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a b s t r a c t

This paper presents the approximate analytical solution of a fractional Zakharov–Kuznetsov
equation with the help of the powerful variational iteration method. The fractional deriva-
tives are described in the Caputo sense. Several examples are given and the results are
compared to exact solutions. The results show that the variational iterationmethod is very
effective, convenient and simple to use.

© 2009 Published by Elsevier B.V.

1. Introduction

Fractional differential equations (FDEs) have been the focus of many studies due to their frequent appearance in various
applications in fluid mechanics, viscoelasticity, biology, physics and engineering. Hence, great attention has been given to
finding numerical/exact/approximate solutions of FDEs. Our concern in this paper is on approximate numerical methods for
FDEs.
Some of the recent analytical methods for FDEs include the Adomian decomposition method (ADM), the homotopy

perturbation method (HPM), the variational iteration method (VIM) and homotopy analysis method (HAM). The ADM was
applied to fractional diffusion equations in [1] and fractional modified KdV equations in [2]. Hosseinnia et al. [3] presented
an enhancedHPM for FDEs and Abdulaziz et al. [4] extended the application of HPM to systems of FDEs. In [5], Abdulaziz et al.
solved the fractional IVPs by the HPM. The HAMwas applied to fractional KDV–Burgers–Kuromoto equations [6], fractional
IVPs [7], time-fractional PDEs [8], linear and nonlinear FDEs [9], and systems of nonlinear FDEs [10].
The VIM was proposed in [11–17]. It is one of the methods which has received much attention. It is based on the

Lagrange multiplier and the correction functional. The VIM is a powerful tool to searching for approximate solution of
nonlinear problems without the requirement of linearization or perturbation. He [11] was the first to solve FDEs by VIM
with great success. Later, Draganescu [18] and Odibat andMomani [19] applied the VIM tomore complex FDEs, showing the
effectiveness and accuracy of themethod. Furthermore, Inc [20] applied VIM to solve the space- and time-fractional Burgers
equations. Song et al. [21] used VIM to obtain approximate solution of the fractional Sharma–Tasso–Olever equations. Yulita
et al. [22] used VIM to solve fractional heat- andwave-like equations. Recently, Das [23] found the exact solution of fractional
diffusion equations using VIM.
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This paper considers the fractional version of the Zakharov–Kuznetsov equations as studied in [24]. The fractional
Zakharov–Kuznetsov equations (shortly called FZK(p, q, r)) considered are of the form:

Dαt u+ a(u
p)x + b(uq)xxx + c(ur)yyx = 0, (1)

where u = u(x, y, t), α is a parameter describing the order of the fractional derivative (0 < α ≤ 1), a, b and c are arbitrary
constants and p, q, and r are integers and p, q, r 6= 0 governs the behavior of weakly nonlinear ion acoustic waves in a
plasma comprising cold ions and hot isothermal electrons in the presence of a uniform magnetic field [25,26].
The purpose of this paper is to obtain approximate solutions of the fractional Zakharov–Kuznetsov equations by VIM,

and to determine the accuracy of VIM in solving these kinds of problems.

2. Basic definitions

Fractional calculus unifies and generalizes the notions of integer-order differentiation and n-fold integration [27,28]. We
give some basic definitions and properties of fractional calculus theory which shall be used in this paper:

Definition 2.1. A real function f (x), x > 0, is said to be in the space Cµ, µ ∈ R if there exists a real number p(> µ), such
that f (x) = xpf1(x), where f1(x) ∈ C[0,∞), and it is said to be in the space Cmµ iff f

(m)
∈ Cm,m ∈ N.

The Riemann–Liouville fractional integral operator is defined as follows:

Definition 2.2. The Riemann–Liouville fractional integral operator of order α ≥ 0, of a function f ∈ Cµ, µ ≥ −1, is defined
as

Jα f (x) =
1

0(α)

∫ x

0
(x− t)α−1f (t) dt, α > 0, x > 0,

J0f (x) = f (x). (2)

In this paper only real and positive values of α will be considered.
Properties of the operator Jα can be found in [28] and wemention only the following: For f ∈ Cµ,µ ≥ −1, α, β ≥ 0, and

γ ≥ −1:
1. Jα Jβ f (x) = Jα+β f (x),
2. Jα Jβ f (x) = Jβ Jα f (x),
3. Jαxγ = 0(γ+1)

0(α+γ+1)x
α+γ .

The Reimann–Liouville derivative has certain disadvantages when trying to model real-world phenomena with FDEs.
Therefore, we shall introduce a modified fractional differential operator Dα

∗
proposed by Caputo in his work on the theory

of viscoelasticity [29]:

Definition 2.3. The fractional derivative of f (x) in Caputo sense is defined as

Dα
∗
f (x) = Jm−αDm

∗
f (x) =

1
0(m)

∫ x

0
(x− s)m−α−1f (m)(s) ds, form− 1 < α ≤ m,m ∈ N , x > 0, f ∈ Cm

−1. (3)

In addition, we also need the following property:

Lemma 2.4. If m− 1 < α ≤ m,m ∈ N and f ∈ Cmµ , µ ≥ −1, then

Dα
∗
Jα f (x) = f (x),

and,

JαDα
∗
f (x) = f (x)−

m−1∑
i=0

f (i)(0+)
xi

i!
, x > 0. (4)

The Caputo differential derivative is considered here because the initial and boundary conditions can be included in the
formulation of the problems [27]. The fractional derivative is taken in the Caputo sense as follows:

Definition 2.5. Form to be the smallest integer that exceeds α, the Caputo fractional derivative operator of order α > 0 is
defined as

Dαt u(x, y, t) =


1

0(m− α)

∫ t

0
(t − s)m−α−1

∂mu(x, y, s)
∂sm

ds, form− 1 < α ≤ m,

∂mu(x, y, t)
∂tm

, for α = m ∈ N.
(5)
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For more information on the mathematical properties of fractional derivatives and integrals, one can consult [27,28].

3. Variational iteration method

To illustrate the basic concepts of VIM [14], we consider the following general nonlinear functional equation:

Lu(x, y, t)+ Nu(x, y, t) = g(x, y, t), (6)

where L is a linear operator and N is a nonlinear operator, and g(x, y, t) is an inhomogeneous term.
VIM is based on the general Lagrange multiplier method [30]. The main feature of the method is that the solution of a

mathematical problem with linearization assumption is used as initial approximation or trial function. Then a more highly
precise approximation at some special point can be obtained. According to VIM, we can construct a correction functional for
Eq. (6) as follows:

uk+1(x, y, t) = uk(x, y, t)+
∫ t

0
λ(ξ) [Luk(x, y, s)+ Nũk(x, y, s)− g(x, y, s)] ds, (7)

where λ, a general Lagrange multiplier, can be identified optimally via the variational theory. The subscript k indicates the
kth approximation and ũk is considered as a restricted variations [11,12], i.e. δ̃uk = 0.

4. Illustrative examples

In this section, the applicability of VIM shall be demonstrated by two test examples.

4.1. Example 1

First, we consider the time-fractional FZK(2, 2, 2) in the form:

Dαt u+ (u
2)x +

1
8
(u2)xxx +

1
8
(u2)xyy = 0, (8)

where 0 < α ≤ 1 is a parameter describing the order of the fractional time derivative. The exact solution to Eq. (8) when
α = 1 and subject to the initial condition

u(x, y, 0) =
4
3
ρ sinh2(x+ y), (9)

where ρ is an arbitrary constant, was derived in [31] and is given as:

u(x, y, t) =
4
3
ρ sinh2(x+ y− ρt). (10)

To apply VIM to (8), we construct the correction functional as follows:

uk+1 = uk +
∫ t

0
λ(s)

[
∂αuk
∂sα
+

(
∂ ũ2k
∂x

)
+
1
8

(
∂3ũ2k
∂x3

)
+
1
8

(
∂3ũ2k
∂y2∂x

)]
ds. (11)

For α = 1, we have

δuk+1 = δuk + δ
∫ t

0
λ(s)

(
∂uk
∂s

)
ds. (12)

Thus, we obtain the following stationary conditions:

1+ λ(t)|s=t = 0,
λ′(s) = 0.

The general Lagrange multiplier can be identified as:

λ(s) = −1. (13)

Substituting (13) into the correction functional (11), we obtain the following iteration formula:

uk+1 = uk −
∫ t

0

[
∂αuk
∂sα
+

(
∂u2k
∂x

)
+
1
8

(
∂3u2k
∂x3

)
+
1
8

(
∂3u2k
∂y2∂x

)]
ds. (14)
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Table 1
Solutions using the 3-iteration of VIM for different values of α when ρ = 0.001 and y = 0.9.

VIM

x y t α = 0.67 α = 0.75 α = 1 Exact (α = 1)

0.1 0.1 0.2 5.318536379E−5 5.327473579E−5 5.355355975E−5 5.393877159E−5
0.3 5.286311739E−5 5.297566848E−5 5.330816448E−5 5.388407669E−5
0.4 5.257767969E−5 5.270397800E−5 5.306406852E−5 5.382941057E−5

0.6 0.6 0.2 2.954927772E−3 2.963560066E−3 2.989873669E−3 3.036507411E−3
0.3 2.926620960E−3 2.937172119E−3 2.967173317E−3 3.035778955E−3
0.4 2.903065355E−3 2.914474969E−3 2.945226366E−3 3.035050641E−3

0.9 0.9 0.2 1.068216255E−2 1.077158824E−2 1.102484681E−2 1.153697757E−2
0.3 1.044865933E−2 1.054878201E−2 1.079635470E−2 1.153454074E−2
0.4 1.027770138E−2 1.037358328E−2 1.057416210E−2 1.153210438E−2

Fig. 1. Solutions using the 3-iteration of VIM for different values of α when y = 0.9 and ρ = 0.001: (a) exact (α = 1), (b) α = 1, (c) α = 0.75 and (d)
α = 0.67.

The iteration starts with an initial approximation as given in (9). The iteration formula (14) now yields

u1(x, y, t) =
4
3
ρ sinh2w −

(4ρ)2

9
sinhw coshw

[
14 sinh2w +

2
3
cosh2w

]
t, (15)

u2(x, y, t) =
4ρ
3
sinh2w −

(4ρ)2

9
sinhw coshw[40 cosh2w − 28]t

−
(4ρ)3

27
[79− 968 cosh2w + 2080 cosh4w − 1200 cosh6w]t2

−
(4ρ)4

81
sinhw coshw

[
−
5320
3
+ 14640 cosh2w − 30400 cosh4w −

54400
3

cosh6w
]
t3

−
(4ρ)2

9
coshw sinhw[14− 135 cosh2w]

t2−α

0(3− α)
, (16)

and so on, wherew = x+ y. The remaining components of uk(x, y, t) can be completely determined such that each term is
determined by using (14). Table 1 shows the approximate solutions of Eq. (8) for different values of α: α = 0.67, α = 0.75
and α = 1.0 using only three iterations of the VIM solution (see also Fig. 1).

4.2. Example 2

Now, we consider FZK(3,3,3) in the form:

Dαt u+ (u
3)x + 2(u3)xxx + 2(u3)xyy = 0, (17)

where 0 < α ≤ 1.
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Fig. 2. Solutions using the 3-iteration of VIM for different values of α when y = 0.9 and ρ = 0.001: (a) exact (α = 1), (b) α = 1, (c) α = 0.75 and
(d) α = 0.67.

Table 2
Solutions using the 3-iteration of VIM for different values of α when ρ = 0.001 and y = 0.9.

VIM

x y t α = 0.67 α = 0.75 α = 1 Exact (α = 1)

0.1 0.1 0.2 5.000912783E−5 5.000914105E−5 5.000914112E−5 4.995923204E−5
0.3 5.000907777E−5 5.000909430E−5 5.000915456E−5 4.993421817E−5
0.4 5.000903250E−5 5.000905153E−5 5.000910586E−5 4.990920434E−5

0.6 0.6 0.2 3.020038194E−4 3.020038425E−4 3.020039162E−4 3.019530008E−4
0.3 3.020037516E−4 3.020037779E−4 3.020038551E−4 3.019274992E−4
0.4 3.020036895E−4 3.020037195E−4 3.020037937E−4 3.019019978E−4

0.9 0.9 0.2 4.567801885E−4 4.567802187E−4 4.567802934E−4 4.567281735E−4
0.3 4.567800915E−4 4.567801293E−4 4.567802556E−4 4.567020404E−4
0.4 4.567800089E−4 4.567800482E−4 4.567801785E−4 4.566759074E−4

The exact solution to Eq. (17) when α = 1 and subject to the initial condition

u(x, y, 0) =
3
2
ρ sinh

[
1
6
(x+ y)

]
(18)

where ρ is an arbitrary constant, was derived in [31] and is given by

u(x, y, t) =
3
2
ρ sinh

[
1
6
(x+ y− ρt)

]
. (19)

To apply VIM, we construct the following correction functional for Eq. (17):

uk+1 = uk +
∫ t

0
λ(s)

[
∂αuk
∂sα
+

(
∂ ũ3k
∂x

)
+ 2

(
∂3ũ3k
∂x3

)
+ 2

(
∂3ũ3k
∂y2∂x

)]
ds. (20)

The general Lagrange multiplier for this example is exactly the same as in (13). Hence we obtain the following iteration
formula:

uk+1 = uk −
∫ t

0

[
∂αuk
∂sα
+

(
∂u3k
∂x

)
+ 2

(
∂3u3k
∂x3

)
+

(
∂3u3k
∂y2∂x

)]
ds. (21)

Using (18) as an initial condition yields the following:

u1(x, y, t) = 3
(ρ
2

)
sinhw − 3

(ρ
2

)3
coshw[−8+ 4 cosh2w]t, (22)
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u2(x, y, t) = 3
(ρ
2

)
sinhw + 3

(ρ
2

)3
coshw[16− 18 cosh2w]t + 3

(ρ
2

)5
sinhw[182− 1458 cosh2w

+ 1530 cosh4w]t2 + 3
(ρ
2

)7
coshw

[
2944
3
− 6324 cosh2w + 10803 cosh4w − 5481 cosh6w

]
t3

+ 3
(ρ
2

)9
sinhw

[
128− 5472 cosh2w + 29250 cosh4w − 48195 cosh6w +

98415
4

cosh8w
]
t4

+ 3
(ρ
2

)3
coshw[9 cosh2w − 8]

t2−α

0(3− α)
, (23)

and so on, wherew = 1
6 (x+ y).

Table 2 and Fig. 2 show the solutions obtained using the 3-iterates of VIM for different values of α when ρ = 0.001 and
y = 0.9.

5. Conclusion

In this paper, we presented the application of VIM to fractional Zakharov–Kuznetsov equations. The VIM gives series
solutions of the equation. Numerical experiments show that a few iterations of the VIM recursive formula can yield good
solutions.
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