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Let F be a characteristic zero differential field with an algebraically
closed field of constants and let E be a no new constants extension
of F . We say that E is an iterated antiderivative extension of F if E is
a liouvillian extension of F obtained by adjoining antiderivatives
alone. In this article, we will show that if E is an iterated
antiderivative extension of F and K is a differential subfield of
E that contains F then K is an iterated antiderivative extension
of F .
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1. Introduction

Let F := C(z) be the differential field of rational functions in one complex variable z with the
usual derivation d/dz. Consider the liouvillian extensions E1 := F (ez2

,
∫

ez2
) and E2 := F (

√
1 − z2,

sin−1 z) of F . In [5], M. Rosenlicht and M. Singer show that the differential subfield F ((
∫

ez2
)/ez2

)

of E1 and the differential subfield F (
√

1 − z2 sin−1 z) of E2 are not liouvillian extensions of F .
Thus, differential subfields of liouvillian extensions, in general, need not be liouvillian. However, if
L := C(z, log z, log(log z)) then one can list all the differential subfields of L that contains C and
they are C, C(z), C(z, log z) and L, see Example 4.1. Clearly, in this case, all the differential subfields
are liouvillian. Thus, it is of considerable interest to know when differential subfields of a liouvillian
extension are liouvillian. In this article, we will show that if a liouvillian extension is obtained by
adjoining antiderivatives alone then its differential subfields can also be obtained by adjoining an-
tiderivatives alone. This is the main result of this article and it appears as Theorem 5.3. An analogue
of Theorem 5.3 for generalized elementary extensions can be found in [5] and [6].
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1.1. Differential fields

Let F be a field of characteristic zero. A derivation on a field F , denoted by ′ , is an additive map
′ : F → F that satisfies the Leibniz law (xy)′ = x′ y + xy′ for every x, y ∈ F . A field equipped with a
derivation map is called a differential field. The set of constants of a differential field is the kernel of
the map ′ and it can be seen that the set of constants is a differential subfield of F . Let E and F
be differential fields. We say that E is a differential field extension of F if E is a field extension of F
and the restriction of the derivation of E to F coincides with the derivation of F . A differential field
extension E of F is called a no new constants extension if the constants of E are the same as the
constants of F .

Throughout this article, we fix a ground differential field F of characteristic zero. All the differential
fields considered henceforth are either differential subfields of F or a differential field extension of F .
We reserve the notation ′ to denote the derivation map of any given differential field. We do not
require the field of constants of F to be algebraically closed until Section 4.

Let E be a no new constants extension of F . An element ζ ∈ E is called an antiderivative (of an
element) of F if ζ ′ ∈ F . We say that E is an antiderivative extension of F if E = F (ζ1, ζ2, . . . , ζn), where
ζ1, ζ2, . . . , ζn are antiderivatives of F . Elements ζ1, ζ2, . . . , ζn ∈ E are called iterated antiderivatives of
F if ζ ′

1 ∈ F and for i � 2, ζ ′
i ∈ F (ζ1, ζ2, . . . , ζi−1). We call E an iterated antiderivative extension of F if

E = F (ζ1, ζ2, . . . , ζn), where ζ1, ζ2, . . . , ζn are iterated antiderivatives of F . And, if E = F (ζ1, ζ2, . . . , ζn)

and for each i, ζ ′
i ∈ F (ζ1, . . . , ζi−1) or ζ ′

i /ζi ∈ F (ζ1, . . . , ζi−1) or ζi is algebraic over F (ζ1, . . . , ζi−1) then
we call E a liouvillian extension of F . Now it is clear that the differential fields E1, E2 and L, men-
tioned in the beginning of this article, are examples of liouvillian extensions of C and that L is an it-
erated antiderivative extension of C. A field automorphism of E that fixes the elements of F and com-
mutes with the derivation is called a differential field automorphism and the group of all such auto-
morphisms will be denoted by G(E|F ). That is, G(E|F ) = {σ ∈ Aut(E|F ) | σ(y)′ = σ(y′) for all y ∈ E}.

Every antiderivative extension of F is an iterated antiderivative extension of F . But the converse is
not true: for example, consider the differential field C(z, log z) with the usual derivation d/dz, where
C is the field of complex numbers. Clearly, C(z, log z) is an iterated antiderivative extension of C.
Observe that all the antiderivatives of the field C are of the form cz + d where c,d ∈ C and since
log z /∈ C(z), we see that C(z, log z) is not an antiderivative extension of C.

2. Preliminary results

It is a well-known fact that if E is a no new constants extension of F and if ζ ∈ E is an an-
tiderivative of an element of F then either ζ is transcendental over F or ζ ∈ F . Please see [3, p. 7], or
[5, p. 329] for a proof. Using this fact, we will now show that every iterated antiderivative extension
of F is a purely transcendental extension of F .

Theorem 2.1. Let E and K be differential subfields of some no new constants extension of F . Suppose that E =
F (ζ1, ζ2, . . . , ζn) is an iterated antiderivative extension of F and that K ⊇ F . Then K E := K (ζ1, ζ2, . . . , ζn)

is an iterated antiderivative extension of K . Furthermore, if K E �= K then the set {ζ1, ζ2, . . . , ζn} contains
algebraically independent iterated antiderivatives η1, η2, . . . , ηt of K such that K E = K (η1, η2, . . . , ηt).

Proof. Since K contains F , it is easy to see that ζ ′
i ∈ K (ζ1, ζ2, . . . , ζi−1) and thus K E is an iterated

antiderivative extension of K . Assume that K (E) �= K . To find a transcendence base for K E , consisting
of iterated antiderivatives of K , we use an induction on n. Case n = 1: Since K E = K (ζ1) �= K , we
have ζ1 /∈ K . And since ζ ′

1 ∈ F ⊆ K , as noted earlier, ζ1 is transcendental over K . Set η1 := ζ1 to prove
the theorem. Assume the theorem for n − 1 iterated antiderivatives. Induction step: Choose l smallest
such that ζl /∈ K and set η1 := ζl . Since ζ1, . . . , ζl−1 ∈ K , we see that η1 is an antiderivative of K
and since η1 /∈ K , η1 is transcendental over K . Note that K E is generated as a field by n − l iterated
antiderivatives, namely ζl+1, . . . , ζn , and the differential field K (η1). Now we may apply induction
to the iterated antiderivative extension K E of K (η1) and obtain iterated antiderivatives η2, . . . , ηt ∈
{ζl+1, . . . , ζn} of K (η1) such that η2, . . . , ηt are algebraically independent over K (η1) and that K E =
K (η1)(η2, . . . , ηt). �
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In Theorem 2.1, if we choose K = F , we obtain that E is a purely transcendental extension of
F with a transcendence base consisting of iterated antiderivatives of F . Note that Theorem 2.1 is
valid for antiderivative extensions as well. Thus, hereafter, when we say E = F (ζ1, ζ2, . . . , ζt) is an
antiderivative extension or an iterated antiderivative extension of F , it is understood that ζ1, ζ2, . . . , ζt

are algebraically independent over F . We will use the notation tr.d.(E|F ) to denote the transcendence
degree of any field extension E over F .

Corollary 2.1.1. Let E be an iterated antiderivative extension of F and let K1 and K be differential subfields
of E. If K1 ⊃ K ⊇ F then tr.d.(K1|F ) > tr.d.(K |F ).

Proof. Suppose that K1 ⊃ K . Then we have E ⊃ K and therefore from Theorem 2.1, we know that
K E = E is a purely transcendental extension of K . Thus if u ∈ K1 − K then u ∈ E − K and therefore
u is transcendental over K . Thus tr.d.(K1|K ) � 1. Note that tr.d.(K1|F ) = tr.d.(K1|K ) + tr.d.(K |F ) and
that tr.d. K1|F < ∞ since tr.d.(E|F ) < ∞. Hence tr.d.(K1|F ) > tr.d.(K |F ). �

Let M be a differential field extension of F . We call M a minimal differential field extension of F
if M ⊃ F and if K is a differential subfield of M such that M ⊇ K ⊇ F then K = M or K = F .

Corollary 2.1.2. Let E, K and K1 be as in Corollary 2.1.1. Then K1 contains a minimal differential field extension
of K .

Proof. If K1 is not a minimal differential field extension of K then it contains a proper subfield
K1 ⊃ M ⊃ K . And, from Corollary 2.1.1, we know that tr.d.(K1|K ) > tr.d.(M|K ). Since tr.d.(K1|K ) < ∞,
the rest of the proof follows by an induction on tr.d.(K1|F ). �
Theorem 2.2. Let E be an iterated antiderivative extension of F and K ⊇ F be a differential subfield of E. If
there is an element u ∈ E such that u′/u ∈ K then u ∈ K .

Proof. To avoid triviality, we may assume E �= K . We observe from Theorem 2.1 that E =
K (η1, η2, . . . , ηt) is an iterated antiderivative extension of K . Let u ∈ E and u′/u ∈ K . We will use
an induction on t to prove our proposition. Assume that if u ∈ K (η1, η2, . . . , ηt−1) then u ∈ K . Write
u = P/Q , where P , Q ∈ K (η1, η2, . . . , ηt−1)[ηt] are relatively prime polynomials and Q is monic.
Then u′ = (P ′ Q − Q ′ P )/Q 2 and since f := u′/u ∈ K , we obtain

Q P f = P ′ Q − Q ′ P .

Since P and Q are relatively prime, we then obtain P divides P ′ and Q divides Q ′ . Now the facts
that Q is monic, deg Q ′ � deg Q and Q divides Q ′ , all together, will force Q = 1. Thus u = P and
P ′ = f P . Write P = ∑n

i=0 aiη
i
t with an �= 0 and observe that

a′
nη

n
t + (

a′
n−1 + nanη

′
t

)
ηn−1

t + · · · + a1η
′
t + a′

0 = f

(
n∑

i=0

aiη
i
t

)
,

and comparing the leading coefficients, we obtain a′
n = f an . Thus (u/an)′ = 0. Since E is a no new

constants extension of F , there is a c ∈ C such that u = can . Now an ∈ K (η1, η2, . . . , ηt−1) will imply
u ∈ K (η1, η2, . . . , ηt−1). �
Remark. Consider the differential field K := C(z, log z) with the derivation d/dz, K being its algebraic
closure and let u ∈ K − K . We claim that for any iterated antiderivative extension E of C, the element
u /∈ E . First we note that if E �= C is an iterated antiderivative extension of C with the derivation d/dz
then z ∈ E . Now, suppose that the claim is false. Then by applying 2.1 to the iterated antiderivative
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extension E(log z) of C we obtain a contradiction to the assumption that u /∈ K . Thus, if u = √
z +

5
√

log z, then there are no polynomials P , Q ∈ C[x1, x2, x3] such that
√

z + 5
√

log z = P (z,log z,log(log z))
Q (z,log(z+1),Li2(z)) ,

where Li2(z) is the dilogarithm − ∫ z
0

log(1−w)
w dw .

Similarly, as an application of Theorem 2.2, one can obtain that eαz , where α ∈ C − {0} and e−z2

are not in any iterated antiderivative extension of C. In particular,
∫

e−z2
is not in any iterated an-

tiderivative extension of C, and thus cannot be expressed in terms of logarithms or polylogarithms.

3. Structure of antiderivative extensions

The following theorem characterizes the algebraic dependence of antiderivatives and will be used
in numerous occasions in this article. In this section we will use this theorem to describe the structure
of differential subfields of antiderivative extensions.

Theorem 3.1. Let E ⊃ F be a no new constants extension and for i = 1,2, . . . ,n, let ζi ∈ E be antiderivatives
of F . Then either ζi ’s are algebraically independent over F or there is a tuple (α1, . . . ,αn) ∈ Cn −{�0} such that∑n

i=1 αiζi ∈ F .

Proof. See [1, p. 260] or [7, p. 9]. �
Proposition 3.2. Let E = F (ζ1, ζ2, . . . , ζt) be an antiderivative extension of F . An element ζ ∈ E is an an-
tiderivative of F if and only if there are a tuple (α1, . . . ,αt) ∈ Ct − {�0} and an element aζ ∈ F such that
ζ = ∑t

i=1 αiζi + aζ .

Proof. Let ζ ∈ E be an antiderivative of F . The set {ζ, ζ1, ζ2, . . . , ζt} contains t + 1 antiderivatives of F
and therefore has to be algebraically dependent over F . We apply Theorem 3.1 and obtain constants
βi, γ ∈ C such that γ ζ + ∑t

i=1 βiζi ∈ L. Since {ζ1, ζ2, . . . , ζt} is algebraically independent over L, we
know that γ �= 0. Therefore

ζ −
t∑

i=1

αiζi ∈ L, where αi := −βi

γ
(3.1)

and thus there is an aζ ∈ F such that ζ = ∑t
i=1 αiζi + aζ . Note that every element of the form∑t

i=1 αiζi + a, where (α1, . . . ,αt) ∈ Ct and a ∈ F , is clearly an antiderivative of F . �
Theorem 3.3. Let E = F (ζ1, ζ2, . . . , ζt) be an antiderivative extension of F and let K be a differential subfield
of E containing F . Then K is an antiderivative extension of F .

Proof. Let W := spanC {ζ1, . . . , ζt} denote the vector space generated by the elements ζ1, . . . , ζt over
the field of constants C of F . Let V := K ∩ W and note that V is a subspace of W . Let S1 ⊂ W
be a C-basis for V . We claim that K = F (S1). Choose a set S2 ⊂ W so that S1 ∪ S2 is a C-basis
for W . Clearly, S1 ∪ S2 is a finite set consisting of antiderivatives of F , the field F (S1) is a differential
field and K ⊇ F (S1) ⊃ V . Also note that F (S1 ∪ S2) = F (W ) = E . If elements of S2 are algebraically
dependent over K then by Theorem 3.1, K contains a non-zero C-linear combination of elements
of S2. But then, such a linear combination should be in V , a contradiction to the fact that S1 ∪ S2
is linearly independent over C . Thus S2 is algebraically independent over K . Therefore, tr.d.(E|K ) =
tr.d.(E|F (S1)) and since K ⊇ F (S1), we see that K is algebraic over F (S1). Now by Theorem 2.1, we
obtain K = F (S1). Hence our claim. Now since S1 ⊂ W , we see that S1 consists of antiderivatives of
F and thus K is an antiderivative extension of F . �
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3.1. Differential automorphisms of antiderivative extensions

Let E = F (ζ1, . . . , ζt) be an antiderivative extension of F . By definition, E is a no new constants
extension of F . In light of Theorem 3.2, we may assume ζ1, ζ2, . . . , ζt are algebraically indepen-
dent over F . Let R := F [ζ1, . . . , ζt] ⊂ E and note that R is a differential ring. Let σ ∈ G := G(E|F ).
Then since ζ ′

i ∈ F , we have σ(ζi)
′ = σ(ζ ′

i ) = ζ ′
i . That is, (σ (ζi) − ζi)

′ = 0. Since E is a no new
constants extension of F , there is an element αiσ ∈ C such that σ(ζi) − ζi = αiσ and therefore,
σ(ζi) = ζi + αiσ . Also note that σ(φ(ζi)) = ζi + αiσ + αiφ = ζi + αiφ + αiσ = φ(σ (ζi)). Since any
automorphism of E fixing F is completely determined by its action on ζ1, ζ2, . . . , ζt , we see that the
group G is commutative and that there is an injective group homomorphism from G to (Ct ,+) given
by σ ↪→ (α1σ , . . . ,αtσ ). To prove surjectivity, let �α := (α1,α2, . . . ,αn) ∈ Ct . Define a ring (F -algebra)
homomorphism σ�α : R → R by setting σ�α(ζi) = ζi + αi and σ�α( f ) = f for all f ∈ F . The ring ho-
momorphism obtained by mapping ζi �→ ζi − αi and fixing elements of F is the inverse of σ�α and
therefore σ�α is a ring automorphism. Since σ�α(ζi)

′ = σ�α(ζ ′
i ), we see that σ�α is a differential ring

automorphism. Now we extend σ�α to the field of fractions E of R to obtain a differential field auto-
morphism. Thus G is isomorphic to the commutative group (Ct ,+). We refer the reader to [3] and
[4] for a thorough treatment of differential fields and Picard–Vessiot theory.

Proposition 3.4. Let E = F (ζ1, ζ2, . . . , ζt) be an antiderivative extension of F . Then the fixed field EG(E|F ) :=
{y ∈ E | σ(y) = y for all σ ∈ G(E|F )} equals F .

Proof. Let u ∈ E − F and consider F 〈u〉, the differential field generated by F and u. Then by Theo-
rem 3.3, F 〈u〉 contains an element of the form

∑t
i=1 αiζi , where at least one of the αi is non-zero,

say α1 �= 0. Let �e1 := (1,0, . . . ,0) ∈ Ct . The differential automorphism σ�e1
induced by �e1 fixes all ζi

when i � 2 and maps ζ1 to ζ1 + 1. Therefore σ�e1
(
∑t

i=1 αiζi) �= ∑t
i=1 αiζi . And since

∑t
i=1 αiζi ∈ F 〈u〉,

we obtain σ�e1
(u) �= u. Thus EG(E|F ) = F . �

4. Preparation for a structure theorem

Hereafter, we will assume that the field of constants C of F is an algebraically closed field.

4.1. Normal tower

Let N be a no new constants extension of F . We say that K is the antiderivative closure of F in N if
K is generated over F by all antiderivatives of F that are in N . Let E = F (ζ1, ζ2, . . . , ζt) be an iterated
antiderivative extension of F and for every integer i � 1, let Ei denote the antiderivative closure of
Ei−1 in E , where E0 := F . Since ζi ∈ Ei , we see that Et = E . Choose the smallest integer m such that
Em = Em+1. Clearly such an m exists, Ei ⊃ Ei−1 for all 1 � i � m and E = Em . We will call the tower

E = Em ⊃ Em−1 ⊃ · · · ⊃ E1 ⊃ E0 = F (4.1)

the normal tower of E .
We will now show that the normal tower of E is kept invariant under the action of G := G(E|F ).

We use the notation G K to denote the differential field {σ(y) | σ ∈ G and y ∈ K }. Since G fixes K
and K ⊇ F , G fixes E0 := F and thus G E0 ⊆ E0. Assume that G Ei−1 ⊆ Ei−1 for some i and let η ∈ Ei
be an antiderivative of Ei−1. Observe that σ(η)′ = σ(η′) and since η′ ∈ Ei−1, by our assumption,
σ(η′) ∈ Ei−1. Thus, for each σ ∈ G , σ(η) is an antiderivative of Ei−1 and therefore σ(η) ∈ Ei . Since Ei
is generated as a field by antiderivatives of Ei−1, G Ei ⊆ Ei . Hence by induction, G Ei ⊆ Ei for all i.

Let N be a no new constants extension of F . Let η1, η2, . . . , ηn ∈ N be iterated antiderivatives
(respectively, antiderivatives) of F and let H ⊆ G(N|F ) be a set consisting of commuting differential
automorphisms. We say the η1, η2, . . . , ηn ∈ N are H-invariant iterated antiderivatives (respectively,
H-invariant antiderivatives) of F if η1, η2, . . . , ηn are algebraically independent iterated antideriva-
tives (respectively, antiderivatives) of F and for each i, H Fi ⊆ Fi , where Fi := F (η1, η2, . . . , ηi−1) and
F0 := F .
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Example 4.1. Consider the fields L := C(z, log z, log(log z)) and L := C(z, S,S), where S := {log(z +
α) | α ∈ C} and S := {log(β + log(z + α)) | α,β ∈ C}. It can be shown that L is a no new constants
extension of C with respect to the usual derivation d/dz and that the set {z} ∪ S ∪ S consists of
elements algebraically independent over C, see [7].

For convenience, we will use ′ to denote d/dz. Let K �= C be a differential subfield of L. If
tr.d.(K |C) = 3 then since tr.d.(L|C) = 3, by Theorem 2.1 we have K = L. Assume tr.d.(K |C) = 2.
We claim that K = C(z, log z). It is enough to show that z, log z ∈ K . Suppose that z /∈ K . Then
tr.d.(K (z)|C) = 3 and thus K (z) = L. Now let σ1 ∈ G(K (z)|K ) be a differential automorphism that
sends z to z + 1. Since log z ∈ K (z) and (log z)′ = 1

z , we see that (σ n
1 (log z))′ = 1

z+n , for any inte-

ger n � 1. Since L is a no new constants extension of C and (log(z + n))′ = 1
z+n , we obtain that

log(z + n) = σ n
1 (log z) + cn ∈ L for some constants cn ∈ C. Since the set S is algebraically independent

over C, we obtain a contradiction to the fact that L has a finite transcendence degree over C. Thus
z ∈ K .

Note that if log z /∈ K then K (log z) = L and there is a σ1 ∈ G(K (log z)|K ) that sends log z to 1 +
log z. Then log(n + log z) = σ n

1 (log(log z)) + cn ∈ L for some cn ∈ C, which again contradicts the fact
that L has a finite transcendence degree over C. Hence the claim follows. Similarly, one proves that if
tr.d. K |C = 1 then K = C(z). Thus we have shown that the differential subfields of L that contains C
are L, C(z, log z), C(z) and C. Indeed, the normal tower of L is

L ⊃ C(z, log z) ⊃ C(z) ⊃ C.

Remark. From the above discussion, we note that L cannot be a subfield of (or not imbeddable in)
any Picard–Vessiot extension of C(z). Otherwise, there is an automorphism σ ∈ G(L|C(z)) such that
σ(log z) = c + log z for some c ∈ C − {0}. Then log(nc + log z) = σ n(log(log z)) + cn ∈ L for some cn ∈ C
and for all non-negative integers n, which contradicts the fact that L is of finite transcendence degree
over C(z). One can list all the finitely differentially generated subfields of L, see [7]. The rest of this
section discusses the action of differential automorphisms on iterated antiderivatives.

Lemma 4.1. Let F be a differential field with an algebraically closed field of constants C and let N be a no
new constants extension of F . Let E and L be differential fields such that N ⊇ E ⊃ L ⊇ F and let H be a
commutative subset of G(N|F ) such that H E ⊆ E and H L ⊆ L. If E is an antiderivative extension of L then
there are H-invariant antiderivatives η1, η2, . . . , ηt of L such that E = L(η1, η2, . . . , ηt). Moreover, for each i
and for each σ ∈ H,

σ(ηi) = δiσ ηi +
i−1∑
j=1

γi jσ η j + aiσ ,

for some δiσ ,γi jσ ∈ C and aiσ ∈ L. In particular, σ(ηi) − δiσ ηi ∈ Li−1 .

Proof. Suppose that E = L(ζ1, ζ2, . . . , ζt) is an antiderivative extension of L. Since H keeps L and E
invariant, for each σ ∈ G , σ(ζi) ∈ E is an antiderivative of L. For each i, we apply Proposition 3.2 and
obtain constants αi jσ ∈ C , not all zero, such that

σ(ζi) −
t∑

j=1

αi jσ ζi ∈ L. (4.2)

We view the quotient space E/L as a C-vector space (infinite dimensional) and denote its element
by y, where y ∈ E . There is a natural action of H on E/L, namely, σ · y = σ(y). This action is well
defined since H keeps L and E invariant. From Eq. (4.2) we see that
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σ · ζ i =
t∑

j=1

αi jσ ζ i (4.3)

for every σ ∈ H . Thus, the finite dimensional subspace W := spanC {ζ 1, . . . , ζ t} of E/L is kept invariant
under the action of H . The above equation induces a group homomorphism Φ : H → End(W ) and
since H is commutative, Φ(H) is commutative as well. It is a well-known fact that any commuting
set of endomorphisms of a vector space over an algebraically closed field1 can be triangularized (see
[2, p. 100]). That is, there is a basis {η1, η2, . . . , ηt} of W and there are constants γi jσ ∈ C such that

σ · ηi = σ(ηi) =
i∑

j=1

γi jσ η j. (4.4)

For each i, we have ηi = ∑m
j=1 βi jζ j and therefore there are elements ri ∈ L such that ηi =∑m

j=1 βi jζ j + ri . Thus, from Proposition 3.2, each ηi is an antiderivative of L. The linear indepen-
dence of {ηi | 1 � i � t} over C and Theorem 3.1 together will guarantee the algebraic independence
of {ηi | 1 � i � t} over L. Since L(η1, . . . , ηt) ⊆ E and tr.d.(E|L) = tr.d.(L(η1, . . . , ηt)|L), we may ap-
ply Theorem 2.1 and obtain E = K . For each i, we set Li := L(η1, . . . , ηi) and observe from Eq. (4.4)
that H Li ⊆ Li . From Eq. (4.4), we see that σηi − γiiσ ηi − ∑i−1

j=1 γi jσ η j = aiσ for some aiσ ∈ L. Thus

σηi = δiσ ηi + ∑i−1
j=1 γi jσ η j + aiσ , where δiσ := γiiσ . Clearly, σηi − δiσ ηi ∈ Li−1. �

Corollary 4.1.1. Let F be a differential field with an algebraically closed field of constants C . Let E be an iterated
antiderivative extension of F and let H be a commutative subset of G(E|F ). Then there are H-invariant iterated
antiderivatives η1, η2, . . . , ηt of F such that E = F (η1, η2, . . . , ηt). Moreover, for each i and each σ ∈ G,

σ(ηi) = δiσ ηi + riσ ,

for some δiσ ∈ C and riσ ∈ Li−1 .

Proof. Let E = Em ⊃ Em−1 ⊃ · · · ⊃ E1 ⊃ E0 = F be the normal tower of F . Note that E j is an
antiderivative extension of E j−1 and from Section 4.1 we know that H E j ⊆ E j for each j. Thus
applying Lemma 4.1 with M := E j and L := E j−1, we obtain elements η ji and H-invariant differ-
ential fields L ji for i = 1,2, . . . , t j . Now we rename η11, . . . , η1t1 , . . . , ηm1, . . . , ηmtm as η1, . . . , ηt and
L11, . . . , L1t1 , . . . , Lm1, . . . , Lmtm as L1, . . . , Lt , where t := ∑m

i=1 ti . One can easily check that Li and ηi
satisfy the desired properties. �

We need the following technical (rather computational) lemma to prove Theorem 5.3.

Lemma 4.2. Let F be a differential field with an algebraically closed field of constants C and let E be an iterated
antiderivative extension of F . Suppose that K ⊇ F is a differential subfield of E such that E is an antiderivative
extension of K and let G := G(E|K ). Then, there are G-invariant iterated antiderivatives η1, η2, . . . , ηt of F
such that E = F (η1, . . . , ηt). Let L∗ := F (η1, . . . , ηt−1). Then, either K ⊆ L∗ or there is an element a ∈ L∗
such that ηt + a ∈ K . Moreover, ηt + a /∈ F 〈η′

t + a′〉 and thus F 〈η′
t + a′〉 is a proper differential subfield of K .

Proof. Since G is a commutative group, from Corollary 4.1.1, it follows that there are G-invariant
iterated antiderivatives η1, η2, . . . , ηt of F such that E = F (η1, . . . , ηt). Assume that K � L∗ :=
F (η1, . . . , ηt−1) and let u ∈ K ∩ (E − L∗). Since E = L∗(ηt), we may write u = P/Q , where P , Q ∈
L∗[ηt], P , Q relatively prime, and Q is monic. From Corollary 4.1.1, we have

1 Here we use the assumption that the field of constants C of F is algebraically closed.
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σ(ηt) = δσ ηt + rσ (4.5)

for every σ ∈ G , where δσ ∈ C and rσ ∈ L∗ . Thus G consists of differential automorphisms of the
ring L∗[ηt]. Since u ∈ K , we have σ(u) = u for all σ ∈ G . Thus σ(P )Q = σ(Q )P . Since P and Q are
relatively prime, P divides σ(P ) and Q divides σ(Q ). But from Eq. (4.5), we see that deg σ(P ) =
deg P and deg σ(Q ) = deg Q and thus σ(P ) = fσ P and σ(Q ) = gσ Q for some fσ , gσ ∈ L∗ . Since
σ(P/Q ) = P/Q , we must have fσ = gσ . Now writing Q = ∑l

i=0 biη
i
t with bi ∈ L∗ (note that bl = 1),

we observe that

l∑
i=0

σ(bi)(δσ ηt + rσ )i = fσ

(
l∑

i=0

biη
i
t

)
.

Thus comparing the coefficients of ηl
t , we obtain δl

σ = fσ . Hence, for all σ ∈ G , σ(P ) = δl
σ P and

σ(Q ) = δl
σ Q , where δl

σ ∈ C . Then P ′/P , Q ′/Q ∈ EG —the fixed field of the group G . From Proposi-
tion 3.4, we know that EG = K and thus P ′/P , Q ′/Q ∈ K , where P , Q ∈ E . Now from Theorem 2.2
we obtain that P , Q ∈ K . Hence G fixes both P and Q .

Since u /∈ L∗ , we have P or Q does not belong to L∗ . Without loss of generality, assume P /∈ L∗ .
Then there are an n � 1 and ai ∈ L∗ such that P = ∑n

i=0 aiη
i
t . Now, for any σ ∈ G , we have σ(P ) = P

and therefore

σ(an)(δσ ηt + rσ )n + σ(an−1)(δσ ηt + rσ )n−1 + · · · + σ(a0) = anη
n
t + an−1η

n−1
t + · · · + a0.

Comparing the coefficients of ηn
t , and respectively of ηn−1

t , we obtain

σ(an) = δ−n
σ an and (4.6)

nδn−1
σ σ (an)rσ + δn−1

σ σ (an−1) = an−1, (4.7)

for every σ ∈ G . Since δσ ∈ C , from Eq. (4.6), we have a′
n/an ∈ EG = K and therefore applying Theo-

rem 2.2, we obtain an ∈ K . In particular δn
σ = 1. Now from Eq. (4.7), we obtain

σ(an−1) = δσ (an−1) − nanrσ and thus

σ(an−1/nan) = δσ (an−1/nan) − rσ . (4.8)

We add Eqs. (4.8) and (4.5) to get

σ

(
ηt + an−1

nan

)
= δσ

(
ηt + an−1

nan

)
for all σ ∈ G. (4.9)

Let a := an−1/nan and observe that (ηt + a)′/(ηt + a) ∈ EG = K . Again by Theorem 2.2 we should
then have ηt + a ∈ K . Note that η′

t + a′ ∈ L∗ and thus F 〈η′
t + a′〉 ⊆ L∗ . And since ηt /∈ L∗ and a ∈ L∗

we know that ηt + a /∈ F 〈η′
t + a′〉. Thus ηt + a ∈ K − F 〈η′

t + a′〉 is an antiderivative of F 〈η′
t + a′〉. Thus

ηt + a is transcendental over F 〈η′
t + a′〉 and therefore tr.d.(K |F 〈η′

t + a′〉) � 1. Hence F 〈η′
t + a′〉 is a

proper differential subfield of K . �
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5. Structure theorem

We recall that M is a minimal differential field extension of F if M ⊇ F is a differential field
extension such that if K is a differential subfield of M and K ⊇ F then M = K or M = F .

Proposition 5.1. Let E be an iterated antiderivative extension of F . Suppose that for any containments of
differential fields F ⊆ F ∗ ⊂ M∗ ⊆ E such that M∗ is a minimal differential field extension of F ∗ , there is an
antiderivative η ∈ E of F ∗ such that M∗ = F ∗(η). Then, if K is a differential subfield of E such that K ⊇ F then
K is an iterated antiderivative extension of F .

Proof. Let K be a differential subfield of E such that E ⊇ K ⊃ F . Let F ∗ , K ⊇ F ∗ ⊇ F be a maximal
iterated antiderivative extension of F contained in K . If F ∗ �= K , then by Corollary 2.1.2, there is a
minimal differential field extension M∗ of F ∗ in K . By the hypothesis of the proposition, we have
M∗ = F ∗(η), where η′ ∈ F ∗ . This contradicts the maximality of F ∗ . �

We note that to prove Theorem 5.3, it is necessary and sufficient to prove that the supposition
statement of Proposition 5.1 is always true for any iterated antiderivative extension of F .

Theorem 5.2. Let F be a differential field with an algebraically closed field of constants C and let E be an
iterated antiderivative extension of F . Let K be a minimal differential field extension of F such that E ⊇ K ⊃ F .
Then K = F (ζ ) for some antiderivative ζ ∈ E of F .

Proof. We will use an induction on n := tr.d. E|F to prove this theorem. From Theorem 2.1, we know
that tr.d.(K |F ) � 1. In particular, n � 1.

Case n = 1: we have tr.d.(E|F ) = tr.d.(K |F ) = 1 and E ⊇ K . Applying Corollary 2.1.1, we obtain that
E = K .

Let n � 2 and assume that the theorem holds for iterated antiderivative extensions of transcen-
dence degree � n − 1. Let E = Em ⊃ Em−1 ⊃ · · · ⊃ E1 ⊃ E0 = F be the normal tower of E . Since
E �= F , from Corollary 2.1.1, we have tr.d.(E1|F ) > 0 and thus E is an iterated antiderivative exten-
sion of E1 with tr.d.(E|E1) � n − 1. Note that if E ⊇ F ∗ ⊇ E1 then tr.d.(E|F ∗) � tr.d.(E|E1) = n − 1.
Then by induction, if M∗ and F ∗ are differential fields such that E ⊇ M∗ ⊃ F ∗ ⊇ E1 and that M∗ is
a minimal differential field extension of F ∗ then M∗ = F ∗(η) for some antiderivative η ∈ E of F ∗ .
Therefore, by Proposition 5.1, we obtain that every differential subfield of E that contains E1 is an
iterated antiderivative extension of E1. Since E ⊇ K E1 ⊇ E1, we obtain K E1 is an iterated antideriva-
tive extension of E1. And since E1 is an antiderivative extension of F , we obtain that K E1 is an
iterated antiderivative extension of F as well. If tr.d.(K E1|F ) < tr.d.(E|F ) = n then by induction, we
have proved that K is of the required form. Therefore we may assume tr.d.(K E1|F ) = tr.d.(E|F ), that
is, K E1 = E . Then since E1 is an antiderivative extension of F and K ⊃ F , we obtain that E is an
antiderivative extension of K as well and thus G(E|K ) is a commutative group.

Now we apply Lemma 4.2 and obtain G(E|K )-invariant iterated antiderivatives η1, η2, . . . , ηt of F
such that E = F (η1, . . . , ηt). If K ⊆ L∗ := F (η1, . . . , ηt−1) then since tr.d.(L∗|F ) = tr.d.(E|F ) − 1 and
L∗ is an iterated antiderivative extension of F , by induction, we are done. Otherwise, by Lemma 4.2,
there is an element a ∈ L∗ such that ηt + a ∈ K , ηt + a /∈ F 〈η′

t + a′〉 and that F 〈η′
t + a′〉 is a proper

differential subfield of K . Then, since K is minimal extension of F , F 〈η′
t + a′〉 = F . Thus we have

(ηt + a)′ = η′
t + a′ ∈ F and ηt + a /∈ F . Then F (ηt + a) is a differential field and K ⊇ F (ηt + a) ⊃ F .

Again, since K is a minimal extension of F , we should have K = F (ηt + a) and by setting ζ := ηt + a,
we complete the proof. �
Theorem 5.3. Let F be a differential field with an algebraically closed field of constants C and let E be an iter-
ated antiderivative extension of F . Let K ⊇ F be a differential subfield of E. Then K is an iterated antiderivative
extension of F .

Proof. Follows from Theorem 5.2 and Proposition 5.1. �
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6. Concluding remarks

In this section we will see an application of Theorem 5.3. Throughout this section let C be an
algebraically closed field of characteristic zero and we view C as a differential field with the triv-
ial derivation. Consider the field of rational functions C(z) and set z′ := 1. Then it is easy to check
that C(z) is a no new constants extension of C . Let C(z)(z1, z2, . . . , zt) be any iterated antiderivative
extension of C(z). We may also assume that z1, z2, . . . , zt , are algebraically independent over C(z).
For any u ∈ C(z, z1, z2, . . . , zt) − C , Theorem 5.3 tells us the differential field C〈u〉 = C(u, u′, u′′, . . .)
contains an antiderivative η ∈ C〈u〉 − C of C . Then, η′ = α for some α ∈ C − {0} and we see that
η′ = (αz)′ . Therefore, there is a β ∈ C such that η = αz + β , where α ∈ C − {0}. Thus z ∈ C〈u〉. There-
fore, for each u ∈ C(z, z1, z2, . . . , zt) − C , there are an integer n � 0 and relatively prime polynomials
P , Q ∈ C[x1, . . . , xn+1] such that

z = P (u, u(1), . . . , u(n))

Q (u, u(1), . . . , u(n))
, (6.1)

where u(i) denotes the i-th derivative of u.

Example 6.1. Consider the differential field C(z, log z) with the usual derivation d/dz. Then, for even
a simple expression like u := log z

z , it can be tedious to write z in terms of u and its derivatives as in

Eq. (6.1). In fact z = u′′+uu′
uu′′−3(u′)2 . Since z1 = uz, we see that z1 = uu′′+u2u′

uu′′−3(u′)2 and thus C〈u〉 = C(z, log z).
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