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Abstract 

We consider implicit integration methods for the numerical solution of stiff initial-value problems. In applying such 
methods, the implicit relations are usually solved by Newton iteration. However, it often happens that in subintervals of 
the integration interval the problem is nonstiff or mildly stiff with respect to the stepsize. In these nonstiff subintervals, we 
do not need the (expensive) Newton iteration process. This motivated us to look for an iteration process that converges in 
mildly stiff situations and is less costly than Newton iteration. The process we have in mind uses modified Newton iteration 
as the outer iteration process and a linear solver for solving the linear Newton systems as an inner iteration process. This 
linear solver is based on an approximate factorization of the Newton system matrix by splitting this matrix into its lower 
and upper triangular part. The purpose of this paper is to combine fixed point iteration, approximate factorization iteration 
and Newton iteration into one iteration process for use in initial-value problems where the degree of stiffness is changing 
during the integration. (~) 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

We consider implicit integration methods for the numerical solution of stiff initial-value problems 
(IVPs) for the ordinary differential equation (ODE) 

~Yt = f ( y ) ,  y,  f E t ~> to. (1.1) 
~d, 

The conventional  way  o f  solving the implicit  relations is the modified Newton  ( M N )  iteration process. 
M N  iteration possesses a relatively large convergence region, that is, i f  h is the stepsize used, then the 

quantity [Ihdf/~yll is al lowed to be o f  large magnitude.  However ,  it often happens that in subintervals 
o f  the integration interval the prob lem is nonstiff or mildly stiff with respect to h, implying that 
Ilht3f/~y[I is o f  moderate  size. In these nonstiff  subintervals, we do not need the (expensive)  M N  
iteration process with its large convergence region and we would like to use a less costly method in 
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steps where IIhOf/Oyll is of  modest size. For example, one may use an explicit method or one may 
apply an iteration method which is less costly than MN iteration. In this paper, we focus on using less 
costly iteration processes. One such iteration procedure is fixed point (FP) iteration. Unfortunately, 
the convergence of FP iteration is not satisfactory unless IIhc~f/Oy][ is quite small. This motivated us 
to look for an iteration process that converges much faster than FP iteration in nonstiff situations, and 
is cheaper than MN iteration. The process we have in mind uses MN iteration as the outer iteration 
process and a linear solver for solving the linear Newton systems as an inner iteration process. This 
linear solver is based on an approximate factorization of  the Newton system matrix by splitting it 
into two (or more) "convenient" matrices. The inner-outer iteration process will be referred to as 
approximate factorization (AF) iteration. The technique of approximate factorization is well known 
in the design of  suitable discretizations of partial differential equations (PDEs) [4], but this can also 
be used for the design of suitable iteration processes. In the PDE case, the particular splitting of 
the Newton matrix is crucial for the rate of convergence in AF iteration. In [1, 5] we analysed 
and applied AF iteration to time-dependent PDEs and used splittings that correspond to the spatial 
dimensions of the PDE. In this paper, we do not restrict (1.1) to PDEs and use a generally applicable 
splitting which splits the Newton matrix in its lower and upper triangular part. Then, in one-inner- 
iteration mode, each AF iteration requires one right-hand side evaluation f and one d-dimensional 
forward/backward substitution. Hence, when compared with an MN iteration process using a direct 
linear solver for the linear Newton systems, we see that the AF iterations are equally expensive as 
the MN iterations, but AF iteration does not require the O(d 3) factorization costs associated with 
MN iteration. Surprisingly, this extremely simple lower-upper triangular splitting is quite effective 
in actual applications. 

The purpose of this paper is to combine FP, AF and MN iterations into one iteration process for 
use in IVPs where the degree of stiffness is changing in the integration interval. 

2. Approximate factorization iteration 

We consider implicit IVP solvers in which the implicit relations to be solved are of the form 

R ( y ) = 0 ,  R ( y ) : = y -  6 h f ( y ) -  v, (2.1) 

where h is the stepsize of the numerical method, ~ is a positive parameter, y represents a numerical 
approximation to the solution of ( 1.1 ), and v is a given vector E Ed. In nonstiff parts of the integration 
interval, a possible way of solving (2.1) is FP iteration 

y~j) = y ( j - l )  _ R(y</-~)), j = 1 ,2 , . . . ,m,  (2.2) 

where y(0) is to be provided by a predictor formula. However, this process only converges rapidly 
if 6h[IOf/Oyl[ is sufficiently small. We want to accelerate the rate of convergence. Our starting point 
is the MN iteration process 

(I - 6hJ)(y  ~j) _ y ~ j - i ) ) =  _R(yC/-1)), j =  1 ,2 , . . . ,m,  (2.3) 

where J is an approximation to the Jacobian matrix ~f/~y. Each iteration in (2.3) requires the 
solution of a d-dimensional linear system for the Newton correction y~J) -  ylJ-~). We shall employ 



P.J. van der Houwen, B.P. Sommeijer/Journal of  Computational and Applied Mathematics 100 (1998) 11~1 13 

special iterative linear solvers which converge much faster than FP iteration. Let J be split into a 
lower triangular matrix L and an upper triangular matrix U; and consider the iteration method 

H ( y  ~/''') - y¢/'"-~)) = ( I  - 6 h J ) ( y  <;-l) - y~/'"-~)) - R ( y  ~/ ~)), 

y<j,O)=y</-J), y<j)=yl / , , ) ,  H : = ( I -  6 h L ) ( I -  6 h U ) ,  J = L  + U, 
(2.4) 

where v = 1,2, . . . ,  r and j = 1 . . . .  , m represent the inner and outer iteration indices, respectively. The 
matrix H is called an approximate factorization of the MN iteration matrix I -  6 h J  and process (2.4) 
will be referred to as AF iteration. Each inner iteration in (2.4) requires the solution of two linear 
systems with triangular system matrices (that is, a forward/backward substitution), and, except for 
the very first inner iteration, a matrix-vector multiplication. 

2.1. R a t e  o f  convergence 

In order to get insight into the convergence of  the process (2.4), we first look at the convergence 
of  the MN method (2.3). From (2.1) and (2.3) it follows that 

yl / )  _ y = 6h( I  - 6 h J ) - I g ( y  Ij-l~ - y ) ,  g ( e )  : = f ( y  + e) - f ( y )  - Je .  (2.5) 

If the function g possesses a Lipschitz constant C ( h )  in the neighbourhood of  the origin (with respect 
to the norm ]I'll), then we have the estimate 

]]Y~J) - yll 6hC(h)[]( I  - •hJ) -111 [ ] y ( J - ' )  - yl]. (2.6) 

If we assume that the logarithmic norm of  d with respect to the Euclidean norm 1].112 is nonpositive, 
i.e. #2[J] ~< 0, then the value of  ]1(I - ~hJ) -1112 can be estimated by means of the Von Neumann 
theorem (cf. e.g. [3, p. 179]). This yields ]1(I-  6hJ)-~l[2 <<, m a x { ] l - z ] - J :  Re(z)~< 0 } =  1, so that 
we have the estimate 

]IY Cs) - Y]]2 ~< 6hC(h) l lY  ¢j-~) - Y]I2. (2.7) 

The value of  C ( h )  is determined by [ I J  - Jl[2, where the entry a~j of  the matrix J equals Of./Oyj at 
some point on the line segment Oy ~./-~) + (1 - O)y, 0 <~ 0 <~ 1. Hence, if J is a sufficiently close 
approximation to the Jacobian Of/Oy evaluated at y, then C(h )  is quite small. 

Next, we consider the rate of  convergence of the AF process (2.4). The inner iteration error 
y~J.") - y~/) satisfies the recursion 

y~ J.,.) _ yl  i) = M ( y l / .  ~.- ~) _ y~J)), 

M : = I  - I I - l ( l  - 6 h J ) =  62h2(I - 6 h U ) - l ( I  - f i hL) - ILU.  (2.8) 

From this recursion and again using the Von Neumann theorem, we immediately have the conver- 
gence result: 

Theorem 2.1. L e t  ~2[-] denote  the logari thmic  norm with respect  to the Eucl idean norm 11"1]2 and  
/et 6>0 ,  #2[L] ~< 0, #2[U] ~< 0. Then,  a sufficient condi t ion f o r  convergence o f  the inner i teration 
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process (2.4) is 

1 
h < 6 ~ "  (2.9) 

For the overall convergence of the inner-outer iteration processes (2.4) we also need the recur- 
sion (2.5). From (2.5) and (2.8) we obtain 

y~J'") - y = M ( y  (j''-l) - y(J)) + 6h(I  - 6 h J ) - ~ g ( y  (j-~) - y) .  (2.10) 

After r inner iterations, recursion (2.10) yields 

y(~,r) _ y =mr(yC/-~,r)  _ y )  + 6h(I  - M~)( I  - 6hJ)-~ g ( y  Cj-l'r) - y ) ,  (2.11 ) 

where we have set y~j,0)=y(j-l,r). As in (2.7), we assume that P2[J] ~< 0 yielding the estimate 

Ily (j'r) -y l [2  ~< g(r ,h )[ lY  (j- ' 'r) -Yll2, K ( r , h ) : =  Ilm~ll2 + 6hC(h)l l l  - mrll2. (2.12) 

Since M = (6h)2LU(1 + O(h)), we see that the amplification factor is approximately given by 

KAy(r, h) "~ (6h)2rl[(ZU)~[12 + 6hC(h) .  (2.13) 

Here, 6zrh2"ll(LU)~l[2 represents the (accumulated) inner amplification factor and ghC(h)  the MN 
amplification factor. Expression (2.13) indicates that there is no point in choosing r too large, because 
KAy(r, h)  is always bounded below by the Newton amplification factor. 

2.2. Comparison with F P  iteration 

Let us compare the AF amplification factor K ( r , h )  with the amplification factor associated with 
the FP iteration process. By observing that FP iteration (2.2) is obtained from MN iteration (2.3) 
by setting J = 0, we see that (2.7) implies the estimate 

[lY ~j) - y[12 ~< KFe(h)IIy ~j-~) - yl[2, KFp(h):= fihCvp, (2.14) 

where CFp is a Lipschitz constant for f in the neighbourhood of the numerical solution. This constant 
can be approximated by IIJ[l= = ilL + fl12, provided that J is a sufficiently close approximation to 
the Jacobian o f f  at the point y. Then, it follows from (2.13) and (2.14) that AF iteration converges 
faster than FP iteration by a factor 

gFp(h) IlL + ULI2 
~(r,h ) . -  KAv(r,h ) "~ (6h) 2r-' II(LU)~I[2 + C(h )" (2.15) 

Assuming that c¢(r,h) is at least as large as ~(1,h), we find that 

IlL + UII: 
~(r ,h)  >t c¢(1,h) >~ 2 max{fh[lLUll2,  C(h)}" (2.16) 

In cases where the AF contribution in the amplification factor KAF(1,h) dominates the Newton 
contribution, that is, if 6hIILUII2 >1 C(h), we may expect that even in one-inner-iteration mode, AF 
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iteration is faster than FP iteration for stepsizes less than IlL ÷ U[I2(2~IILU[12) -~. Note that the 
one-inner-iteration mode of  AF iteration reduces to the simple scheme 

11(yCi) _y~j - I ) )=_R(yCy- I ) ) ,  11:=(I - -  6 h L ) ( I -  6hU), J = L  + U, j =  1 ... .  ,m. (2.4') 

Finally, we consider the interval of  "fast" convergence of FP and AF iteration defined by the 
interval of  h-values where the amplification factor is less than or equal to a small number q (say 
q ~< 0.1). From (2.14) and (2.12) it follows that these intervals are, respectively, determined by 
[0,H(q)] with 

q (q)l/2 
/-/vp(q)- fillL + Ul}2, HAz(q)= fiz}l/~Uiiz , (2•17) 

where we assumed that CFp ~ [I L + U[[2 and where we ignored the contribution of the MN itera- 
tion to the amplification factor KAV(1,h) of  AF iteration. Thus, if ~ <  [[L+ U[[2, then the 
corresponding interval of  AF convergent h-values is larger than the corresponding interval of  FP 
convergent h-values. For example, in problem (3.3a) of  Kaps [6], we have ~ ~  ¼[[L + uII2, 
so that the convergence interval of  AF iteration is a factor 4/x/~ larger than that of FP iteration• 

3. Numerical illustration 

Consider the 4th-order Runge-Kutta method of  Butcher (cf. [2, p. 205]) based on Lobatto quadra- 
ture: 

Y.+,/2 =Y. + lh( f ( t . .Y . )  ÷ f(tn+l/2.Yn+l/2)). 

y*+, = y, + hf(t,+I/z,y,,+l/2), 

y,,+, =y,  + ~h(f( t . ,y . )  + 4f(t,+l/2,y,+,/2) + f(t,+,,y*+,)). 

(3.1a) 

(3.1b) 

(3.1c) 

This method has one implicit stage Yn+l/2 which has to satisfy an equation of  the form (2.1). Let 
us solve this equation by means of FP iteration (2.2) and by the one-inner-iteration mode of  AF 
iteration (2.4'). In both cases, we used the last step value predictor -c0) Yn+t/2 =Y, and we updated the 
Jacobian in each step. Furthermore, we implemented the Butcher-Lobatto method (3.1) such that 
y*+~ and Y,+l are, respectively, approximated by (el. [8]) 

y• , (m) 
+l "~ u.+l :=Y. + 4(Y,~+m -Y~)  - hf(t.,y~), (3.2b) 

• 1 2 * Y,+l ..~un+l .= 5Y~ + 3u~+l + ~h(f(t~,yn) + f(t~+l, * 1). (3.2c) 

We observe that for autonomous problems, the last step value predictor implies that the first iteration 
does not require a new right-hand side evaluation, so that each integration step requires m + 1 right- 
hand side evaluations in the case of  FP iteration and m + 1 right-hand side evaluations and m 
forward/backward substitutions in the case of  AF iteration. In the case of  nonautonomous problems, 
we have the same costs if in each step, the first residue is evaluated at the point (t,,y,). 
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. (m) O(hOm+l The iteration error Y,+l/2 - Y,+~/2 = ), where 0 = 1 and 0 = 2 in the FP and AF iteration 
case, respectively. Hence, 

* Yn*+l Af  - (m) Un+l - -  = ~t, Y n + l / 2  - - Y n )  -- hf(t , ,y,)  - h f ( t n + l / 2 , Y n + v 2 )  

A t  - (m) O ( h 0 m + l  
= l k Y n + l / 2  - -  Yn+l/2) = ). 

It is now easily verified that u,+~ =Yn+~ + O(h °m+~ ), so that the global error becomes O(h °m + h4). 
Thus, two AF iterations already yield a 4th-order scheme. 

3. I. Comparison of  FP, AF  and M N  iteration 

We used a test problem of Kaps [6] 

d y e _  
dt 12y~ + lOy~, @2 - -  dt = Y l  - -  Y2(1 + Y2), Yl(0) = y2(0) = 1, 0 ~< t ~< 5, (3.3a) 

and three test problems from the books of Hairer-Norsett-Warmer: 

JACB[2, p. 236], 0 ~< t ~< 20, (3.3b) 

TWOB[2, p. 236], 0 ~< t <~ 20, (3.3c) 

HIRES[3, p. 157], 0 ~< t ~< 1. (3.3d) 

In all examples, we used for the AF mode a lower-upper triangular splitting J---(~j)  = L +  U, where 
the diagonal entries of L and U equal ~J/i. 

In order to clearly see the algorithmic effects, we used a fixed stepsize strategy. Table 1 lists in 
a logarithmic scale the relative end point errors, that is, the numbers of correct significant digits 
(csd) at the end point (negative values are indicated by - ) .  These figures show that in most cases 
AF iteration has more or less converged within two iterations, whereas FP iteration requires at least 
four iterations. Furthermore, in these examples, AF iteration performs as robustly as MN iteration 
and converges only slightly less fast. 

3.2. Combination of  FP, AF  and M N  iteration 

Suppose that we use FP, AF and MN iteration, respectively, in the nonstiff, mildly stiff and 
stiff parts of  the integration interval. Then, we avoid unnecessary evaluations of  the Jacobian, 
forward/backward substitutions and LU decompositions. Again, we used a fixed stepsize strategy, 
applied AF iteration in one-inner-iteration mode, and we chose the following simple switching strat- 

If 6hl[J[l~ < a then FP iteration, 
If a <~ bhllJll~ < b then AF iteration, 
If b ~< 6hllJIl~ then MN iteration. 

egy: 

(3.4a) 

Here a and b are constants depending on the integration method used. Furthermore, in the very first 
step we used MN iteration, and if in FP mode more than 4 iterations were needed, then we switched 



P.J. van der Houwen, B.P. Sommeijer/Journal of Computational and Applied Mathematics 100 (1998) 11-21 

Table  1 
Relat ive  prec i s ion  at the end point  produced  b y  the Butcher -Lobat to  method  {(3.1a), (3.2b), (3.2c)} 

17 

1 h =  ± h _ l  Prblm m h = ¼ h = g 16 - -  3~ 

FP AF MN FP AF MN FP AF MN FP AF MN 

(3.3a) 1 
2 
3 
4 
. o .  

O O  

(3.3b) 1 
2 
3 
4 

( X )  

(3.3c) 1 
2 
3 
4 

O ( 3  

(3.3d) 1 
2 
3 
4 

O 0  

- -  1.3 2.3 0.2 2.1 2.7 0.6 2.7 3.3 0.9 3.3 
1.1 2.5 2.7 1.7 3.6 4.0 2.3 4.8 5.2 2.9 6.0 
1.9 2.8 2.7 4.0 3.6 5.3 4.5 6.5 
2.2 3.2 4.5 5.7 

2.7 4.0 5.2 6.5 

- -  1.8 1.3 0.3 2.8 1.9 0.6  3 .0  2.5 0.9 3.5 
0.8 3.3 3.5 1.5 4.6 4.7 2.1 5.9 5.9 2.7 7.1 
2.0 3.5 2.9 3.8 4.7 
3.8 4.9 6.0 7.2 

3.5 4.7 6.0 

J 

M 

m 

m 

0.1 

7.2 

- -  0 .9  0.5 - -  2.1 1.9 - -  3.4 
- -  0 .6  0 .6  0 .7  2.0 2 .0  1.7 3.3 
0.5 1.9 3.2 3.3 

0.6 2.0 3.3 

1.0 1.4 2.7 1.4 1.9 3.3 1.7 2.4 
- -  1.8 1.8 2.9 4.1 3.9 3.3 4.6 
0.6 3.2 3.9 3.7 5.2 
- -  3.2 4.1 

1.9 3.9 5.2 

3.9 
6.5 

3.1 
7.1 

3.7 
3.3 
3.3 

3.5 
5.3 

to AF mode in the next step. In all iteration modes, the iteration process was stopped if  

[[R(Y(J))[Y (j) + 1 0 - 6 e ]  - l  < hp+ , (3.4b) 

where p is the order of  the integration method, e is a vector with unit entries, and where the vector 
operations are meant to be componentwise. 

We applied the Butcher-Lobatto method {(3.1a), (3.2b), (3.2c)} and we set a =  ½, b = 3  and 
p = 4  in the strategy formulas (3.4). In Tables 2(a)-2(d) ,  we listed for the four problems (3.3) the 
correct number of  significant digits obtained at the end point (csd), the averaged number of  right- 
hand sides per step (rhs), the averaged number of  Jacobians per step (jac), the averaged number 
of  forward/backward substitutions per step (fbs), and the averaged number of  LU decompositions 
per step (lud), respectively. A comparison with Table 1 reveals that in most cases the implicit stage 
equation (3. la) in the Butcher-Lobatto equation is more or less solved and that the averaged number 
of  iterations per step given by m = rhs - 1 is at most about 6 and usually about 4 or 5. Furthermore, 
lud is always small, so that the iteration process is mostly in FP or AF mode, as should be expected 
when integrating nonstiff or mildly stiff problems. 
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Table 2(a) 
Results for problem (3.3a) 

Table 2(b) 
Results for problem (3.3b) 

h csd rhs jac fbs lud h csd rhs jac fbs lud 

1/4 2.7 4.95 1.00 3.95 0.05 1/4 2.8 4.25 0.02 0.05 0.01 
1/8 4.0 6.27 0.67 2.67 0.02 1/8 4.3 4.73 0.01 0.01 0.01 
1/16 5.2 6.45 0.51 2.04 0.01 1/16 6.2 4.93 0.01 0.02 0.00 
1/32 6.5 6.04 0.50 1.99 0.01 1/32 7.3 4.99 0.01 0.02 0.00 

Table 2(c) 
Results for problem (3.3c) 

Table 2(d) 
Results for problem (3.3d) 

h csd rhs jac fbs lud h csd rhs jac fbs lud 

1/4 . . . . .  1/4 . . . . .  
1/8 0.5 5.01 0.22 0.74 0.01 1/8 1.9 6.37 0.75 3.37 0.12 
1/16 2.0 5.09 0.21 0.66 0.00 1/16 3.9 6.69 0.62 2.75 0.06 
1/32 3.3 5.09 0.22 0.69 0.00 1/32 5.3 6.97 0.50 2.06 0.03 

3.3. Usin9 the various modes in an automatic code 

Next, we show the effect of  the various modes when implemented in an automatic ODE solver. 
For that purpose we selected the code PSODE as our starting point. The main features of this code 
are described below and for further details we refer to [9]. The code itself is available from the 
second author of this paper. 

3.3.1. The code PSODE 
PSODE is based on the L-stable, four-stage Radau IIA method of  order seven and is aimed to 

solve initial value problems for stiff ODEs. The implicit relation to be solved in each step is of the 
form 

Y. = e ®  y. + h.(A ® I)F(tne + h.c, Y.), (3.5) 

where Yn is the so-called stage vector containing the four approximations Y.,i, i =  1 , . . . , 4  to the 
solution vector y(t) in the points t. + cih., defined by the abscissae vector c--(ci) .  Furthermore, 
F(t.e + hnc, Y.)= ( f ( t .  + clh., Y.,l )T, . . . ,  f ( t .  + cahn, Yn,4)T) y contains the corresponding derivative 
vectors. A is the parameter matrix of the Radau method and h. is the current stepsize t.+~ - t . .  
The symbol ® denotes the Kronecker product and the vector e = ( 1 ,  1, 1, 1) T. Since the Radau IIA 
method is stiffly accurate (c4 = 1), the new approximation y.+~ equals Y~,4. 

To solve (3.5) for the stage vector Y. leads to a huge linear algebra problem, since this system is 
of  dimension 4d. To reduce the computational work involved to an acceptable level, PSODE uses 
the following iteration process [9] 

Y~/)-h~(D®I)F(t ,e+hnc,  Y~ / ) )=e®yn+h , ( (A-D)®I )F( t~e+h ,c ,Y~-~) ) ,  (3.6) 

where the iterates Y,~J) (hopefully) converge to II, for j = 1 , 2 , . . . .  Here, the matrix D has been 
chosen to be of diagonal form which has the advantage that each of  the four components ¥~J) of  - n , i  

y u) can be solved from a d-dimensional system, which is of form (2.1). Moreover, if PSODE 
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y(J) runs on a parallel machine with (at least) four processors, then the components vectors -~,i can 
be solved concurrently. This was exactly the motivation in [9] to construct methods of this type. 
A convergence analysis showed that (for the Radau IIA method) the choice D ~ diag(0.3205, 0.0891, 
0.1817, 0.2334) leads to an optimal damping of the stiff components in the iteration error. 

In PSODE, the iterate Y~(J) is solved from the nonlinear relation (3.6) by applying just one 
modified Newton iteration, using y( j - l )  as its initial guess. It is straightforwardly verified that the 
resulting expression for each of  the components of Y~(J) is of  the form (2.3) with 6 replaced by the 
corresponding element of  the matrix D. 

The code PSODE is equipped with a number of control mechanisms to perform an automatic 
integration of  stiff ODEs. We shall briefly describe the most important ones. 

First, the local truncation error is controlled by calculating a reference solution. This reference 
solution Yref is a linear combination of y,, h,,f(t,,y~), and the four final (say, the ruth) iterates 
Y("~ where the weights are such that we obtain fourth-order accuracy (see [9] for more details). ? / , l  , 

Following an idea of  Shampine, an estimate for the local tnmcation error is now defined by (I - 
d4hnc3f/OY)-l(Yref-Y~+l ), where d4 is the fourth entry in the diagonal matrix D. The premultiplication 
by the matrix (I - d4hnc~f/c~y) -l is meant to obtain a bounded estimate for the linear test problem 
y ' = 2 y  in case h,2---~ oe (see also [3, p. 134]). 

Then the usual formula hn+l = faCsafe(TOL/[llocal error[l)l/Sh, is applied to predict a new stepsize. 
The safety factor faCsafe has been set to 0,9 in PSODE and the stepsize ratio h,+l/h, is restricted to 
the interval [0.1, 4]. Finally, some additional strategies have been implemented to further fine-tune 
the stepsize selection. 

With respect to the control of  the convergence behaviour of  the iteration process (3.6) a sophis- 
ticated strategy is needed. The convergence control used in PSODE is quite similar to the one used 
in the code RADAU5 (cf. [3, p. 130]). Skipping the details we mention that the iteration is inter- 
rupted in case of  a too slow convergence (which includes divergence). With a "fresh" Jacobian and 
a halved stepsize the iteration is retried. The process is considered to be converged as soon as the 
(scaled, Eucledean) norm of  the update of  the last iterate is less than 0.1 • TOL. We conclude this 
brief description of  PSODE by mentioning that the prediction y~0) to start the iteration is obtained 
by extrapolating the collocation polynomial calculated in the preceding step. 

To get an impression of  the usefulness of the AF and FP modes in the context of  a stiff ODE 
solver, we extended PSODE with a strategy to automatically switch between the various modes. We 
emphasize that in the "original" PSODE only the MN mode has been used. As a switching criterion 
we use the simple test (3.4a) as described in the previous section (with 6--- max di-~ 0.3205, a = ! 2 
and b = 3). This test is activated in all cases where either the stepsize or the Jacobian has been 
changed. 

The FP-AF-MN version of  PSODE was applied to the nonstiff or mildly stiff test problems (3.3). 
We nicely observed that the MN mode has never been selected (in fact, almost all steps were 
performed in FP mode). 

3.3.2. The H I R E S  problem 
Next, we perform a more severe test with the code by applying it to the HIRES problem (3.3d) 

including the non-transient interval, viz. we choose 0 ~< t ~< 321.8122, as in [3]. Results for the 
original PSODE as well as for the extended version are given in Table 3. Analogously to the tables 
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Table 3 
Results for the HIRES problem on [0, 321.8122] 

PSODE in MN mode PSODE in FP-AF-MN mode 

TOL N csd rhs jac fbs lud N csd rhs jac tbs lud 

10 -2 36 3.2 6.94 0.42 5.94 1.00 36 2.7 6.92 0.42 5.11 0.61 
10 -3 51 4.3 6.86 0.41 5.86 1.00 56 4.0 7.00 0.41 5.16 0.66 
10 4 63 4.8 6.83 0.35 5.83 0.98 70 4.7 7.04 0.36 4.86 0.61 

in Section 3.2, the listed number of operations (like rhs, jac, fbs, and lud) have been scaled by the 
number of (successful) steps, which is denoted by N in Table 3. It should be remarked that the 
values of  rhs, fbs and lud listed in Table 3 take into account the fact that the four implicit subsystems 
in (3.6) can be solved in parallel, that is, each four right-hand sides, each four forward/backward 
substitutions and each four L U  decompositions can be counted for one. 

As we see from this table, approximately 40% of the steps could be iterated with the AF or FP 
mode, saving a lot of the expensive LU-factorizations. Moreover, the numbers of right-hand side and 
Jacobian evaluations remain more or less constant and the number of forward/backward substitutions 
is reduced. 

3.3.3. A combustion problem 
Our second example is a problem from combustion theory and is a two-dimensional version of a 

similar test problem used in [7]. It is described by the PDEs 

~T 02T O2T 
~c ~2 c 02c - Dce -~/r, L - - -  + + ~Dce -'~/r, t >0,  (3.7) 
Ot - Ox ~ + @----S~ Ot OX 2 ~y2 

defined on the unit square 0 < x, y < 1. The initial conditions are given by c = T = 1, on the whole 
unit square. At x = y = 0, we impose homogeneous Neumann conditions, and at x = y = 1 Dirichlet 
conditions are prescribed (c = T = 1 ). 

The variables c and T denote the concentration and temperature of a chemical during a reaction. 
At the origin, a so-called "hot-spot" is developed for the temperature. Initially, the temperature 
slowly increases but suddenly, at the ignition point, it explodes to about 1 + ~, and initiates a 
reaction front which propagates towards the boundaries x = y = 1, where a boundary layer is formed. 
Finally, the temperature distribution reaches a steady state. The problem parameters are given by 
L=0 .9 ,  ~ =  1, 3 = 2 0 ,  and D = R e ~ / ( ~ ) ,  with R = 5 .  The integration interval is 0 < t < 0 . 3 ,  which 
is sufficiently long to reach the steady state. 

The equations in (3.7) are discretized on a uniform spatial grid with mesh size A using second- 
order, symmetric differences. Defining A = 1/(N + 0.5), with N as the number of  grid points in both 
directions, and introducing artificial points outside the region at a distance A/2, the homogeneous 
Neumann boundary conditions are easily discretized by symmetric differences. In this test example 
we set N = 20, resulting in a system of 2 • 202= 800 ODEs. Again we applied both versions of 
PSODE to problem (3.7) and the results are given in Table 4. To measure the errors, we calculated 
a reference solution of the ODE system, using a stringent tolerance. Hence, the errors displayed in 
the table are only due to the time integration and do not interfere with spatial discretization errors. 
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Table 4 
Results for the combustion problem (3.8) on [0, 0.3] 

21 

PSODE in MN mode PSODE in FP-AF-MN mode 

TOL N csd rhs jac fbs lud N csd rhs jac fbs lud 

10 2 187 2.4 7.66 0.51 6.66 1.14 241 2.4 6.72 0.59 5.71 0.53 
10 3 259 3.5 8.08 0.49 7.08 1.19 300 3.9 7.55 0.58 5.80 0.41 

During ignition, the problem becomes locally unstable, forcing any integration method to take 
small timesteps in order to accurately follow the solution. Also the travelling reaction front limits 
the time step for accuracy reasons. In this part of the integration interval, the extended version of 
PSODE frequently uses steps in AF or FP mode. Only for small t-values and near the steady state, 
large steps are possible and the code switches to MN mode. The nature of this flame propagation 
problem is nicely illustrated by the numerical experiments. From Table 4 we see that the number of 
steps and the corresponding accuracies of both versions are more or less comparable. However, the 
number of right-hand side evaluations and forward/backward substitutions per step are smaller for the 
mixed-mode version, but especially the number of LU-decompositions has been drastically reduced, 
which saves a lot of CPU time for a problem of this size. Finally, we remark that the lud-numbers for 
the original PSODE are > 1, which indicates that the MN mode encountered convergence problems. 
The remedy to halve the stepsize, forces PSODE to calculate a new LU-decomposition in the same 
step. 
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