(ci).
12: set p = µ(ci)/µ(v).
13: set ε(v) = ε(ci)p2 + ε(v)(1 − p)2 + 4dp(1 − p).
14: end for
15: end if
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For the proof of correctness in this and the following sections, we introduce some notation. Let v ∈ V (T ) be some vertex
of T , and let c1, . . . , ct be its children. In this context, let Ti be the tree, rooted at v, obtained recursively as T1 := Tc1 ∪vc1 and
Ti = Ti−1 + (Tci ∪vci) for i ≥ 2, where Tci ∪vci is the tree obtained from Tci by adding the edge vci. Note that E(D | Tci ∪vci)
and µ(Tci ∪ vci) are the same as E(D | Tci) and µ(Tci), respectively.

Theorem 2. For v ∈ V (T ), the value ε(v) computed by Algorithm 1 equals E(D | Tv). In particular, ε(r) is the quadratic entropy
of T for a given probability distribution µ.

Proof. In addition to the statement of the theorem, we claim thatµ(v) = P(l ∈ Tv). We prove these claims by induction on
the number of vertices in Tv . If there are only two vertices r = u and v, which is the leaf, then µ(v) = 1 (line 3), ε(v) = 0
(line 2), µr(u) = 1 (line 8), and ε(u) = 0 (lines 6 and 7), which is correct.

Let there be at least three vertices in Tv . Correct results are computed for the children ci of vi in lines 6 and 10 by induction.
If there is only one child, then µ(ci) = µ(Tv) by induction, and lines 8 and 7 establish correctness of µ(v) and ε(v).

If there are more children, then line 11 computes the probability µ(Ti) and line 12 computes P(l ∈ Tci | l ∈ Ti) by
conditional probabilities. Line 13 computes E(D | Ti) by Proposition 1. Then ε(v) = E(D | Tv) and µ(v) = µ(Tv) after the
execution of the for loop, since Tt = Tv . The theorem follows. �

4. Quadratic entropy versus weighted Wiener index

In this section, we show that there is a close connection between the quadratic entropy and one of the central concepts
studied in chemical graph theory. Extending the methods from this field of research we give an alternative algorithm
(Corollary 4) for computing the quadratic entropy of T . This algorithm avoids computing the distances between the leaves.

In mathematical chemistry, numerous graph invariants are used to analyze and predict physical and chemical properties
of chemical compounds. When such invariants are computed on chemical graphs, they are traditionally called topological
indices. Among topological indices, the Wiener index is the oldest [35] and one of the most thoroughly studied indices, see,
e.g. the surveys [31,36]. Let G = (V (G), E(G)) be a connected graph. Then theWiener index W (G) of G is defined as the sum
of the shortest path distances between all unordered pairs of vertices:

W (G) =

−
{u,v}⊆V (G)

d(u, v) =
1
2

−
u,v∈V (G)

d(u, v).

This classical definition was extended in [33] to weighted graphs (G, f ), where f : V (G) → R is a vertex weighting function,
in the following way:

W (G, f ) =
1
2

−
u,v∈V (G)

f (u)f (v)d(u, v).

Note that in the definitions of the (weighted) Wiener index it is assumed that all the edges have unit length, that is, the
w-values on its edges are all 1.

In order to design a linear algorithm for computing theWiener index of an important class of chemical graphs—benzenoid
systems—it was observed in [37] that the Wiener index of a weighted tree can be computed in linear time. (This result in
also implicit in [34].) We now show that the approach can be extended to weighted trees with edges of arbitrary length.
The weighted Wiener index W (G, f ) is defined as before, except that now d(u, v) is the sum of the w-values on a shortest
u, v-path.

Let (T , f ) be a weighted tree and let uv be an edge of T . Then T − uv consists of connected components, say T u and T v ,
where u ∈ T u and v ∈ T v . Let f (T u) =

∑
x∈Tu f (x) and f (T v) =

∑
x∈Tv f (x).

Proposition 3. Let (T , f ) be a weighted tree with w-values on its edges. Then

W (T , f ) =

−
uv∈E(T )

f (T u)f (T v)w(u, v).

Proof. Let uv be an arbitrary edge of T and let x, y ∈ V (T ). Then e lies on the u, v-path if and only if one of x, y belongs to
T u and the other to T v . Suppose that this is the case and let x = x1, . . . , xj = u, xj+1 = v, . . . , xk = y be the x, y-path in T .
Then

f (u)f (v)d(u, v) = f (u)f (v)

k−1−
i=1

w(xi, xi+1).

Hence the contribution of the edge uv toW (G, f ) with respect to the unordered pair x, y is f (x)f (y)w(u, v). Since this holds
for all pairs of vertices from T u and T v , the result follows. �
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Corollary 4. Let (T , r, w) be an evolutionary tree with probability distribution µ on its leaves. Then

E(D) = 2 ·

−
ev∈E(T )

w(ev)µ(Tv)(1 − µ(Tv)).

Proof. Define f : V (T ) → R with

f (u) =


µ(u); u is a leaf of T ,
0; otherwise.

Then note that E(D) = 2W (T , f ) and apply Proposition 3. �

Special cases of vertex-weighted Wiener indices (and their Wiener polynomial) were recently treated in [38,32], where
the assigned weights are vertex degrees. The general case, in which both vertices and edges are weighted, has been to the
best of our knowledge treated earlier only by Zmazek and Žerovnik [39]. They give a linear algorithm for cactus graphs, the
graphs whose blocks are cycles and edges. Hence their (rather involved) algorithm can be considered as an extension of the
algorithm that flows from Corollary 4.

5. Maximizing quadratic entropy

In this section, we present an algorithm that computes the maximum value of quadratic entropy over all possible
probability distributions on the leaves of T , together with the probability distributionµ on the leaves of T that achieves the
maximum value. In terms ofWiener index, this problem finds the weighting function on the set of leaves of T , such that the
resulting weighted Wiener index is maximum. This weighting is Pavoine’s originality score [22] from conservation biology.
To our knowledge, this problem has not been studied earlier in the Wiener index framework.

Proposition 5. Let T1 and T2 be two trees of height h with probability distributionsµ1,µ2 and expected distances E(D1), E(D2).
Further, let T = T1 + T2 be their join. Then the distribution µ, defined with

µ(l) =


2h − E(D2)

4h − E(D1) − E(D2)
µ1(l); l ∈ T1

2h − E(D1)

4h − E(D1) − E(D2)
µ2(l); l ∈ T2

(5.1)

maximizes E(D) whenever µ1 and µ2 maximize E(D1) and E(D2).

Proof. First note that µ(T ) = 1 and that µ(Ti) is obtained by scaling µi, i = 1, 2, therefore E(D | Ti) = E(Di). By
µ(T1) + µ(T2) = 1 and Proposition 1, we have

E(D) = E(D | T1)µ(T1)
2
+ E(D | T2)(1 − µ(T1))

2
+ 4hµ(T1)(1 − µ(T1)).

This expression involves the constant h and three variables, µ(T1), E(D | T1) and E(D | T2), which are not independent.
We optimize E(D) under the assumption of their independence, which we justify later.

For fixed E(D | T1), E(D | T2), and variable µ(T1), E(D) is maximized in the apex of the parabola, thus

µ(T1) =
2h − E(D | T2)

4h − E(D | T1) − E(D | T2)

implying

µ(T2) =
2h − E(D | T1)

4h − E(D | T1) − E(D | T2)
.

Using these values, we obtain the maximum

E(D) =
4h2

− E(D | T1)E(D | T2)

4h − E(D | T1) − E(D | T2)
.

The partial derivative in variables E(D | T1) and E(D | T2) is everywhere nonnegative, thus E(D) will be maximized when
both E(D | T1) and E(D | T2) will be largest. By assumption, this is achieved if µ restricted to T1 equals µ1 and µ restricted
to T2 equals µ2.

The distribution µ described by formula (5.1) satisfies all three conditions: µ(T1) and µ(T2) have the desired value and
µ restricted to Ti is after normalization equal to µi, i = 1, 2. Since the distribution µ satisfies the optimality conditions
for the optimum without dependence of the three variables, it achieves the optimum in the restricted case and therefore
maximizes E(D). �
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Algorithm 2 First pass for computing relative subtree probabilities.
Procedure maximize_ε(v,d)
Parameter v: vertex for which computation is done.
Parameter d: distance from v to the leaves of Tv .
1: set µr(v) = 1.
2: if v is a leaf then
3: set ε(v) = 0.
4: else
5: let c1, . . . , ct be the children of v.
6: maximize_ε(c1,d − d(vc1)).
7: set ε(v) = ε(c1).
8: for i = 2 to t do
9: maximize_ε(ci,d − d(vci)).

10: set µr(ci) =
2d−ε(v)

4d−ε(ci)−ε(v)
.

11: set ε(v) = ε(ci)µr(ci)2 + ε(v)(1 − µr(ci))2 + 4dµr(ci)(1 − µr(ci)).
12: end for
13: set x = 1 − µr(ct).
14: for i = t − 1 downto 1 do
15: set y = 1 − µr(ci).
16: set µr(ci) = µr(ci)x.
17: set x = xy.
18: end for
19: end if

We use Propositions 1 and 5 recursively in Algorithm 4, which computes µ in two passes of depth-first traversing of T .
In the first pass, Algorithm 2, we compute ε(v) = E(D | Tv) for every vertex v of T and µr(v) = P(l ∈ Tv | l ∈ Tu), i.e. the
probability for a leaf selected from Tu to lie in Tv , where u is the parent of v. In the second pass, Algorithm 3, we compute
absolute probabilities µ(v) = µ(Tv) for a leaf to be selected in Tv . A child of some vertex tree is considered at most twice
in Algorithm 2 and once in Algorithm 3, thus the algorithm is linear in the number of vertices of the tree. The following
Theorem establishes its correctness.

Algorithm 3 Second pass for computing absolute subtree probabilities.
Procedure compute_µ(v,τ )
Parameter v: the vertex for which the computation is done.
Parameter τ : the value µ(Tu) for u the parent of v.
1: set µ(v) = µr(v)τ .
2: for each child c of v do
3: compute_µ(c , µ(v)).
4: end for

Algorithm 4 Recursive calls maximizing the quadratic entropy.
1: maximize_ε_µr (r , h).
2: compute_µ(r ,1).

Theorem 6. The probability distribution µ computed by Algorithm 4 maximizes the quadratic entropy of the evolutionary tree
T . The value ε(r) stores the maximum quadratic entropy.

Proof. First we prove by induction on the number of vertices in Tv that Algorithm 2 correctly computes ε(v) = E(D | Tv)
and µr(v) = P(l ∈ Tv | l ∈ Tu), u being the parent of v. If there are only two vertices r = u and v, which is the leaf, then
µr(v) = 1 (line 1), ε(v) = 0 (line 3), µr(u) = 1 (line 1), and ε(u) = ε(v) = 0 (lines 6 and 7), which is correct.

Let there be at least three vertices in Tv . By induction, each call in lines 6 and 9 computes correct information for Tci ,
where ci is some child of v. It is easy to see that the same values apply to the non-root vertices in the tree Tci ∪ vci rooted at
v. If there is only one child, then lines 1 and 7 assure correctness of µ(v) and ε(v).

If there are more children, then line 10 computes the correct value µr(ci) relative to the tree Ti by Proposition 5, and line
11 correctly computes E(D | Ti) by Proposition 1. Thus µr(ct) and ε(v) are computed correctly in the first loop. For other
children of v, at each join evaluated in lines 10 and 11, we would by Proposition 5 need to update µr(cj), 1 ≤ j < i, by a
factor of 1− µr(ci), where the latter is the value computed in line 10. This is done in line 17: as the value y accumulates the
updating factor, only one visit to each child is necessary for update. The correctness of Algorithm 2 follows.
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By conditional probabilities,

P(l ∈ Tv) = P(l ∈ Tv ∧ l ∈ Tu) = P(l ∈ Tu)P(l ∈ Tv | l ∈ Tu).

Thus, µ(v) = µ(u)µr(v), which via line 1 of Algorithm 3 establishes correctness of Algorithm 3. We correctly set µ(r) = 1
in line 2 of Algorithm 4. Since µ(v) = µ(Tv) for any leaf v of T , we conclude the proof. �

6. Concluding remarks

We present several new insights into quadratic entropy of ultrametric evolutionary (but not necessarily binary) trees,
drawn from computational chemistry and graph theory. First, we propose a recursive decomposition of evolutionary trees
and derive a formula to express quadratic entropy of the whole tree as a function of quadratic entropies of the subtrees in
the decomposition (Proposition 1). Quadratic entropy for trees with such definedweights (e.g. abundances) can be used as a
community biodiversity index that incorporates evolutionary history and community structure [25]. We use Proposition 1
to design an efficient linear time algorithm (Algorithm 1) that computes the quadratic entropy of such trees and can handle
large communities (cf. [40]). Second, we observe that quadratic entropy of an evolutionary tree is a variant of weighted
Wiener index, a general graph invariant widely used in mathematical chemistry. This link may establish an exchange of
ideas between the areas, as demonstrated by the statements of Section 4, where we expose some theoretical properties
of quadratic entropy—Wiener index. This relationship can be utilized to provide a linear time algorithm for computing
quadratic entropy on arbitrary edge- and vertex-weighted tree (not necessarily ultrametric nor binary). Finally, maximizing
the quadratic entropy offers a novel pairwise originality metric [22,23] whose properties still remain relatively unexplored
(but see [26]). We derive a linear time algorithm for its maximization on ultrametric evolutionary trees (not necessarily
binary), Algorithm 4, that supersedes existing algorithms, and may help in exploration of this quantity. In this algorithm,
the fact that all leaves of a given subtree have the same distance to this vertex plays an essential role; would these distances
have been different, an equivalent of Proposition 1 would have to consider the structure of the two trees in the join, not just
their respective entropies. Similarly, the coefficient for updating the weights of the optimal solutions of the subtrees would
be different for each leaf. These observations imply that any algorithm formaximizing quadratic entropy on non-ultrametric
trees resulting from our approach would be significantly more complex than ours. In particular, it would not be linear, and
therefore we do not pursue this direction.
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