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In developed countries, interest in cutaneous aging is in
large part the result of a progressive, dramatic rise over
the past century in the absolute number and the propor-
tion of the population who are elderly (Smith et al,
2001). The psychosocial as well as physiologic e¡ects of
skin aging on older individuals have created a demand
for better understanding of the process and particularly
for e¡ective interventions.

Skin aging is a complex process determined by the
genetic endowment of the individual as well as by en-

vironmental factors.The appearance of old skin and the
clinical consequences of skin aging have been well
known for centuries, but only in the past 50 y have me-
chanisms and mediators been systematically pursued.
Still, within this relatively short time there has been
tremendous progress, a progress greatly enhanced by
basic gerontologic research employing immunologic,
biochemical, and particularly molecular biologic
approaches (Figs 1, 2). Key words: photoaging/senescence/
telomeres. JID Symposium Proceedings 7:51 ^58, 2002

WHAT IS AGING?

A
ging is a process perhaps best de¢ned as decreased
maximal function and reserve capacity in all body
organs, resulting in an increased likelihood of disease
and death. Aging occurs at the level of indivi-
dual cells and is regarded by many authorities as a

cancer prevention mechanism (Campisi, 1996), impeding the
unregulated growth of cells whose DNA has been progressively
damaged over the lifespan by internal and external mutagens.

PHOTOAGING VERSUS INTRINSIC AGING

Intrinsic skin aging is characterized primarily by functional
alterations rather than by gross morphologic changes in the
skin. Of equal or greater clinical importance is photoaging, the
superposition of chronic sun damage on intrinsic aging. Photo-
aging is neither universal nor inevitable and is characterized
by often striking morphologic and physiologic changes. Brie£y,
chronologically aged skin appears dry and pale with ¢ne
wrinkles, displaying a certain degree of laxity and a variety of
benign neoplasms. In contrast, depending on the individual’s
skin type and degree of damage, photoaged skin may appear
not only dry but also irregularly pigmented and (in darker-
skinned persons) sallow, often displaying deep furrows in
addition to ¢ne wrinkling, or (in fair-skinned persons) severely
atrophic, with multiple telangiectases and a variety of premalig-
nant lesions such as actinic keratoses (reviewed in Yaar and
Gilchrest, 2001).

Histologically, the most consistent change of intrinsic
cutaneous aging is £attening of the dermal�epidermal junction.
Also, there is a progressive decrease in melanocyte and Langer-
hans cell density. The dermis displays loss of extracellular matrix

and increased levels of collagen-degrading metalloproteinases
(Varani et al, 2000), loss of ¢broblasts and vascular network, and,
in particular, loss of the capillary loops that occupy the dermal
papillae (Gilchrest et al, 1982b). The characteristic histologic
changes of aged skin are associated with decrements in signal
transduction pathways that in£uence protein phosphorylation.
Speci¢cally, there is decreased activity of growth factor associated
mitogen-activated protein kinases and increased activity of stress-
associated kinases (p38 and c-jun-amino-terminal kinase)
(Chung et al, 2000). The main histologic change in photoda-
maged skin is dermal elastosis, the deposition of abnormal amor-
phous elastic material in the papillary dermis. Epidermal changes
include variability in thickness accompanied by disorganized ma-
turation and some cytologic atypia. Melanocytes are unevenly
distributed in the basal layer, displaying areas of increased num-
ber of melanocytes and areas with reduced melanocytes. There is
also a signi¢cant decrease in the number of Langerhans
cells (Gilchrest et al, 1982a). Photodamaged skin frequently
displays abundant in£ammatory cells in the dermis, and collagen
and elastic ¢bers show degenerative changes (Lavker and
Kligman, 1988).

The term photoaging, coined by Kligman (1989), was a con-
cept rediscovered in the twentieth century. In the late nineteenth
century Unna and Dubreuilh, comparing the skin of farmers and
sailors to that of indoor workers, recognized the devastating ef-
fects of solar irradiation on the appearance of facial skin. This in-
sight was then lost until 1969, when Kligman published his
landmark ¢ndings on the structural changes that occur in human
skin as a result of sun damage, damage separable from the intrin-
sic aging process of the skin (Kligman, 1969). Lavker (1979) also
described profound structural di¡erences between sun-exposed
and sun-protected skin.

FUNCTIONAL CHANGES

Early studies attempting to de¢ne physiologic changes that
accompany aging skin date back to the 1950s and perhaps earlier.
Similar to studies examining morphologic and histologic changes
in aged skin, however, these studies were confounded by not
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distinguishing between extrinsic and intrinsic aging processes.
More interpretable studies measuring functional decrements that
occur in non-sun-exposed skin (Table 1) date from the 1960s and
1970s.

Despite relatively little change in gross and histologic cuta-
neous appearance, maximal function and reserve capacity dete-
riorates with aging. This compromised function is particularly
evident after injury. Brie£y, functional decrements that are the
result of intrinsic aging include slow wound healing due to
decreased keratinocyte and ¢broblast proliferative capacity
(Gerstein et al, 1993), reduced cytokine production (Sunderkotter
et al, 1997), decreased ¢ber synthesis, and delayed recovery of
barrier function after damage (Elias and Ghadially, 2002). Also,
the barrier to water loss is more easily disturbed in the elderly
compared to young adults, and the time required to reconstitute
competent stratum corneum is more than double in the elderly, in
part because of decreased lipid synthetic capacity (Ghadially et al,
1995). Interestingly, female hormones were reported to signi¢-
cantly in£uence stratum corneum sphingolipid composition, sug-
gesting that age-associated decreases in hormone levels may
impact barrier function in the elderly (Denda et al, 1993). More-
over, in women, both bone mass and skin collagen decline
rapidly in the immediate postmenopausal years, suggesting that
estrogens in£uence collagen synthesis and degradation in both
sites (Castelo-Branco et al, 1994).

In combination with age-associated changes in B and T
lymphocyte function (Miller, 1996), decreased production
of keratinocyte immune cytokines and decreased density of

Langerhans cells lead to decreased cutaneous immune responsive-
ness with aging (Sauder, 1986). The decreased number of
melanocytes is presumed to contribute to reduced protection
against ultraviolet (UV) irradiation and to render the elderly
more susceptible to UV-induced epidermal DNA damage
(Gilchrest, 1984). Furthermore, DNA repair rate is decreased in
the elderly, a loss shown to correlate inversely with mutation risk
and skin cancer susceptibility (Moriwaki et al, 1996; Goukassian
et al, 2002). Indeed, skin cancer incidence increases exponentially
with aging independent of insolation (reviewed in Gilchrest,
1984).

An important endocrinologic function of human epidermis
that declines with aging is vitamin D3 production. UV irradia-
tion (o 320 nm) converts the epidermal precursor of vitamin
D3, 7-dehydrocholesterol, to previtamin D3, which subsequently
isomerizes to form vitamin D3. With aging, the levels of the
epidermal precursor of vitamin D3 decrease, contributing to
decreased vitamin D3 production in the elderly (MacLaughlin
and Holick, 1985) and rendering them susceptible to vitamin D3
de¢ciency in the absence of regular sun exposure (Gloth et al,
1995).

Changes in vessel wall architecture contribute to vascular fra-
gility, a common clinical occurrence in the elderly. In addition,
changes in dermal vascular bed and vascular responsiveness lead
to compromised thermoregulation, predisposing the elderly to
heat stroke or hypothermia (Wagner et al, 1972; Bruck, 1974). Also,
the reduction of vascular network around the hair bulbs and ec-
crine, apocrine, and sebaceous glands probably contributes to
their gradual age-associated atrophy and as a result decreased
sweat and sebum production. Decrements in vascular network
are probably also responsible for decreased integumental reactiv-
ity and attenuated in£ammatory response to a variety of stimuli

Figure1. Timeline for skin aging research. In the 1960s Kligman pub-
lished his ¢ndings on structural changes in human skin as a result of sun
damage, distinguishing between chronologic aging and photoaging. A
succession of reports have later described and detailed the structural and
functional changes that accompany chronologic aging and contrasted them
with photoaging. In the mid-1960s and through the mid-1980s, the struc-
tural and functional changes that accompany chronologic aging and
photoaging were described.With the advent of molecular biology meth-
odologies in the 1970s, numerous studies investigated changes in gene
expression that are the result of aging, with interesting observations on
age-associated alterations in the expression of genes encoding extracellular
matrix proteins and enzymes involved in their degradation. Also, changes
in the expression of genes whose protein products participate in cell cycle
regulation were well documented. In the 1980s and 1990s, with the projec-
tion for a dramatic increase in the number of elderly people in the popula-
tion, numerous studies focused on possible interventions in the aging
process. Caloric restriction is probably the most convincing approach to
date to slow aging in general, and topical retinoic acid the innovative ap-
proach to reverse cutaneous photoaging. Later in the 1990s, Voorhees and
colleagues reported the molecular basis of acute photodamage responses.
The pathways by which retinoids antagonize the response were demon-
strated as well. During this period molecular mechanisms that underlie
the aging/photoaging process were described as well.

Figure 2. Timeline for cellular aging research. In the early 1960s Hay-
£ick was the ¢rst to show that normal human diploid ¢broblasts derived
from fetal lung have a ¢nite proliferative capacity. His studies were later
con¢rmed and expanded by many investigators who demonstrated that
all normal cells have limited proliferative lifespan. In the late 1970s correla-
tions have been demonstrated between species lifespan, which is relatively
constant among individuals of the same species, and the ability to repair
DNA damage. Although ¢rst described in the mid-1980s, major interest
in telomeres as the molecular basis for aging began in the 1990s with the
observation that telomeres shorten during cellular lifespan, that immortal
cells that have telomerase activity have increased in vitro lifespan, and that
cells derived from individuals with progeroid syndromes display acceler-
ated telomere shortening, suggesting that telomeres represent a biologic
‘‘clock’’ that determines the lifespan of the cell.Very recently, it was demon-
strated that genes positioned near a telomere could be silenced as telomeres
become shorter. Although the story is still evolving, it is possible that in
the future studies will identify those pathways that are activated or silenced
by critically short telomeres to provide a better understanding of the
complex universal process of aging.
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including injurious chemicals and UV irradiation. Changes in
microvasculature may also diminish the rate at which substances
are cleared from the dermis.

Finally, decreased perception of light touch, vibratory and cor-
neal sensation, ability to discriminate two points, and spatial
acuity have been documented in the elderly (Shimokata and
Kuzuya, 1995; Stevens and Patterson, 1995). Available data do not
allow di¡erentiation between aging changes in skin innervation
and altered central perception of stimuli, and both phenomena
probably contribute to the age-associated decline in processing
outside stimuli.

INSIGHTS INTO CELLULARGERONTOLOGY (1950^2000)

Early tissue culture systems Studies by Carrel et al at the
beginning of the twentieth century appeared to suggest that
cells, once separated from the organism, could be maintained for
an unlimited length of time (Carrel and Burrows, 1910), although
this immortality was eventually found to be an artifact of the
then-crude cell culture methodologies. Half a century later,
Hay£ick (Hay£ick and Moorehead, 1961; Hay£ick, 1965; 1977)
showed that normal human diploid ¢broblasts derived from
fetal lung proliferated in culture only for ¢nite periods of time,
laying the foundation for modern cellular gerontology. He
convincingly demonstrated that human ¢broblasts eventually
enter a permanent state of proliferative refractoriness and that
the number of divisions before attaining proliferative senescence
is inversely proportional to donor age.

Hay£ick’s seminal work was later expanded by other
investigators throughout the world who demonstrated in a
variety of cell types derived from di¡erent species, di¡erent
tissues, and donors of di¡erent ages, that normal cells have
limited proliferative lifespan. The exception to this rule appeared
to be embryonic stem cells and germline cells (Suda et al, 1987). It
was proposed that before di¡erentiation into somatic cells, stem
cells or germ cells possess the machinery required for continuous
proliferation, a machinery that is subsequently lost upon their
di¡erentiation.

Cellular and molecular studies of skin aging Until the mid-
1970s virtually all in vitro aging studies were performed using the
system popularized by Hay£ick (1965; 1977). In this system, fetal
lung ¢broblasts are serially passaged under well-de¢ned culture
conditions. Early passage ‘‘young’’ cells are compared to late
passage ‘‘old’’ cells. Work by Schneider and Mitsui (1976),
however, identi¢ed inconsistencies between the Hay£ick model
for cell aging and a newer model comparing early passage
dermal ¢broblasts from young adults versus old adults. In this
newer model, cells are permitted to age in the organism and
hence better re£ect the in vivo aging process. Furthermore, this
newer system allowed comparison between chronologic
cutaneous aging and photoaging simply by comparing the
behavior of cells obtained from photodamaged skin to that of
cells obtained from sun-protected skin of the same individual
(Gilchrest, 1979; 1980). Moreover, it allowed studies of cell types
other than ¢broblasts, such as keratinocytes and melanocytes,
allowing for generalization of the conclusions and more
con¢dence in the results (Rheinwald and Green, 1975; Gilchrest,
1983; Gilchrest et al, 1984; Medrano et al, 1994).

As in the Hay£ick system, it was found that there is an inverse
relationship between donor age and the number of population
doublings achieved by cultured cells (Martin et al, 1970;
Schneider and Mitsui, 1976). Subsequent publications established
that dermal ¢broblasts derived from patients with diseases of
premature aging, such as progeria, Werner’s syndrome, and
diabetes, have shorter culture lifespans (fewer cumulative
population doublings, CPD) than do cells derived from age-
matched controls (reviewed in Stanulis-Praeger, 1989). Addi-
tional evidence of the relevance of culture lifespan to
physiologic age was the observation that both keratinocytes and

¢broblasts derived from habitually sun-exposed (photoaged) skin
undergo fewer CPD prior to senescence than do the same cells
derived from sun-protected sites of the same individuals
(Gilchrest, 1979; 1980). The mechanism(s) of cellular aging and
irreversible growth arrest remained unknown, however.

Keratinocytes, ¢broblasts, and melanocytes also display a
decreased short-term response to mitogenic stimuli with
increasing donor age (Gilchrest, 1983; Plisko and Gilchrest, 1983).
At least in the case of normal human ¢broblasts there is age-
associated decreased responsiveness to epidermal growth factor
that can be ascribed to decreased number and density of
receptors, as well as to decreased ligand binding, receptor
autophosphorylation, and internalization (Reenstra et al, 1993;
1996). Keratinocytes derived from adult versus newborn donors
also produce signi¢cantly less of the immunomodulatory
cytokine now termed interleukin-1 (Sauder et al, 1988). Such
¢ndings suggest several mechanisms by which aging can
compromise skin function.

Gene expression and aging With the advent of recombinant
DNA technology, there has been an explosion of data regarding
speci¢c mRNA transcripts whose expression changes with age,
both in early versus late passage cells and in cells derived from
young versus old donors. Although the expression of many genes
does not change, some transcript levels decrease with age, and
some even increase.

Of relevance to cutaneous biology, the expression of
extracellular matrix proteins and enzymes involved in their
degradation appear to be a¡ected with aging. Both in the early/
late passage senescent model and the young/old donor model,
¢bronectin expression increases with age (Smith and Pereira-
Smith, 1989; Kumazaki et al, 1993). Also, the expression of certain
metalloproteinases, collagenase and stromelysin, increases as a
function of serial passage (Millis et al, 1992; Zeng and Millis,
1996; Khorramizadeh et al, 1999) and donor age (Burke et al,
1994), whereas the level of the tissue inhibitor of metallo-
proteinases (TIMP-1) decreases (Burke et al, 1994; Khorramizadeh
et al, 1999). These changes are consistent with the age-associated
decrease in dermal thickness (reviewed in Yaar and Gilchrest,
1999), presumed to re£ect a shift in the balance between
synthesis and degradation of collagen.

With regard to genes that participate in cell cycle progression, a
coordinated expression of genes that encode nuclear transcription
factors, cyclins, and cyclin-dependent kinases (Cdk) takes place
during the G1 phase of the cell cycle, and this program is
dysregulated during aging and senescence (reviewed in Stein
and Dulic, 1998). In response to serum stimulation, senescent
cells fail to induce some of the genes that are induced in early
G1 (immediate early genes), including c-fos that encodes a
component of the AP-1 transcription factor (Seshadri and
Campisi, 1990), and Id1H and Id2H, encoding helix�loop�helix
proteins that are thought to act as inhibitors of di¡erentiation
(Hara et al, 1994). Senescent cells fail to express many genes that
are expressed in late G1, including cyclin A, p34 kinase, and the
E2F family of transcription factors that induce the expression of
genes required for cell proliferation (Stein et al, 1991; Dimri et al,
1994). Senescent cells also fail to express several genes whose
protein products are required for DNA synthesis, including
dihydrofolate reductase, PCNA, and histones. Senescence does
not a¡ect the expression of genes encoding Cdk4/6 and Cdk2,
c-jun, the other component of the AP-1 transcription factor, c-
myc, and c-H-ras. Furthermore, certain genes like cyclin D1 and
cyclin E are over-expressed in serum-stimulated senescent cells.
These studies suggest that coordinated expression of an entire
array of genes is required to enable the cell to progress through
the G1 phase of the cell cycle, and that this coordination is
compromised during aging.

The activities of other nuclear proteins that play a crucial role
in cell cycle progression are not regulated at the transcription
level but rather by the phosphorylated state of the protein. For
example, phosphorylation of the retinoblastoma protein (Rb) is
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a critical event required for cell cycle progression through G1, as
phosphorylated Rb releases factors like E2F that are otherwise
bound to the hypophosphorylated form of Rb and hence lack
transcriptional activity (reviewed inYaar, 2001). In contrast with
quiescent cells, senescent cells fail to phosphorylate Rb despite
serum stimulation, consistent with their inability to progress
through G1 into S (Stein et al, 1990).

Direct inhibition of cell cycle progression proteins o¡ers
another mechanism of regulation. Notably, p21 ubiquitously
inhibits cyclin�Cdk complexes (Xiong et al, 1993; Zhang et al,
1994). In ¢broblasts, p21 transcripts increase gradually with
increasing CPD and reach their highest level in early senescence
(Noda et al, 1994). The levels of p21 transcripts and protein
decrease to normal levels, however, within 2 mo of attaining
senescence. In contrast, the expression of p16, another Cdk
inhibitor, does not change with ¢broblast CPD level but
increases sharply during senescence and appears to remain
elevated (Alcorta et al, 1996; Hara et al, 1996). These studies
suggest that the persistent elevation of p21 is essential for entry
into senescence, whereas p16 elevation is required to maintain
the senescent phenotype.

Oxidative stress and aging Oxidative stress is considered to be
a major contributor to the process of aging (reviewed in Harman,
2001). Oxygen, required for survival of aerobic organisms, readily
accepts single electron transfers, generating reactive oxygen
species (ROS) such as �O�2, H2O2, and �OH that can damage
biologic molecules (Davies, 1995). Such damage continuously
occurs throughout the lifespan of the organism and contributes
to membrane peroxidation, DNA base alterations, single-strand
DNA breaks, sister chromatin exchange, DNA�protein cross-
links, carbonyl modi¢cations, and loss of sulfhydryl groups
in proteins (Stadtman, 1992). Oxidative stress also hastens
replicative senescence of cultured ¢broblasts (Chen et al, 2000;
Dumont et al, 2000). Although cellular and mitochondrial
defense mechanisms including the antioxidant enzymes
glutathione peroxidase, glutathione reductase, and superoxide
dismutases have evolved to quench ROS, these antioxidant
defense systems are not fully e⁄cient, and hence throughout life
cells accumulate molecular oxidative damage, sometimes leading
to apoptotic cell death (Stadtman, 1992; Ames et al, 1993). Several
studies show that there is an age-associated increase in both ROS
generation (Sohal and Brunk, 1992) and the level of oxidatively
damaged proteins (Stadtman, 1992) and DNA (Ames et al, 1993;
Agarwal and Sohal, 1994). Caloric restriction extends the lifespan
in all species examined, including ¢sh, spiders, rats, mice, and
primates (Sohal and Weindruch, 1996). It was speculated that
caloric restriction decreases the metabolic rate of the organism,
reduces oxidative stress, and hence contributes to lifespan
extension. Recent ¢ndings in Saccharomyces cerevisiae, however,
show that caloric restriction increased the yeast’s respiration rate
implying that, as ROS are a by-product of respiration, lifespan
extension is not the result of decreased ROS but may be the
outcome of improved ability to detoxify these free radicals (Lin
et al, 2002).

The role of telomeres in cellular aging The Hay£ick limit,
the ¢nite ‘‘lifespan’’ or number of CPD for cultured human cells
(Hay£ick and Moorehead, 1961; Hay£ick, 1965; 1977), implies that
aging occurs at the cellular level and is the consequence at least in
part of a genetic program. Subsequently, strong correlations were
noted between DNA repair capacity and average lifespan in a
large number of diverse species (Hart and Setlow, 1974) and
between metabolic rate and average lifespan (Sohal and Allen,
1985). These ¢ndings suggested that aging was also in part the
consequence of ‘‘wear and tear’’ from both internal and external
environmental insults, with aging rate determined by the balance
between incurred damage and its repair.

The ¢rst major advance in understanding the mechanism of
cellular aging was the demonstration that critical shortening of
telomeres underlies proliferative senescence of cultured human

cells. First described in eukaryotic cells by Greider and
Blackburn (1985), telomeres are tandem repeats of short base
sequences, yTTAGGGy in mammals, at the end of each
chromosome, that are required for chromosome stability.

Harley et al (1990) observed that increasing CPD of normal
human ¢broblasts is associated with shortening of their
telomeres. Further work established that telomere length of cells
obtained directly from tissues in vivo is inversely related to the
individual’s physiologic age, being shorter in cells derived from
older versus younger adults (Harley et al, 1990; Allsopp et al, 1992)
and in cells from patients with premature aging syndromes like
Werner’s and progeria versus age-matched controls (Allsopp et al,
1992; Schulz et al, 1996).

Interest in the biologic role of telomeres was heightened by the
observation (reviewed in Harley et al, 1994; Harley and Kim,1996)
that almost all human malignant cells express the reverse
transcriptase component of telomerase (hTERT) responsible for
maintaining telomere length in germline cells but not normally
considered to be expressed in somatic cells (reviewed in Harley,
1991). This ¢nding suggested that prevention of progressive
telomere shortening with each round of cell division was
necessary for dysregulated cells to divide inde¢nitely and hence
become su⁄ciently numerous to harm the host. This ¢nding
was expanded by the report that transfecting normal human
cells (¢broblasts and retinal pigment epithelial cells) with
hTERT appeared to immortalize them, increasing their in vitro
lifespan at least several fold (Jiang et al, 1999). Further studies
determined that in other cell types, such as keratinocytes,
immortalization requires ablation of the Rb/p16 protein
pathway, in addition to expression of telomerase activity
(Kiyono et al, 1998). Importantly, hTERT expression did not alter
the cells’ behavior, only their proliferative capacity (Jiang et al,
1999). Transfected cells remained appropriately responsive to
environmental signals and did not display characteristics of
transformed cells, con¢rming the prediction that unlimited
growth potential is necessary but not su⁄cient for malignant
conversion.

Interestingly, although the current dogma states that normal
somatic cells do not express telomerase, telomerase activity is
found in vitro in normal epidermal keratinocytes (Yasumoto et al,
1996). Telomerase activity is also detected in vivo in normal
human epidermis, primarily in the proliferative basal layer, but
not in the dermal compartment of the skin or in cultured
¢broblasts (Harle-Bachor and Boukamp, 1996). During the
growth phase of human hair follicles, telomerase activity is
detected in the bulb, the portion of the hair follicle that contains
rapidly multiplying cells, and its activity in this part of the hair
follicle is higher than its activity in hair follicle stem cells located
in the bulge area (Ramirez et al, 1997). These ¢ndings suggest
that telomerase expression may not be restricted to stem cells,
germline cells, and malignant cells although its role in normal
tissues remains to be elucidated.

In tandem with work elucidating the role of telomeres and
telomerase in aging and malignancy,Yu et al (1996) identi¢ed the
gene defective in Werner’s syndrome, a recessively inherited
classic premature aging syndrome in which development is
relatively normal but many features of aging, including
malignancies, become apparent in early to mid-adulthood and
death usually occurs in the 40s or 50s. Although the precise in
vivo function of the Werner’s syndrome gene product is largely
unknown, it is a DNA helicase/exonuclease and is thought to
play a role in DNA replication and recombination during cell
division and DNA repair (Gray et al, 1997; Huang et al, 1998;
Shen et al, 1998; Fry and Loeb, 1999). The Werner’s syndrome
protein in particular unwinds G-rich DNA structures (Wyllie et
al, 2000; Brosh et al, 2001) and has recently been implicated in
telomere maintenance (Hisama et al, 2000; Ouellette et al, 2000).
Recently, it was reported that patients with dyskeratosis
congenita, a second condition characterized by premature
graying of hair and cancer predisposition, have markedly shorter
telomeres than normal individuals (Vulliamy et al, 2001). Finally,
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in human skin specimens derived from donors of di¡erent ages,
an inverse relationship was found between telomere length and
donor age (Friedrich et al, 2000).

Throughout the 1990s, data implying interrelatedness of
telomeres, aging, cancer, DNA damage, and DNA damage
responses continued to accumulate. Most compelling were a
series of reports demonstrating substantial overlap in the
proteins mediating proliferative senescence, reversible cell cycle
arrest, apoptosis, and DNA repair. For example, the p53 tumor
suppressor protein and transcription factor, ¢rst identi¢ed in the
late 1970s as a cellular protein that binds the SV40 large T antigen
(Lane and Crawford, 1979; 1980; Crawford et al, 1980), was found
to be upregulated immediately before cells entered the senescent
state (reviewed in Stein and Dulic, 1998). The p53-regulated
protein p21, centrally involved in DNA damage responses (Stein
and Dulic, 1998), was independently identi¢ed as playing a major
role in proliferative senescence in the absence of DNA damage
(Noda et al, 1994), leading to its alternative designation as the
senescent cell-derived (growth) inhibitor or SDI-1. Furthermore,
it was noted that over-expression of proto-oncogenes such as ras
and raf may induce proliferative senescence rather than increase
cellular proliferation (Serrano et al, 1997; Zhu et al, 1998).
Interestingly, E2F1, a transcription factor that regulates cell cycle
progression, can induce senescence in human ¢broblasts when
over-expressed in the presence of p53 (Dimri et al, 2000). In
addition, E2F1 together with p53 can induce apoptosis (Wu and
Levine, 1994; DeGregori et al, 1995), suggesting that, depending
on the cell type and speci¢c experimental conditions, certain
proteins may induce apparently the antithecal cellular behaviors
of growth versus proliferative senescence or programmed cell
death. These combined observations have led to the concept that
aging, or at least proliferative senescence, is a fundamental cancer
prevention mechanism in multicellular organisms, employing
many of the same gene products as DNA repair (Campisi, 1996).
Interesting in vivo observation consistent with this concept is the
report that mice with ampli¢ed p53 activity as a result of a
mutated p53 gene display signs of premature aging including
decreased lifespan, premature hair graying, and cutaneous
atrophy, as well as osteoporosis and internal organ atrophy
(Tyner er al., 2002), in addition to the anticipated decrease in
cancer incidence.

How or why telomere shortening might induce genes also
involved in DNA damage responses is at present the subject of
intense investigation. The de Lange group has reported that
disrupting the telomere loop structure by ectopic expression of a
dominant negative form of the telomeric repeat binding factor 2
(TRF2DN) induces p53 and, in at least one cell type, the classic
DNA damage response of apoptosis (Karlseder et al, 1999), and in
another cell type a senescent phenotype (Van Steensel et al, 1998).
Eller has observed that supplementing cultured cells with
oligonucleotides substantially or completely homologous to the
telomere 30 overhang sequence TTAGGG also induces and
activates p53 and generally results in cell behaviors observed
after DNA damage (Eller et al, 2002a; 2002b). In combination,
these ¢ndings suggest that an as yet unidenti¢ed nuclear sensor
of this single stranded DNA sequence, which is normally
concealed in the telomere loop, may be responsible for initiating
these molecular pathways. Telomere loop disruption may occur
after acute DNA damage, TRF2DN expression, or critical
telomere shortening, all leading to exposure of the 30 overhang
(Li et al, in press) (Fig 3). Furthermore, this model provides a
molecular connection between photoaging (UV-induced DNA
damage) and chronologic aging (telomere shortening through
replication), both pathways leading to telomere destabilization
and exposure of the 30 overhang. Of interest, in ¢broblasts these
oligomers and telomere loop disruption also induce the same
gene products as serial passage and critical telomere shortening,
leading to a senescent phenotype, allowing for the speculation
that critically short telomeres may be stochastically unstable and
hence prone to disruption of the loop structure with consequent
exposure of the TTAGGG signal (Eller et al, 2002a; 2002b)

One apparent anomaly in the accumulating evidence that
aging results in some way from telomere shortening was the fact
that the telomeres of mice, a widely used animal model with a
relatively short lifespan (approximately 2^4 y), are far longer
than human telomeres and do not shorten appreciably (as a
percentage of initial length) over the murine lifespan (Kipling
and Cooke, 1990; Starling et al, 1990). To further investigate this
apparent exception to the rule, Greider, DePinho and colleagues
created telomerase knock-out mice and observed the animals
through multiple in-bred generations (Blasco et al, 1997;
Rudolph et al, 1999). The ¢rst and second generation animals
(G1, G2) appeared completely normal, but the G3�G6 mice
developed gray hair and hair loss as early as 6 mo of age and
delayed wound healing or chronic ulcers at 15^18 mo of age
(Rudolph et al, 1999). G4�G6 mice also developed spontaneous
tumors at a younger age and had shortened lifespans,
phenomena suggestive of premature aging. Although later
generations could not be studied because the G6 mice were
infertile, telomerase null mice displayed a 4^5 kb decrease in
telomere length per generation. These ¢ndings strongly suggest
that, whereas lifespan in mice must normally be regulated
di¡erently than in man, critical telomere shortening, if achieved
experimentally over several generations by inactivating telo-
merase in germline cells, ultimately has the same conse-
quences as in human cells.

Caloric restriction, de¢ned as reduction by more than half an
animal’s ad libitum food intake, had been observed to increase

Figure 3. Proposed mechanism for induction of senescence, cell
cycle arrest, di¡erentiation, or apoptosis by exposure of the
single-stranded telomere DNA sequence. The 30 telomere overhang is
normally sequestered within a loop structure stabilized byTRF2. Destabi-
lization of this loop structure by DNA damage due to UV irradiation or
chemical adducts, expression of TRF2DN, or gradual erosion during aging
is hypothesized to expose this single-stranded DNA (repeats of TTAGGG).
Displacement of the TRF2 protein as shown in the ¢gure might or might
not accompany loop disruption under physiologic conditions. This single-
stranded DNA is then detected by an as yet unidenti¢ed sensing mechan-
ism. Interaction of this sensor with the 30 overhang initiates a cascade of
events. Depending on cell type and/or intensity and duration of the signal,
these events might lead to cell cycle arrest, the eventual induction of senes-
cence, di¡erentiation, or apoptosis. In the present experiments, we hy-
pothesize that DNA oligonucleotides homologous to the overhang
sequence are recognized by the same sensing mechanism, triggering the
cascade in the absence of telomere disruption.
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lifespan and delay onset of age-associated diseases in many
species, including mammals (reviewed in Lane et al, 1999).
Although the mechanism of this e¡ect is poorly understood,
caloric restriction was widely presumed to act through reduction
in oxidative damage that is secondary to ROS generated during
cellular metabolism (Lass et al, 1998; Lee et al, 1999; Zainal et al,
2000). Employing a yeast model, Lin et al (2000) showed that
lifespan extension by caloric restriction requires the presence of
Sir2, an rDNA silencing protein, and nicotinamide adenine
dinucleotide (NAD) that is necessary for Sir2 function. Lifespan
extension of the yeast as a result of Sir2 activation is most
probably due to decreased rDNA recombination and hence
decreased senescence inducing extrachromosomal rDNA circles
(Sinclair and Guarente, 1997). Also, as noted above, caloric
restriction in this model increased the yeast respiration rate,
suggesting that mechanism(s) other than decreased ROS
production give rise to extended lifespan in this model (Lin et al,
2002). It is possible that Sir2 encodes proteins that have the
capacity to quench ROS. Such proteins have not been identi¢ed
to date, however. Although the extrapolation to higher organisms
is not intuitively obvious, this work suggests molecular links
between aging, oxidative metabolism, and genomic instability
that might well apply to mammalian cells as well as to yeast.
Very recently, using human HeLa cells, Wright, Shay, and
colleagues provided compelling evidence that genes positioned
near a telomere can be silenced, demonstrating a 10-fold
variation in expression of a reporter gene depending on both its
proximity to the telomere and telomere length (Baur et al, 2001).
These experiments o¡er an explanation for the selectively
altered gene expression patterns observed in late passage or old
donor cells and again tie telomere length to the aging
phenotype, with the caveat that aging is a complex process that
occurs in nondividing cells as well as in proliferative ones and
hence may be incompletely modeled by cultured cells (Rubin,
1997).

SUMMARYAND CONCLUSIONS

Skin aging has been well characterized clinically, histologically,
and functionally. As in other organ systems, skin aging has been
shown to have an intrinsic component and a variable environ-
mental component termed photoaging. Since Hay£ick’s in vitro
aging studies in the early 1960s, there has been an explosion of
information regarding molecular mechanisms that regulate these
aging processes. Aging is now conceptualized as a cellular safe-
guard against malignant transformation and aging rate as a bal-
ance between the rate at which DNA damage is incurred and
repaired, with many of the same gene products mediating both
DNA damage responses and proliferative senescence. Telomeres
appear to play a central role. These observations suggest that, in
skin as in all tissues, a common signaling pathway is activated
both by critical telomere shortening after multiple rounds of cell
division and by repeated environmentally induced DNA damage
to yield the aging phenotype.
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